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ABSTRACT 
Quantitative assessment of daily physical activity in a 

home environment provides significant information in 
evaluation of health and the quality of life of subjects 
with limited mobility and chronic diseases. This study 
developed a system for human physical activity 
assessment in ambulatory monitoring using only one 
portable sensing device combining a tri-axial 
accelerometer and its distributed data processing 
platform. This real-time system is able to identify 
several postures, posture transitions and movements 
with the embedded algorithm. In addition, this system 
also features fall detection capability. The results of the 
test for evaluating the performance of the system show 
high identification accuracy for both still postures and 
dynamic movements. A long-term ambulatory test was 
also conducted, and the recorded data shows sufficient 
information of the subject’s activities of daily living at 
home. Some inherent limitations concerning real-time 
identification were discussed. Despite those limitations, 
this system is technically viable for ambulatory 
application to provide sufficient information in 
evaluating a person’s activity of daily living (ADL) and 
his status of physical mobility. Potential wok of this 
system in the future is also discussed. 

Keywords: Physical activity assessment, tri-axial 
accelerometer, fall detection, ambulatory monitoring, 
postural transition 
 
 
1: INTRODUCTIONS 
 

Physical activity can be regarded as any movement or 
posture that is produced by skeletal muscles and results 
in energy expenditure [1]. Various health conditions such 
as heart disease, senile dementia, degeneration in 
mobility will directly affect one’s physical activity level. 
The quantitative assessment of daily physical activity at 
home is a determinant in the evaluation of health and the 
quality of life of subjects with limited mobility and 
chronic diseases, such as elderly persons. 

The assessment of physical activity is difficult due to 
the subtle and complex nature of body movement which 
requires precise and reliable measuring techniques. 
Standard human motion capturing techniques based on 
optical, magnetic and ultrasonic systems allow a 
complete kinematic analysis but require a dedicated 
laboratory [3]-[5]. From a technological point of view, 

these techniques mentioned above can precisely capture 
human motions and have been used in the applications of 
computer animation and virtual reality. However, for the 
assessment of daily physical activity in a home 
environment the cost of such techniques is unacceptable 
for common use. Moreover, the subjects must be 
restrained inside a laboratory-like space, which is 
entirely different from a free-living home environment. 
Therefore, acquisition of body movement using portable 
measuring devices or body-fixed motion sensors is an 
appropriate alternative for physical activity assessment 
in ambulation and home environments. 

In the past, mechanical motion sensors have been 
used for various physical activity assessments. Saris [6], 
[7] used pedometers and actometers to study daily 
physical activity. Energy expenditure related to various 
physical activities has also been estimated using this 
technology [8]. Meanwhile, the use of accelerometers to 
measure body movement began as early as the 1970s. 
Morris [9] developed an accelerometry-based technique 
to measure human body movement. Gerwin et al. [10] 
proposed a method to assess physical activity with 
motion sensors and accelerometers. They also developed 
a small data acquisition unit with a solid state memory in 
place of a large tape recorder which discouraged subjects 
from wearing it. Veltink et al. [11] investigated the 
feasibility of distinguishing several static and dynamic 
activities in a domestic environment using a small set of 
two or three uniaxial accelerometers. Bouten et al. [12] 
also presented a tri-axial accelerometer which consists of 
three separate orthogonal uniaxial accelerometers to 
measure body movement. Najafi et al. developed a 
portable data processing unit for the off-line acquisition, 
processing, and storage of the acceleration data. An 
ambulatory system was presented for daily physical 
activity monitoring of the elderly using a kinematic 
sensor which consists of a miniature gyroscope and two 
dual-axial accelerometers. In addition, fall risk 
evaluation was also proposed [13].  

The purpose of this research is to develop a wearable 
system for physical activity assessment based upon the 
Portable Tele-homecare Monitoring System (PTMS) 
infrastructure, which is a decentralized tele-healthcare 
application system proprietarily developed by 
Gerontechnology Research Center (GRC) at Yuan Ze 
University. As for the body-worn device, a miniature 
tri-axial accelerometer is used for motion detection of 
body movement. A dedicated body movement algorithm 
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embedded in the microcontroller in that device is 
developed to actively recognize three still postures 
(sitting, standing, and lying), four postural transitions 
(sit-stand transitions and lie-sit transitions) and 
locomotion (walking) in a home environment. This 
system also features the fall detection capability to 
recognize any possible fall event. Long-term monitoring 
in a subject’s residence was also demonstrated to register 
the majority of daily activities. 
 
2: METHOD AND SYSTEM DESIGN 
 
2.1: INSTRUMENTATION 
 

Fig. 1 shows the structure of the system. A wearable 
data acquisition unit (DAU) primarily consisting of a 
miniature tri-axial accelerometer (KXM52-1050, Kionix, 
Inc.), a PIC microcontroller (PIC18F6722, Microchip) 
and a RF wireless transmitter module (PT2262, 
Princeton Tech.; TWS-CS-2, Wenshing Electronics Co., 
LTD) is designed for acceleration measurement and 
real-time identification of human postures and 
movements (Fig.2(a)). As shown in Fig 3, the DAU is 
designed to be carried at the waist level nearby close to 
the center of gravity of the body by means of clips onto 
the pant belt for easier and convenient use. From the 
empirical trial, the suitable position which lies within the 
range of 45 degrees from the frontal (antero-posterior) 
side to either of medio-lateral sides is consistent with the 
statement in the related studies [10],[12],[14]-[18].  

This low-g (±2g) DC-responsive tri-axial 
accelerometer measures the acceleration produced by 
human movement as well as the constant gravity 
component. The accelerometer outputs are low-pass 
filtered at fc=50Hz and continuously sampled at 60Hz via 
10-bit A/D conversion of the PIC microcontroller. 
Computation of a simple kinematic model is used to 
remove such a gravitational component instead of using 
physical high-pass filters. Each real-time identified 
activity event is transmitted cyclically via the 
433.92MHz RF wireless transmitter module then to the 
distributed data server (household DDS) which features 
the capabilities of signal computing, I/O control, 
Ethernet communication, wireless RF data reception, 
data storage (MMC) and the links with external devices. 
Fig. 2(b) shows the household DDS.  
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Fig. 1. System structure 

 

 
(a)                      (b) 

Fig. 2. The wearable DAU (a) and household 
DDS (b) 

 

 
Fig. 3. The attachment of the wearable DAU  

 
2.2: ALGORITHM DESIGN 
 

A dedicated algorithm embedded in the 
microcontroller of the DAU is developed to identify 
three postures (lying still, sitting still, and standing still), 
four postural transitions (sit-stand, stand-to-sit, sit-to-lie 
and lie-to-sit) and walking movement. Detection for 
possible falls is also designed in this algorithm. Fig. 4 
describes the process flow of the algorithm which mainly 
includes five parts: data sampling (Cx), pre-processing 
(Px), dynamic posture transition identification (DBx), 
still posture identification (DAx) and possible fall 
detection (DCx). All signals are processed in 
time-domain analysis in the algorithm due to the limited 
computation capability of the PIC microcontroller as 
well as the fact that batch data analysis in 
frequency-domain method yields inaccurate results. All 
the identified results are stored in the variable STATE. 
In the case where there is no definite result determined 
throughout the processes, the event will be recorded as 
an “Uncertain movement” or an “Uncertain posture”. 

The data sampling process consists of the primary 
stage (C1) and the secondary stage (C2) in 0.5s and 2.0s, 
respectively. The use of the dual-stage data sampling 
strategy ensures that the data of one event can be 
acquired within the same sampling interval. Initially, 
Sections C1 and D1 determine whether any sign of 
dynamic movement exists. If no dynamic movement be 
detected (D1=No), the sampled 0.5s data is used to 
identify one of the three possible still postures in the 
processes DAx. If dynamic movement is detected 
(D1=Yes), the secondary data sampling stage (C2) is 
immediately activated to collect the subsequent 2.0s 
data. The 2.5s data collected in both stages is combined 
and then median-filtered (window length n=3) and 
simplified (reduced to one-third of the original data 
amount by averaging method) to represent an “event” 
for the following step-by-step movement identification 
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which is to identify either one of the four postural 
transitions, walking or a fall event.  

 
Fig. 4. The flowchart of the algorithm 

 
The “slope mapping” technique which registers 

whether there are apparent fluctuations or changes in the 
data series is commonly applied in computation of the 
trunk tile angles and the tri-axial acceleration data in the 
algorithm. Various thresholds are given in most of the 
computation sections to yield the results of specific 
determination. Fig. 5 shows an example of a binary 
series (0 or 1 expressed as the bar chart) which registers 
the apparent changes of a trunk tilt data series (degrees 
in the form of curve) during a sit-to-stand postural 
transition mapped by this technique. 

 
Fig. 5. Example of the effect of slope mapping 

technique 
 

In order to investigate the accelerometric 
characteristics of sit-stand transitions, a test was 
performed on 15 ostensibly healthy subjects in various 
ages arranged into three groups: Young (20-35yrs), 
middle-aged (35-50yrs) and elderly (50+yrs), with 5 
subjects in each group. From the observation of the test, 
the vertical acceleration pattern of sit-stand postural 
transitions can be characterized by three particular rules: 
(i) peak order, (ii) peak distance (time interval) and (iii) 

peak values. Either of sit-stand postural transitions can 
only be identified when the criterion of all the three 
rules are satisfied. 

The lie-sit postural transitions can be identified and 
further distinguished from each other by investigating 
both the trunk tilt variation and the final posture 
orientation. Still posture identification requires the 
information of previously known postural transitions or 
walking movement. A still posture can be recognized as a 
lying still posture according to the posture orientation or 
if there exists a previous sit-to-lie postural transition. 
Similarly, sitting still or standing still postures can be 
identified by the existence of the types of previous 
sit-stand transitions or walking movement. 

In order to evaluate the performance of the 
algorithm in still posture and dynamic activity 
identification, 10 subjects were recruited for the 
laboratory-based test. Sensitivity and specificity tests 
for posture (lying still) and posture transitions (sit-stand 
transitions, lie-sit transitions) and walking movement 
were conducted. Note that the evaluation did not include 
the sitting still or standing still postures due to the fact 
that both still postures are associated with the results of 
previously identified postural transitions or movement. 
In addition, Falling was not included either because it 
was not easy for the testers to simulate “standardized” 
falls. Table 1 shows the evaluation results of sensitivity 
and specificity from 200 and 500 samples, respectively. 
 

TABLE 1. Performance of the algorithm  
Posture/activity Sensitivity (%) Specificity (%)
Lying still 100 *
Sit-to-stand 92.2 91.5
stand-to-sit 95.6 88.5
Sit-to-lie 92.2 99.5
Lie-to-sit 95.6 88.0
Walking 98.9 99.5

 
Fall detection in daily physical activity is important 

in the elderly care and rehabilitation. Intuitively, a fall 
can be regarded as a movement accompanying by 
unusual high acceleration peaks in a very short time 
interval. The measures of summation of time integrals 
of the accelerometer outputs (IMA) or signal magnitude 
vector (SVM) were proposed to evaluate the intensity of 
the physical activities [12],[14]. According to the 
definition given by Karantonis et al., falls are said to 
have occurred if at least two consecutive peaks in the 
SVM above a defined threshold 1.8g are recorded and 
followed by a 60s post-fall period of no activity [14]. As 
for the algorithm in this system, a “sign of fall” can be 
identified for a non-upright posture if there are at lest 
two peaks at relatively higher magnitude of ±1.0g 
either in vertical or antero-posterior acceleration 
component. A “possible fall” event can be further 
identified from a previously registered “sign-of-fall” 
event followed by a 20s period of lying still posture 
without any activity.   
 

- 1341 -



3: SYSTEM INTEGRATION AND TEST 
 

With the Ethernet communication capability of the 
household DDS, it is accessible via the Internet. The 
monitoring of real-time activity status and the 
accumulation sum of each monitored item can be 
displayed by using the Internet browser on the client PC. 
This interface provides brief information of real-time 
acquired event data for the users without any dedicated 
software. 

Complete data management can be achieved by using 
dedicated PC-based VB-developed programs as Fig. 6 
which features the following fundamental functions: 

(i). Remote data access capability: The authorized 
users (e.g., the system administrator, care-giver or 
families) are allowed to access to the DDS and 
retrieve the data stored in it through TCP 
communication. 

(ii). Real-time monitoring information: The real-time 
monitoring information (still posture or dynamic 
activity) is displayed on this interface. 

(iii). Recorded data display: The daily recorded data 
can be chronologically displayed to show the 
overall activity distribution. As shown in the Fig. 
7 rests and activities can be distinguished. They 
are also classified and given quantitative results, 
such as the numbers, percentages of those events 
in the data. All the related information can be 
saved to an Excel file (*.xls). 

(iv). Event-driven function: The DDS can be optionally 
equipped with a GSM module to provide 
event-driven capability. When this function is 
enabled by the user, the DDS is able to actively 
send a cell phone text message to a user-specified 
person when a possible fall has been detected. 

 

 
Fig. 6. VB-developed program interface 

 

 
Fig. 7. Display of the statistical results of 

retrieved data 
 

Fig. 7 also shows an example of a subject’s long-term 
monitoring data in a day at home. In this test, the system 
began to record data at about 1:00 and ended at about 
16:00. In the home environment, the user (subject) is not 
expected to use this system continuously throughout the 
monitoring period during some situations such as taking 
a shower, going outside, etc. Therefore, the data recorded 
may not be continuous, and the actual monitoring time in 
this test is about 405 minutes. That is, about 6.75 hours 
within the 15-hour period is recorded. 

According to the statistical results shown in Fig. 7, 
more than 90% of the recorded events are still postures. 
Moreover, lying still postures occupy about 61% of total 
recorded events. Figure 8 is the activity chronograph 
which chronologically displays the recorded events 
represented as a series of event number 1 to 9. It can be 
observed that the subject was mostly in the “lying still” 
(event number 1) posture from 4:00 to 9:00, which 
indicates that the subject was probably sleeping during 
that period. In addition, the subject had large numbers of 
“sitting still” (event number 2) postures from about 9:00 
to 13:00. After 14:00, the subject performed many 
posture transitions and walking movements (event 
number 4 to 8). 
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FIGURE 8. Activity Chronograph of the 

recorded data 
 
4: DISCUSSION 
 

The physical activity assessment system which 
utilizes only one wearable sensing device has been 
developed and demonstrated in ambulatory tests. This 
system also achieves good performance in still posture 
and dynamic activity identification. However, some 
inherent limitations are worth discussing here. 

An advanced capacitance tri-axial accelerometer was 
used in this study to measure the acceleration and trunk 
tilt of the human body. In fact, the most precise tilt 
sensing can be maintained when the accelerometer is at 
static, or under constant acceleration. Tilt sensing using 
accelerometers still has limited accuracy of tilt sensing 
in changing acceleration magnitude. It was also reported 
by Elber’s research on gravitational artifact in 
accelerometric measurement [19]. However, In spite of 
this constraint, tilt sensing and acceleration 
measurement using one tri-axial accelerometer is still 
valid for physical activity because the resulting outputs 
still preserve apparent characteristics for either trunk tilt 
and acceleration patterns. 

The wearable DAU has been designed to measure 
human body movement at waist level and clipped to the 
belt for minimizing discomfort and inconvenience in use. 
However, carrying the DAU might limit posture and 
movement when lying down and therefore further 
influences the subject’s comfort. As for wireless data 
transmission, power capacity has a significant influence 
on the effective distance and stability of data delivery. 

To extend the time for use, a battery cartridge with 
(3×AA alkaline batteries) can be used instead of the 
AAA batteries. The antenna configuration also has a 
great influence on the performance of wireless data 
delivery. However, the antenna design has not been 
further evaluated. In the future, the onboard antenna and 
optimization must be taken into consideration. 

The limitation in computation capability and memory 
capacity of the microcontroller used in this study, 
coupled with the fact that human events must be 
identified simultaneously to keep up with the next data 
acquisition process, limit the identification performance. 
Most other off-line systems use powerful PC-based 
computation software such as MATLAB to analyze the 
recorded data. Therefore, identification accuracy of those 
systems is usually higher than that of the real-time 
systems [13]. 

Moreover, the durations of posture transitions or 
movement are not the same each time, even for the same 
person. People usually perform mixed and combined 
movements in their normal activities of living. Due to the 
complex nature of human movement and limitations in 
instrumentation, identification accuracy for such a 
real-time system can be limited when applied in real 
ambulatory and home uses, despite that fact that it 
achieves good performance for laboratory-set tests. 

 
5: CONCLUSSION 
 

In this study, a real-time system for human physical 
activity assessment using only one portable sensing 
device was developed for real-time ambulatory 
monitoring in a home environment. This system is able 
to distinguish rests from activities and further identify 
several target posture transitions and movements. 
Although the nature of actual human postures and 
activities of daily living are more complex than what is 
considered and assumed in the algorithm, this algorithm 
still exhibits acceptable performance in determining 
those target postures and activities. Despite some 
limitations in the configuration for real-time data 
processing, this system is technically viable to perform 
long-term ambulatory monitoring in a home environment 
and to provide sufficient information in evaluating a 
person’s activities of daily living (ADLs) and his status 
of physical mobility. 

The results from the ambulatory tests also show that 
this system can provide significant information on the 
subject’s activities of daily living. In the future, the 
application field of this system, system robustness and 
reliability and the possibility for ubiquitous computing 
which integrates all the ADL-related data altogether 
should be further considered. 
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