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ABSTRACT 

Most of MicroRNAs are thought to control 
post-transcriptional mechanisms by base pairing with 
MicroRNA recognition elements found in their 
messenger RNA (mRNA) targets. A new computational 
method we provide is to predict mRNA targets for 
human MicroRNAs. Combined structure-based features 
and conserved data across species, the overall results 
are 89.1% in sensitivity. This means, the about 30nt 
short sequences of nucleotides can be accepted by our 
system not only when they appear in the interior loops 
and bulges, but also in the G:U, A:U and G:C 
nucleotide pairs of RNA secondary structures. We also 
provide the computationally deriving that guides single 
MicroRNA for multiple target mRNAs recognition. 
Incorporation of computational procedures allows 
prediction of human MicroRNA containing multiple 
target mRNAs. The results suggest that by providing 
structure-based features and conserved data can 
improve the performance of predicting MicroRNA target 
mRNAs. 
 
 
1: INTRODUCTION 
 

MicroRNAs (miRNAs) are short non-coding RNAs 
that regulate gene expression in animals and plants. 
MicroRNAs directly take part in post-transcriptional 
regulation either by arresting the translation of messenger 
RNAs (mRNAs) or by the cleavage of mRNAs. [1][2] 
MicroRNAs are defined as single-stranded RNAs of 
about 19~25 nucleotides in length generated from 
endogenous transcripts that can form local hairpin 
structures. The importance of MicroRNAs for 
development is highlighted by the fact that they comprise 
approximately 1 % of genes in animals, and are often 
highly conserved across a wide range of species. [3][4] 
Their biological meaning has become more and more 
important, however, how they recognize and regulate 
target genes remains less well understood. Furthermore, 

mutations in proteins require for MicroRNA functions or 
biogenesis impairing animal development. [5] To date, 
functions have been assigned to only a few of human 
MicroRNA genes. Prediction of MicroRNA targets in 
Human provides an alternative approach to assign 
biological functions. This has been very effective in 
plants, where MicroRNAs and target mRNAs are often 
nearly perfectly complementary. [6] On the other hand, 
in animals, functional duplexes can be more variable in 
structure, which means they contain only short 
complementary sequences, interrupted by gaps and 
mismatches. Moreover, specific rules for functional 
MicroRNA-mRNA pairing that captures all known 
functional targets have not been devised. This is the 
major problem for computing searching strategies, which 
apply different assumptions about how to ideally identify 
functional sites. As a result, the number of predicted 
targets varies considerably with only limited overlap in 
the top-ranking targets, indicating that these approaches 
might only capture subsets of real targets or may include 
a high number of background matches. [7][8].  

Several computational approaches have been 
implemented for prediction of MicroRNAs and target 
mRNAs pairings using methods based on primary 
sequence conservation or secondary structure alignment. 
[9][10] However, it is particularly difficult to identify the 
functions of short MicroRAN target sequences by only 
performing primary sequences alignment. That is, it may 
cause high false-positive rate while alignment of short 
primary nucleotides sequences. Because MicroRNA 
target motifs are conserved more in structure than in 
primary sequences [11], the computational detections of 
RNA secondary structures is quite a challenging problem. 
The RNA secondary structures (hairpin structures), or 
called stem-loop, usually is a lollipop-shaped structure 
formed when a single-stranded nucleic acid molecule 
loops back on itself, to form a complementary double 
helix (stem) topped by a loop, which is shown in Figure 
1(b). 

- 1380 -



Figure 1. (a) General scheme of MicroRNA-mRNA 
pairing. The gray circles indicate the MicroRNA 
nucleotides, which are complementary to the 
sequences of the target mRNA (the white circles). (b) 
An example of the secondary structure alignment by 
RNAfold program. 

 
The first contribution of this approach presented here 

is the combination of data from several sources. By 
integrating data from multiple species, we stabilize the 
learning process and construct a model that is more likely 
to be applicable to a variety of genomes. The second 
contribution is that, we not only consider the conserved 
primary sequences across species, but also take RNA 
secondary structures into account. That means, the about 
30nt short sequences of nucleotides can be accepted by 
our system not only when they appear in the interior 
loop and bulges, but also in the G:U, A:U and G:C 
nucleotide pairs of RNA secondary structures. Therefore, 
we reduce the fault positive rates while predicting 
MicroRNA target mRNAs. The third contribution this 
approach provides is that, we computationally derive the 
guiding single MicroRNA for multiple target mRNAs 
recognition. Incorporation of computational procedures 
allows prediction of human MicroRNA containing 
multiple target mRNAs. 

This article is organized as follows, in the beginning, 
we briefly introduce the materials and data sets that used 
by this approach. Secondarily, we give an introduction of 
predictions of RNA secondary structures. Next, we also 
explain the importance of searching homology genes and 
necessity of extracting structure-based features from 
RNA secondary structures. Finally, we exhibit 
experimental results and discuss the prediction results by 
some known biology experiments identified mRNA 
targets. 
 
2: MATERIALS 
 
2.1: The data set of experimentally defined 
MicroRNA – mRNA pairing (the training sets) 

 
Some approaches, which are related to MicroRNA 

function studies, many MicroRNA target sites have been 
presented as putative ones based on the complementarity 
of sequences or other computational prediction methods 
without experimental verification of biological 
experiments. [12] However, these data may include 

some biological factual examples and non-factual 
(predicted) binding site sequences if using them as 
training sets. Hence, all the non-factual data sets should 
be excluded in order to improve the quality of training 
sets. As a result, we collect experimentally verified 
binding site sequences of mRNA sequences for several 
MicroRNAs over several animal species. We collect 
carefully MicroRNA-mRNA pairing sequences from the 
biological literatures [13][14][15][16][17]. Both 
C.elegans and Drrosophila MicroRNA sequences and 
their target mRNAs sequences are collected for the 
training sets. 
 
2.2: Random sequences – the negative training 
sets 

 
Random sequences are produced according to [9], 

which is the sampling of specified AUCG background 
frequencies of PA = 0.34, PC = 0.19, PG = 0.18, and PU = 
0.29. These frequencies are consistent with the sequence 
composition of the C. elegans 3’UTRs of the target 
genes in the training set. Using randomly generated data 
as a negative training example is very dangerous 
because the random data might be quite different from 
actual data and might be hyper estimated. Therefore, we 
select negative training examples in the same criterion 
of the artificial (positive) training ones. That means, the 
random sequences are also predicted by RNAfold for 
producing the RNA secondary structures, so that we can 
also extract structure-based features from the negative 
training samples. 
 
2.3: Using the RNAfold program to predict the 
RNA secondary structures 
 
  The RNA secondary structure includes external 
elements (non-paired bases), double strand or stacks 
(paired bases), a hairpin (a double strand and a loop), 
bulge loops, interior loops and multi-loops. RNA can 
also have tertiary interaction, such as pseudoknots [18]. 
In this approach, we focus on the secondary structures 
particularly. The RNAfold [19] programs, based on the 
rules of minimum free energy, are used for the RNA 
secondary structure predictions. Accordingly, we use 
RNAfold to generate the structures predictions, which is 
the prediction of RNA secondary structure between the 
target sequence in the mRNA 3’UTRs and the 
MicroRNAs. After predicting the RNA secondary 
structures, we are capable of extracting the 
structure-based features such as bulges, interior loops 
and so on. 
 
2.4: Extraction of 3’UTR sequences in Human 
 

Data are originally downloaded from NCBI web site 
at ftp://ftp.ncbi.nlm.nih.gov/gene/DATA. We extract 
3’UTRs sequences, gene ids, gene official symbol 
names, gene alias names, accession numbers, and so on 
columns from the data set; then store in database for 
human species. This data is used for predicting the 
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target mRNAs while giving a known human MicroRNA 
sequences. Since target mRNA sequences of 
MicroRNAs are conserved between species, we draw 
sequences from highly conserved regions, as defined by 
homology using the BLAST sequence alignment. [26] 
The Human sequences are pairwisely aligned to all the 
C.elegans and Drrosophila target mRNA sequences and 
all sequences identified homology to C.elegans and 
Drrosophila are annotated as “potential homologue“ and 
stored in our database. 

 

 
Figure 2. This figure demonstrate the MicroRNA 
lin-4 and its target mRNA (lin-14 3’UTR), which is 
modified from [13]. The major point that this figure 
manifests is to stand out the importance of 
structure-based features while predicting target 
mRNAs for MicroRNAs. With the same MicroRNAs 
nucleotide sequences, they have different shape of 
loops while recognizing target mRNAs. (a) The gray 
circles indicate the MicroRNA nucleotides, which are 
complementary to the sequences of the target lin-14 
(the white circles). (b) Another binding target 
position in lin-14 3’UTR for MicroRNA lin-4, which 
forms another structural formations. 
 

Table 1 The extracted features used by this 
approach 

ID The descriptions of features Decoded value 
while inputting 
NN classifier 

1. AU match 1 
2 GU match 2 
3 GC match 3 
4 mismatch 4 
5 single nucleotide bulge 5 
6 Non-single nucleotide 

bulge 
6 

7 gap 7 
8 # of AU match at 5’ part # 
9 # of AU match at 3’ part # 
10 # of GU match at 5’ part # 
11 # of GU match at 3’ part # 
12 # of GC match at 5’ part # 
13 # of GC match at 3’ part # 
14 Total # of mismatch  # 
15 Total # of gap  # 
16 # of nucleotides within a 

non-single nucleotide bulge 
# 

 

3: METHODS 
 
In this section, we briefly introduce the features that 

are extracted from known MicroRNA – mRNA pairings, 
and also make a description of how the Neural Network 
classifier is constructed and trained. 

 
3.1: Extracted Features 

 
According to [10], structure-based features are 

important features which show the shapes of loops or 
bulges and the mechanism of MicroRNA–mRNA 
pairing. A single nucleotide mutation could repress the 
MicroRNA function according to the various changing 
of nucleotides structures. Take Figure 2 as an example, 
the MicroRNA, lin-4, is confirmed by biological 
experiments that one of its target mRNAs is lin-14 
3’UTR sequences. Lin-4 not only recognizes seven 
binding targets in gene lin-14 3’UTR, but also every 
type of bulge and loop in each recognized binding site 
varied [13]. In other words, structure-based features are 
somehow diverse while MicroRNA binding to different 
target mRNAs. We keep these biological characteristics 
while training our Neural Network classifier. For one 
input MicroRNA–mRNA pairing sample, each position 
has 7 conditions to select, which are consisted of AU 
match (indicate 1), GU match (indicate2), GC match 
(indicate 3), mismatch (indicate 4), single nucleotide 
bulge (indicate 5), non-single nucleotide bulge (indicate 
6), and, finally, the gap (indicate 7). Furthermore, we 
also extract some quantity features, such as the number 
of AU match at 5’ part, the number of AU match at 3’ 
part, the number of GU match at 5’ part, the number of 
GU match at 3’part, the number of GC match at 5’ part, 
the number of GC match at 3’part, and the total number 
of mismatches. As listed in Table 1, the input values of 
ID 8 ~ 16 features are integers that depend on each one 
of the training samples. Hence, we use the symbol ‘#’ to 
represent different values in training cases. 

 
3.2: RBF Neural Network method as a learning 
algorithm 

 
We use Radial Basis Function neural network (RBF) 

to learn the target mRNA discriminating rules from the 
training dataset. RBF networks have been extensively 
studied in the past [20] [21]. RBF consist of three layers, 
an input, a hidden and an output layer. The input layer 
corresponds to the input vector space and the output 
layer corresponds to the pattern classes. The whole 
architecture is consequently fixed by determining the 
hidden layer and the weights between the middle and the 
output layers. We demonstrate the RBF architecture 
used by this approach in Figure 3. Afterward, we briefly 
describe the input layer and hidden layer. Let X 
represents input layer vector, and Gi (where i =1, 2, …, 
n) represent neurons in hidden layer, which is a 
Gaussian kernel in the form: 
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where iw is the output weight, and each corresponds 
individually to the connection between a hidden neuron 
and an output neuron. Later we use gradient descent to 
determine the weights of the network. At last, the vector 
θ represents biases. Additionally, the outputs of RBF 
are “labels represent true or false” that describe whether 
the input mRNAs sequences are binding targets or not 
by given a MicroRNA.  

Figure 3. The RBF architecture used by this 
approach. There are three kinds of input neurons, 
one is structure-based features of input MicroRNA, 
another is structure-based features of input target 
mRNA, and the other is quantity features. 

 
As Figure 3 illustrated, there are three kinds of input 

neurons. The first kind of neuron represents the 
structure-based features of input MicroRNA sequences, 
identified by dotted line, started from 5’ to 3’ part 
nucleotides (indicated by x’i, where i = 1 to m) . Each 
position (nucleotide) has 7 conditions to select to 
represent the pairing status. The second kind of input 
neuron represents the structure-based features of input 
target mRNA sequences, start from 3’ to 5’ part, which 
are indicated by xj, (where j = 1 to n). The last kind of 
neuron represents the quantity features that described in 
Table 1 (ID 8 ~ 16), respectively. 

Take Figure 2 (b) as an example, the input vector for 
MicroRNA Lin-4 is“1 3 3 5 1 3 1 3 6 6 6 6 6 6 6 6 6 6 3 
1 3 1”, which is started form the 5’ part. The persisted 
“6” indicates the structure of non-single nucleotide 
bulge, and the element 5 represents the single nucleotide 
bulge in Lin-4. As for the target mRNA, Lin-14, the 
input vector is “3 1 3 7 1 3 1 3 4 4 4 7 7 7 7 7 7 7 3 1 3”, 
from 3’ to 5’ part, and the persisted “7” indicates gap 
positions. The remained input neurons are fed by the 
values of feature ID 8 ~ 16. The number of hidden 

neurons is the same as the number of input neurons. 
There is only one neuron in output layer, which outputs 
the value 0 (false) or 1 (true). 

 
3.3: Searching multiple target mRNAs for single 
MicroRNA in Human 3’UTRs 

 
Most of the targets identified by [13][14][15][16] 

contain multiple target mRNAs for the same MicroRNA 
or are regulated by more than one MicroRNA. The 
targets reported for Drosophila MicroRNAs also contain 
multiple target mRNAs. [22] However, the searching 
procedures guiding single MicroRNA for multiple target 
mRNAs interactions have not been investigated. 
Therefore, predictions of MicroRNA targets containing 
multiple mRNAs are lacking. Here we describe 
computationally procedures that guide single 
MicroRNA for multiple target mRNAs recognition. 
Incorporation of homology sequences in computational 
procedures allows prediction of human MicroRNA 
containing multiple target mRNAs. One of the target 
mRNAs for MicroRNA let-7b is found in the 3’UTR of 
the human mRNA that code for the human homolog of 
the C. elegans LIN-28 protein, a putative RNA-binding 
protein [23]. Thus, we collect human 3’UTRs sequences 
that homologize the C.elegans and Drosophila target 
mRNAs sequences. With these homologous sequences, 
given a known MicroRNA, the trained RBF classifier is 
able to decide the input sequences are whether one of 
the target mRNAs of the given MicroRNA or not.  

 
3.4: System Procedures 

 
We illustrate the prediction procedures in Figure 4. As 

we described in section 2.4, we have the collected 
human 3’UTRs sequences that are homolog of the 
C.elegans and Drosophila target mRANs sequences, 
and input to the prediction procedures one time. Given a 
known MicroRNA sequences, if there are more than 
three nucleotide pairs, such as AU, GU, GC matches 
and can be tolerant of single nucleotide bulge 
interrupted, then we call the RBF classifier to judge 
whether the mRNA is one of the targets or not. If there 
are less than three nucleotide pairs in the previous step, 
then we shift the position with three nucleotides length 
to check if any nucleotide pairs exist. This 
sub-procedure will not stop until the end of the mRNA 
sequences. In other words, given one known MicroRNA 
and one mRNA sequence, the system may predict more 
than one binding sites within the same mRNA in 
different positions. We derive computational procedures 
that guide single MicroRNA for multiple target 
recognition positions within one mRNA. Besides, we 
also consider the rules that guide single MicroRNA for 
multiple target mRNAs interactions. For instance, if 
there are n known MicroRNAs, m mRNA sequences, 
and k recognized positions in each mRNA, the system 
will run for n × m × k times. 
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Figure 4. The computational procedures for 
prediction of the target mRNAs while giving 
MicroRNA. 
 
4: EXPERIMENTAL RESULTS 

 
We investigate the targets discovery in 3’UTR regions 

first. Using the approach we provided in previous 
section, we discover several conserved mRNA targets 
while giving a known MicroRNA. Next we discuss the 
performance of the RBF classifier, and the effects of 
bulges, interior loops or G:U pairings. 

 
4.1: The predicted targets of Human 3’UTRs 

 
Because the target of 3’UTRs for MicroRNAs have 

not been well studied, we can not compare the 
discovered targets to the known targets that confirmed 
by biological experiments. Therefore, we provide GO 
[27] terms for genes that are targets predicted by our 
system. Gene Ontologies were assigned to target human 
mRNA genes according to the NCBI database. As we 
can see in Table 2, most target mRNAs for MicroRNA 
let-7b and let-7e are annotated as “protein binding”. 
Moreover, it is biologically confirmed that MicroRNA 
target genes contain binding sites with G:U base pairs or 
single nucleotide bulges [24][25]. As a result, it is 
reasonable to train the RBF classifier by structure-based 
features. It is also interesting that, the predicted target 
genes such as PARVB, GIPC1, ARMC4, and FANCD2, 
are identified as two binding positions that MicroRNA 
let-7b may recognize. The results prove that performing 
computational procedures to guide single MicroRNA for 
multiple target mRNAs recognition is practicable.  
 
4.1: Performance of the RBF classifier 

 
The 10-fold cross-validation is known to create a 

good estimate of the predictive accuracy of 
classification methods. In this approach, we use 10-fold 
cross-validation for accuracy estimation. Figure 5 shows 
the performance of the RBF classifier according to the 
training dataset. The performance is represented in 
statistical measures: sensitivity and specificity. Where,  

The Sensitivity = # of True Positives / (# of True 
Positives + # of False Positives).  

The Specificity = # of True Negatives / (# of True 
Negatives + # of False Positives). 

0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9

sensitivity specificity

 
Figure5. The performance of the RBF classifier 

according to the training dataset 
5: CONCLUSIONS 

 
In this approach, we propose a RBF classifier to 

predict MicroRNA target mRNA with structure-based 
features and conserved sequences across species. We 
input extracted structure-based features such as single 
nucleotide bulges, G:U, A:U, and G:C pairings, interior 
loops (the non-single nucleotide bulges) to represent the 
functional mechanism of the MicroRNA-mRNA pairing. 
A RBF classifier, inputted by structure-based features, 
performs well on training data and predicting results. In 
other words, the about 30nt short sequences of 
nucleotides can be accepted by our system not only 
when they appear in the interior loop, bulges, but also in 
the G:U, A:U or G:C pairs of RNA secondary structures. 
Therefore, we reduce the fault positive rates while 
predicting MicroRNA target mRNAs. Also, we 
computationally derive that how to guide single 
MicroRNA for multiple target mRNAs recognition. 
Incorporation of computational procedures allows 
prediction of human MicroRNA containing multiple 
target mRNAs. The results provided by our system, 
imply a sample step towards a comprehensive inventory 
of human mRNA 3’UTRs targets that play a major role 
of understanding post-transcriptional mechanism, or 
cellular mechanism in disease and health. With the 
analysis of focusing on the conserved targets of genes, it 
should be a possibility of predicting a more complete 
catalogues of mRNA targets. 
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Table 2. The predicted target mRNA 

GENE 
NAME 

Accession NUM GO terms Homology MicroR
NA 

PARVB NM_013327  protein binding 
 cytoskeleton  
 cell adhesion 

C. elegans Let-7b 

GIPC1 NM_005716  receptor binding 
 protein binding 
 membrane fraction 
 soluble fraction 
 cytosol G-protein 

coupled 
 receptor protein 

signaling  
 pathway membrane 

C. elegans Let-7b 

ARMC4 NM_018076 N/A Drosophila Let-7b 
FANCD2 NM_001018115  protein binding 

 Nucleus 
 Chromosome 
 DNA repair 
 Cell cycle 

Drosophila Let-7b 

TDO2 NM_005651  Function iron ion 
binding 

 tryptophan 
metabolism 

 oxidoreductase 
activity 
neurotransmitter 
metabolism 

 metal ion binding 

C. elegans Let-7b 

GABBR1 NM_001470  gamma-aminobutyri
c acid signaling 
pathway 

 negative regulation 
of adenylate 
cyclase activity 

 osteoblast 
differentiation 

 cytoplasm 
 integral to plasma 

membrane 
 GABA-B receptor 

activity 

C. elegans Let-7e 

RTKN 
 

NM_033046 
 

 nucleotide binding   
 GTPase inhibitor 

activity        
 protein binding       
 GTP binding         
 intracellular       
 apoptosis    
 signal transduction    
 Rho protein signal 

transduction     
 GTP-Rho binding   
 regulation of 

anti-apoptosis 

C. elegans Let-7e 

BECN1 
 

NM_003766  autophagy           
 anti-apoptosis        
 cellular defense 

response           
 response to virus 

C. elegans miR-23b
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