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ABSTRACT 
ChIP-chip data, which indicate binding of 

transcription factors (TFs) to DNA regions in vivo, are 
widely used to reconstruct transcriptional regulatory 
modules. However, the binding of a TF to a gene does 
not necessarily imply regulation. Thus, it is important to 
develop methods to identify regulatory targets of TFs 
from ChIP-chip data. We developed a method, called 
Temporal Relationship Identification Algorithm (TRIA), 
which uses gene expression data to identify a TF’s 
regulatory targets among its binding targets inferred 
from ChIP-chip data. We applied TRIA to yeast cell 
cycle microarray data and identified many plausible 
regulatory targets of cell cycle TFs. We validated our 
predictions by checking the expression coherence and 
the enrichments for functional annotation and known 
cell cycle genes. Moreover, we showed that TRIA 
performs better than two published methods 
(MA-Network and MFA).  
 
 
1: INTRODUCTIONS 
 

By organizing the genes in a genome into 
transcriptional regulatory modules (TRMs), a living cell 
can coordinate the activities of many genes and carry out 
complex functions. Therefore, identifying TRMs is 
useful for understanding cellular responses to internal 
and external signals. The advance in high-throughput 
chromatin immunoprecipitation-DNA chip (ChIP-chip) 
[1,2] has made the computational reconstruction of 
TRMs of a eukaryotic cell possible. 

ChIP-chip technique was used to identify physical 
interactions between TFs and DNA regions. Using 
ChIP-chip data, Simon et al. [3] investigated how the 
yeast cell-cycle gene-expression program is regulated by 
each of nine major transcriptional activators. Lee et al. [4] 
constructed a network of TF-gene interactions and 
Harbison et al. [5] constructed an initial map of yeast’s 
transcriptional regulatory code. However, a weakness in 
the ChIP-chip technique is that the binding of a TF to a 
gene does not necessarily imply regulation. A TF may 
bind to a gene but has no regulatory effect on that gene’s 
expression. Even if a TF does regulate a specific gene, 
the ChIP-chip data alone does not tell whether the 
regulation is activation or repression. Hence, additional 

information is required to solve this ambiguity inherent 
in ChIP-chip data. 

To overcome this problem, several algorithms have 
been developed to combine gene expression [6,7] and 
ChIP-chip data to infer regulatory targets of a TF. For 
instance, NCA [8] and MA-Network [9] both use 
multivariate regression analysis and MFA [10] uses 
modified factor analysis of gene expression data to 
classify a TF’s binding targets inferred from ChIP-chip 
data into regulatory and non-regulatory targets. In this 
paper, we use a different approach to explore the 
different biological possibilities for the same 
phenomenon. We develop a method, called Temporal 
Relationship Identification Algorithm (TRIA), which 
uses time-lagged correlation analysis between a TF and 
its binding targets to identify its regulatory targets. Our 
rationale is that a TF has a high time-lagged correlation 
with its regulatory targets, but has a low time-lagged 
correlation with its binding but non-regulatory targets. 
Time-lagged correlation analysis has the ability to infer 
causality and directional relationships between genes 
[11,12]. It has also been used to reconstruct the reaction 
network of central carbon metabolism [13] and the gene 
interaction networks of Synechocystis sp [14]. Therefore, 
time-lagged correlation analysis has the potential to be 
used to identify a TF’s regulatory targets from its binding 
targets which may or may not be regulated by the TF. 
 
2: METHODS 
 
2.1: DATA SETS and ADDITIONAL FILES 
 

Three types of data are used in this study. First, the 
ChIP-chip data of the cell cycle TFs under the rich media 
are downloaded from [5]. Second, the gene expression 
data of the yeast cell cycle are downloaded from [15]. 
Third, the genome-wide distribution of the 
high-confidence TF binding motifs was downloaded 
from [5]. The high-confidence TF binding motifs were 
derived by using six motif discovery methods, also 
including the requirement for conservation across at least 
three of four related yeast species [5]. Moreover, due to 
the page limit, some details of the paper, which are 
included in the additional files, has to be found at 
http://oz.nthu.edu.tw/~d907907/TRIA/ICS2006/TRIA.h
tm. 
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2.2: TEMPORAL RELATIONSHIP 
IDENTIFICATION ALGORITHM (TRIA) 
 

TRIA is developed to identify TF-gene pairs that 
have a temporal relationship. A cell cycle TF and its 
binding target are said to have a positively (negatively) 
temporal relationship if the target gene’s expression 
profile is positively (negatively) correlated with the TF’s 
regulatory profile, possibly with time lags. 
Let 1( ,..., )Nx x x= be the gene expression time profile of 
cell cycle TF x and 1( ,..., )Ny y y= be the expression 
profile of gene y. The regulatory profile 

1( ) ( ( ),..., ( ))NRP x f x f x=  of TF x is defined as a 
sigmoid function just like previous studies [16-18]: 
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and L is the maximal time lag of the TF’s regulatory 
profile considered. In this study, we set L = 8 meaning 
that we compute the correlation between a gene and a 
TF with all possible time lags that are less than one cell 
cycle. The time lag may be interpreted as the time for a 
TF to have a regulatory effect on a gene. 

Then we test the null hypothesis H0: r(k)=0 and the 
alternative hypothesis H1: r(k)≠0 by the bootstrap 
method (see Additional file 1) and get a p-value p(k). The 
time-lagged correlation (TlC) of y  and ( )RP x  is 
defined as ( )r j that has the smallest p-value 

(i.e, ( , ( )) ( )TlC y RP x r j=  if ( ) ( )p j p k k j≤ ∀ ≠ ). 
Note that 1 ( , ( )) 1.TlC y RP x− ≤ ≤  Two possible 
temporal relationships between y  and ( )RP x  can be 
identified by TRIA: y  and ( )RP x  are (1) positively 
correlated with a lag of j time points if 

( , ( )) ( ) 0TlC y RP x r j= >  &  p(j) ≤ pThreshold and (2) 
negatively correlated with a lag of j time points if 

( , ( )) ( ) 0TlC y RP x r j= <  &  p(j) ≤ pThreshold. The 
pThreshold is chosen to ensure that we have at most a 5% 
false discovery rate (FDR) [19]. We may consider that 
TF x, after a lag of j time points, activates (represses) 
gene y if y  and ( )RP x are positively (negatively) 
correlated with a lag of j time points.  

 

2.3: IDENTIFICATION of PLAUSIBLE TF 
REGULATORY TARGETS 
 

Two previous papers [4,5] used a statistical error 
model to assign a p-value to the binding relationship of a 
TF-gene pair. They found that if p≤0.001, the binding 
relationship of a TF-gene pair is of high confidence and 
can usually be confirmed by gene-specific PCR. 
Therefore, we include a gene in the set B+ if the TF-gene 
binding p-value in the ChIP-chip data is ≤ 0.001, i.e., B+ 
consists of genes that are significantly bound by a TF. 
Further, a gene in B+ is assigned into B+R+ if it has a 
temporal relationship with the TF but into B+R- otherwise. 
Our hypothesis is that the genes in B+R+ are more likely 
to be the TF regulatory targets than are the genes in B+R-. 
TRIA is developed to classify B+ into B+R+ and B+R-. 
 
3: RESULTS 
 
3.1: ONLY a SUBSET of the TF BINDING 
TARGETS are PLAUSIBLE REGULATORY 
TARGETS 
 

We considered nine cell cycle TFs that have both 
sizes of B+R+ and B+R- ≥ 25 (i.e., at least 25 genes in each 
group). The number of genes in each group (B+R+ and 
B+R-) is listed in Table 1. On average, 55% of 
significantly bound genes are identified as plausible TF 
regulatory targets, similar to the result of [9], and 64% of 
the inferred regulatory targets have expression profiles 
that are positively correlated with the TF’s regulatory 
profile, possibly with time lags. Moreover, only 16% of 
the inferred regulatory targets and the TF are 
co-expressed (i.e., identified time lag = 0). That is, 84% 
of the inferred regulatory targets may not be found if we 
use the conventional correlation analysis that can only 
check whether a TF-gene pair are co-expressed or not 
(see Additional file 2 for details). The following analyses 
were performed to validate our method. 
 
3.2: EXPRESSION COHERENCE of 
PLAUSIBLE and NON-PLAUSIBLE TF 
REGULATORY TARGETS 
 

We compute the expression coherences of B+R+ and 
B+R-. The expression coherence of genes in a set G (i.e., 
EC(G)) is defined as the fraction of gene pairs in G with a 
correlation in expression level higher than a threshold T 
[20]. T was determined to be the 95th percentile 
correlation value of all pairwise correlations between 
2000 randomly chosen genes in the yeast genome. Note 
that 0 ( ) 1.EC G≤ ≤  We then test whether the 
expression coherence of B+R+ is statistically higher than 
that of B+R-. The cumulative hypergeometric distribution 
is used to assign a p-value for rejecting the null 
hypothesis EC(B+R+) = EC(B+R-) (see Additional file 3 
for details). Table 2 shows that in most cases (7/9), 
except for Ace2 and Rap1, the expression coherence of 
B+R+ is significantly higher than that of B+R- with p<0.01. 
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This result suggests that our criterion for distinguishing 
plausible from non-plausible TF regulatory targets is 
reliable because genes co-regulated by the same TF 
should be more strongly co-expressed than should 
non-co-regulated genes. 
 
3.3: ENRICHMENT for SPECIFIC 
FUNCTIONAL CATEGORIES 
 

B+R+ is shown to be more enriched than B+R- for 
specific MIPS functional categories with adjusted 
p-value < 0.05 (after the Bonferroni correction for 
multiple tests) using the cumulative hypergeometric 
distribution (see Additional file 4 for details). In most 
cases (7/9), except for Rap1 and Swi5, the number of 
enriched MIPS functional categories in B+R+ is larger 
than that in B+R- (Figure 1). This result suggests that our 
criterion for distinguishing plausible from non-plausible 
TF regulatory targets is reliable because co-regulated 
genes should have a greater probability to be involved in 
the same functional categories than should 
non-co-regulated genes. 
 
3.4: ENRICHMENT for KNOWN CELL 
CYCLE GENES 
 
We compute the proportions of genes of B+R+ and B+R- 
that belong to the known cell cycle genes identified by 
Spellman et al. [15]. We then test whether the 
enrichment of the known cell cycle genes in B+R+ is 
statistically higher than that in B+R-. The cumulative 
hypergeometric distribution is used to assign a p-value 
for determining the statistical significance (see 
Additional file 3 for details). In most cases (7/9), except 
for Abf1 and Ace2, the cell cycle genes are more 
enriched in B+R+ than in B+R- (Table 3). This result also 
suggests that our criterion for distinguishing plausible 
from non-plausible regulatory targets of a cell cycle TF 
is reliable because regulatory targets of a cell cycle TF 
should be more enriched for the known cell cycle genes 
than should non-regulatory targets. Taken together, the 
results mentioned above convincingly demonstrate that 
TRIA is a good method for identifying plausible 
regulatory targets of a TF from its binding targets. 
 
3.6: IDENTIFYING HIGHLY 
CO-EXPRESSED GENES AMONG THE 
PLAUSIBLE TF REGULATORY TARGETS 
 
It is known that co-regulated genes may not be 
co-expressed [21]. Therefore, it is useful to identify 
highly co-expressed genes among co-regulated genes 
because these co-regulated and highly co-expressed 
genes should be more likely to be simultaneously 
co-activated or co-repressed by the same TF and involve 
in similar cellular processes. TRIA has the ability to 
identify subsets of highly co-expressed genes among a 
TF’s regulatory targets. First, we use TRIA to identify 
the plausible regulatory targets from the binding targets 

of a TF. Then, we classify the regulatory targets into 
subsets Ai and Ri, where Ai (Ri) contains all genes whose 
expression profiles are positively (negatively) correlated 
with the TF’s regulatory profile with a lag of i time 
points. Finally, we test whether the expression 
coherence of Xi is statistically higher than that of B+R-, 
where Xi =Ai or Ri. The cumulative hypergeometric 
distribution is used to assign a p-value for rejecting the 
null hypothesis EC(Xi) = EC(B+R+) (see Additional file 
3 for details). Table 4 lists all subsets of Xi’s that contain 
highly co-expressed genes with p<0.01. This result 
shows that in general several groups of highly 
co-expressed genes can be extracted from the 
co-regulated genes, consistent with the result of [21]. 
That is, co-expression does not imply co-regulation and 
vice versa. 
 
 
3.7: PERFORMANCE COMPARISON with 
EXISTING METHODS 
 

To identify TF regulatory targets, Gao et al. [9] 
developed MA-Network that uses multivariate 
regression analysis of gene expression data and Yu et al. 
[10] developed a modified factor analysis (MFA) 
approach. We compare the identified regulatory targets 
of the TFs that are available in our study and at least one 
of the other two studies. On average, only 53% of our 
identified TF regulatory targets are also found by 
MA-Network and only 31% of our identified TF 
regulatory targets are also found by MFA. There is little 
overlap between the above three studies. This is not 
surprising biologically since the three methods study 
different biological possibilities for the same 
phenomenon. However, since the results of the three 
methods are not highly congruent, a performance 
comparison of these three methods should be done. Since 
a TF has to bind to its regulatory targets to regulate their 
expressions, enrichment of the high-confidence TF 
binding motifs among the identified TF regulatory 
targets can be used as a criterion for performance 
comparison. The high-confidence TF binding motifs 
were derived using six motif discovery methods, also 
including the requirement for conservation across at least 
three of the four related yeast species [5]. Let 1S (or 1T ) 
be the set of regulatory targets of a TF that are identified 
by TRIA but not by MA-Network (or MFA) and 2S (or 

2T ) be the set of regulatory targets of a TF that are 
identified by MA-Network (or MFA) but not by TRIA. 
We tested over-representation of the high-confidence TF 
binding motifs in 1S and 2S  (or 1T and 2T ). The 
cumulative hypergeometric distribution is used to assign 
a p-value to the motif enrichment (see Additional file 3 
for details). We found that in four of the five (4/5) cases 
the high-confidence TF binding motifs is enriched in 1S  
with p<0.001 but only two of the five (2/5) cases in 2S  
(see Table 5). Similarly, we found that in six of the eight 
(6/8) cases the high-confidence TF binding motifs is 
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enriched in 1T  with p<0.001 but zero of the eight (0/8) 
cases in 2T  (see Table 6). Thus, TRIA has a better 
ability to identify plausible TF regulatory targets than do 
MA-Network and MFA. 
 
4: DISCUSSION 
 

The development of TRIA is motivated by two 
biological observations. First, it is known that TF binding 
affects gene expression in a nonlinear fashion: below 
some level it has no effect, and above some level the 
effect may saturate. This type of behavior can be 
modeled using a sigmoid function. Therefore, we define 
the regulatory profile of a TF as a sigmoid function of its 
expression profile just like previous studies [16-18]. 
Although this may not be true for TFs that are mainly 
regulated at the post-transcriptional level [8,22], it is not 
a serious problem for many cell cycle TFs whose 
expression levels significantly varies with times, 
indicating that they are under transcriptional control 
[12,16,17]. Second, the regulatory effect of a TF on its 
target genes may not be simultaneous but after some time 
lags [11,12,14,18]. This makes TRIA more general than 
previous studies [8-10,21] which regard a gene to be 
regulated by a TF only if the gene’s expression profile 
are co-expressed with the transcription factor activity 
(TFA) profile. Actually, we found that TRIA performed 
better than two previous algorithms (MA-Network and 
MFA) [9,10]. This may results from the fact that TRIA is 
specially designed for cell cycle TFs and also considers 
time-lagged correlation between a cell cycle TF and its 
regulatory targets. 

Since co-expressed genes are not necessarily 
co-regulated and vice versa [21], it is important to 
develop a method that can identify co-regulated genes 
that are not co-expressed. TRIA has the ability to do this 
task. Through identifying a TF’s binding targets that 
have temporal relationships with the TF, we can find the 
TF’s regulatory targets that may not be highly 
co-expressed. We can further identify subsets of highly 
co-expressed genes among the inferred TF regulatory 
targets according to the identified time lags and 
regulatory directions. These co-regulated and highly 
co-expressed genes should be more likely to be 
simultaneously co-activated or co-repressed by the TF 
and can be used as candidates for further experimental 
studies. 
 
5: CONSLUSIONS 
 

In this study, an algorithm called TRIA is developed 
to identify plausible regulatory targets of a TF from its 
binding targets. Since the binding of a TF to a gene does 
not necessarily imply regulation, TRIA is used to solve 
this ambiguity. We validated the effectiveness of TRIA 
by checking the expression coherence and the 
enrichments for functional annotation and known cell 
cycle genes. Besides, the performance of TRIA was 
shown to be better than two published methods 

(MA-Network and MFA). Moreover, TRIA also has the 
ability to identify subsets of highly co-expressed genes 
among a TF’s regulatory targets. In addition, in our two 
previous works, we have successfully applied TRIA to 
identify high-confidence TF binding sites [23] and to 
reconstruct transcriptional modules of the yeast cell 
cycle [24]. Taken together, we are confident that TRIA 
has the ability to find biologically relevant results and 
can be useful in systems biology study. 
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TF B+ B+R+ (TlC>0,TlC<0) B+R- 
Abf1 247 144 (85,59) 103 
Ace2 81 44 (23,21) 37 
Cin5 142 69 (35,34) 73 
Fkh1 133 96 (62,34) 37 
Fkh2 116 90 (60,30) 26 
Rap1 147 82 (61,21) 65 
Swi4 146 84 (66,18) 62 
Swi5 106 42 (32,10) 64 
Swi6 144 49 (25,24) 95 
Table 1 - Classification of TF binding targets 
into plausible and non-plausible regulatory 
ones. The numbers of genes in B+, B+R+ and 
B+R- are shown for each of the nine cell cycle 
TFs under study. B+R+ is further divided into 
two subsets depending on whether the gene’s 
expression profile is positively (TlC>0) or 
negatively (TlC<0) correlated with the TF’s 

regulatory profile, possibly with time lags (see 
Additional file 2 for details). 
 
 

TF EC(B+R+) EC(B+R-) p-value 
Abf1 0.15 0.05 0 
Ace2 0.07 0.05 0.1771 
Cin5 0.08 0.04 3.7866e-010 
Fkh1 0.12 0.04 0 
Fkh2 0.16 0.03 1.9035e-012 
Rap1 0.11 0.1 0.0742 
Swi4 0.2 0.05 0 
Swi5 0.17 0.06 2.1148e-012 
Swi6 0.23 0.08 0 

Table 2 - Expression coherences of B+R+ and 
B+R-. The expression coherences of B+R+ and 
B+R- are calculated for each of the nine cell 
cycle TFs under study. We then test whether 
the expression coherence of B+R+ is statistically 
higher than that of B+R-. The cumulative 
hypergeometric distribution is used to assign a 
p-value for rejecting the null hypothesis 
EC(B+R+) = EC(B+R-)  (see Additional file 3 for 
details). 
 
 

TF B+R+ B+R- p-value 
Abf1 19/144 6/103 0.0439 
Ace2 14/44 7/37 0.1433 
Cin5 24/69 11/73 0.0055 
Fkh1 41/96 3/37 5.9970e-005 
Fkh2 54/90 0/26 3.7043e-009 
Rap1 13/82 2/65 0.0092 
Swi4 60/84 15/62 1.2199e-008 
Swi5 22/42 14/64 0.0012 
Swi6 37/49 42/95 2.7593e-004 

Table 3 - Enrichment of cell cycle genes. 
The proportions of genes that belong to the 793 
cell cycle genes identified by Spellman et al. [15] 
are calculated for B+R+ and B+R-. We then test 
whether the enrichment of the known cell cycle 
genes in B+R+ is statistically higher than that in 
B+R-. The cumulative hypergeometric 
distribution is used to determine the statistical 
significance (see Additional file 3 for details). 
 
 

TF(EC(B+R+)) Xi (EC(Xi); -log10(p-value)) 

Abf1(0.15) A1(0.64;Inf) A2(0.33;2.98) A3(0.51;Inf) 
 R2(0.39;2.72) R6(0.34;Inf)  
Ace2(0.07) A3(0.31;5.11) A4(0.5;3.66) R3(1;3.55) 
Cin5(0.08) A0(0.73;9.14) A1(0.43;6.29) A5(0.61;11.63)
 R0(0.76;Inf) R1(0.4;2.24) R2(0.47;4.14) 
Fkh1(0.12) A0(0.65;11.29) A1(0.49;11.03) A2(0.27;4.18) 
 A6(0.47;2.95)   
Fkh2(0.16) A0(0.69;Inf) A1(0.7;Inf) A2(0.69;11.44)
 A3(0.76;8.82)   
Rap1(0.11) A2(0.58;Inf) A3(0.67;2.68) A4(0.62;Inf) 
 A5(1;9.46)   
Swi4(0.2) A0(0.87;Inf) A1(0.6;Inf) A2(0.79;Inf) 
 A3(0.71;6.19)   
Swi5(0.17) A0(1;7.79) A2(0.86;11.36) A3(0.64;7.78) 
Swi6(0.23) A0(0.9;10.18) A6(0.73;4.33) A7(0.75;8.25) 
 R2(0.61;4.76)   
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Table 4 - Identification of highly co-expressed 
genes among the TF regulatory targets. The EC 
scores of B+R+, Ai and Ri are calculated. We 
then test whether the expression coherence of 
Xi is statistically higher than that of B+R-, where 
Xi =Ai or Ri. The cumulative hypergeometric 
distribution is used to assign a p-value for 
rejecting the null hypothesis EC(Xi) = EC(B+R+). 
Only those '

iX s that have p < 0.01 (i.e., 

10log 2p− > ) are shown (see Additional file 3 for 
details). 
 
 

TF S1 p-value S2 p-value 
Abf1 46/62 0 28/56 3.0839e-011
Ace2 2/28 0.0340 2/17 0.0132 
Fkh2 17/47 1.5357e-008 7/18 1.8019e-004
Swi4 16/27 6.5301e-012 6/18 0.0021 
Swi5 9/25 2.4141e-004 7/30 0.0171 
Table 5 - Performance comparison of TRIA with 
MA-Network. We tested over-representation of 
the high-confidence TF binding motif in S1 and 
S2, where S1 is the set of regulatory targets of a 
TF that are identified by TRIA but not by 
MA-Network and S2 is the set of regulatory 
targets of a TF that are identified by 
MA-Network but not by TRIA. The proportions 
of genes, whose promoter regions contain the 
high-confidence TF binding motif is calculated 
for S1 and S2. The cumulative hypergeometric 
distribution is used to determine the statistical 
significance of over-representation (see 
Additional file 3 for details).  
 
 

TF T1 p-value T2 p-value 
Abf1 75/105 4.0357e-012 10/106 0.9042 
Ace2 1/31 0.2782 3/35 0.0056 
Fkh1 30/64 3.1252e-007 5/109 1.0000 
Fkh2 20/49 6.6581e-011 10/100 0.2038 
Rap1 32/72 1.2579e-011 7/36 0.0052 
Swi4 28/56 5.3634e-012 2/36 0.7981 
Swi5 7/26 0.0076 4/32 0.3417 
Swi6 19/30 2.4500e-009 13/72 0.2932 
Table 6 - Performance comparison of TRIA with 
MFA. We tested over-representation of the 
high-confidence TF binding motif in T1 and T2, 
where T1 is the set of regulatory targets of a TF 
that are identified by TRIA but not by MFA and 
T2 is the set of regulatory targets of a TF that 
are identified by MFA but not by TRIA. The 
proportions of genes, whose promoter regions 
contain the high-confidence TF binding motif is 
calculated for T1 and T2. The cumulative 
hypergeometric distribution is used to 
determine the statistical significance of the 
over-representation (see Additional file 3 for 
details).  
 

 
 
Figure 1 - Enrichment in functional annotation 
The numbers of significantly enriched MIPS 
functional categories in B+R+ (left, blue) and 
B+R- (right, brown) for each of the nine cell 
cycle TFs under study are shown. 
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