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ABSTRACT

The quadratic residue (OR) codes whose code rates
are greater than or equal 1/2 and generally have high
error-correcting capacity are widely used in
communication for channel coding. In this paper, a
new decoding method is proposed for the binary QR
codes. The key ideal behind the proposed method is to
apply the properties of remainder decoding and the
Gao’s algorithm. In the remainder decoding, the main
feature of efficient compute syndromes is contained in
our decoding method. And the modified Gao’s
algorithm is also used in our decoding algorithm. The
new algorithm has been verified by a software
simulation using C'' language running through
possible error patterns. An example of (17, 9, 5) OR
code using this decoding algorithm is given.
Keywords: Quadratic residue codes, remainder
decoding, the Gao’s algorithm, error-correcting code.

1: INTRODUCTIONS

The QR codes which were introduced by Prange [1]
are cyclic error-correcting codes. (7, 4, 3) and (23, 12, 7)
QR codes are the well-known Hamming codes [2] and
Golay code [3-5], respectively. The QR codes with
length less than or equal to 113 have been decoding via
varieties of decoding methods expect for the case of
length 89. Those methods used most often to decoding
include Sylvester resultant [6-7], GrObner bases [8-9]
or the Berlekamp-Massey (BM) algorithm [10-11]. The
first two methods can be used to solve the Newton
identities that are non-linear multivariate equations of
higher degrees. As the code length increasing, the first
two methods become difficult. Furthermore, different
QR codes use different sets of conditions to determine
the error-locations. Consequently, it is hard to hardware
implement. In the past, the BM algorithm was widely
applied in decoding Reed-Solomon RS codes,
Bose-Chaudhuri- Hocquenghem (BCH) codes, and
many other codes. The evaluations of syndromes play
an important role in decoding procedure. The
remainder technique proposed by [12] could be applied
to calculus the values of syndromes. To use BM

algorithm in decoding QR codes, the enough
consecutive syndromes is a necessary condition. In
2001, a new technique to express the unknown
syndromes as functions of known syndromes was
developed by He et al [13]. Recently, Gao [14]
proposed an efficient scheme to decode RS codes
which is called the Gao’s algorithm by Fedorenko
[15].

The proposed decoding scheme replaces the
remainder technique with the directly computing the
values of known syndromes from the received vector.
This technique reduces the complexity of syndromes
calculus. Also, the method developed by He ef al [13]
is used to determine the unknown syndromes of QR
codes. Finally, the determined syndrome polynomial is
applied in the key equation of the Gao’s algorithm
given in [15]. The Gao’s algorithm proposes an
efficient condition that is suitable for QR codes. Then
we solve the key equation using the extended Euclidean
algorithm (EEA) to obtain the error-locator polynomial.
After Chain search, the error locations are found. In
order to explain the proposed decoding scheme, an
example of (17,9, 5) QR code up to two errors is given.

2: PRELIMINARY

Let n be a prime congruent to +1 or -1 (mod 8), and
let Q, denote the set of nonzero quadratic residues

(mod n). Let § be a primitive nth root of unity in an
extension field of GF(2), and let the polynomial g(x)
be defined by g(x)=]](x-p) . Then g(x) is a
i€Q,
polynomial with coefficient in GF(2). The binary
cyclic code of length n with generator polynomial g(x)
is called the (n, &, d) QR code.
The received vector R(x) is represented as a
polynomial is
n-1 n-1
R(x)=C(x)+E(x) = cx' + > ex' where the codeword
i=0 i=0
C(x) equals to the product of the message polynomial
m(x) and the generator polynomial g(x), E(x) is the
error polynomial and ¢;, e, belong to GF(2).
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The error locator polynomial is defined by
W =]]a-xx), (1)
i=1
where ¢ is the correcting-error capacity and X, is the
errors location.
The remainder polynomial r(x) with degree less
than the degree of g(x) is of the form
R(x)=r(x) mod g(x). (2)
The syndrome is defined as s, =E(B")
where 0<i<n-1 . There is an relation among
syndromes, namely, S,, =S, with subindex modulo
n, if necessary. If i belong to Q,, the syndromes are

called the known syndromes and have the property
S, =R(B)=r(B") for0<i<n-1. 3)

Otherwise, the syndromes are called the unknown
syndromes and are not obtained directly from the
remainder polynomial r(x).

In order to get the correctly values of unknown
syndromes, a method developed by He et al [13] is
summarized in the following.

Assume that v errors occur in the received vector.
Consider the matrix S(/, J) of size (v+1)x(v+1) as
follows:

i+ Sil +J2 o Sil + vl
S. . S. . e S
_ L+ Lty D]
SU,J) = : : . S 4)
Siu—l +Ji Sl‘m +h Siu+| el

where the summation of the subindices of the S, ’s is

modulo #n, and det(S(Z, J))=0. If there is only one
unknown syndrome among the entries of S(/, J), then it
can be expressed as a function in terms of some known
syndromes. Hence, during the decoding process, one
can evaluate the value of the unknown syndrome with
the information about those known syndromes. The
relation among syndromes is used to determinate all
values of syndromes.

After getting all syndromes, the syndrome
polynomial is defined to have the following forms:

S(x)=S,x+Syx+--+8, _x"". %)
The key equation of the Gao’s algorithm [15] is as
follows:
W(x)T(x)=P(x) modx" —1

k
deg P(x) < ; , (6)

max imize deg P(x)
where the interpolation polynomial 7(x) is connection
with the remainder polynomial 7(x) and all the roots of
x" =1, i e, {#° 8", B""}. Applying the EEA
to x" -1 and T(x), we obtain unique pair of

polynomials W(x) and P(x). In the fact, the polynomial
W(x) is the error locator polynomial.

3:THE SYNDROME POLYNOMIAL

AND THE MODIFIED KEY
EQUATION OF THE GAO’S
ALGORITHM

This section contains the main theorem about
syndrome polynomial and the modified key equation of
the Gao’s algorithm which are the foundation of our
algorithm.

Theorem 1: Consider a binary (n, k, d) QR code.

Let S(x)=8x+S5,x*+---+5,_,x"" be the syndrome

polynomial for the received vector R(x). If the weight
v of a correctable error pattern E(x) is odd (resp., even),
then S(x) (resp., 1+S(x)) has v distinct linear factors,

(1- B'x) where # is a primitive root of x" —1.
Proof: Assume that the number of errors is odd,

ie, v=2u+1 . By the definition of syndromes

mentioned in Section 3), we have

S, =B +(B") +o+ (B2), where
0<i<n-1. Then the evaluation of S(x) at £~
yields the following:

S(B)= (B + B 4ot f)BT)

H(B 4 B et (B

ot (BUDh 4 gD

VA (A ™

= (BN 4 g g gD

+(ﬂlz-i +ﬁ2(/z—i) +...+ﬂ("-1>(/z—i>)+...

4 (Bl g g oy gDy

Since each A7 is a root of the AOP,

BH"THBTH TP+ 41=0 , de, (BT
+(B) P+ (B)=1 . In (), if i=l ,
1<j<2u+l, then the jth summand equals ,Bl’_l’
+ BT L U i k1= n—120
(mod 2) . All other summands have the same value

ﬂlﬁzw +ﬂz(zlfzw) +m+ﬂ(nf1>(z,fzw) =ﬁzlfzw +(ﬂ1,fzw)2
+---+(/5’l"71”‘ )"t =1, for w# j,because ,B(l"fl“’) is
a root of AOP. Therefore, (7) becomes
SB)=0+1+--+1=2u=0(mod2) if i=Il,
1</j<2u+1. On the other hand, ifi#/;, then (7)
becomes S(B)=1+1+--+1=2u+1=1(mod 2)
# 0. That is, for the case of odd errors, i.e., v is odd,

S(x) has exactly v roots in B, i.e., [[(1-4"x) | S(x),
Jj=1

where H(l—ﬂl" x) is the error-locator polynomial
j=1

W(x). By a similar argument, when the number of

-1071 -



errors is even, i.e., v=2u, 1+S(8)=1+Qu—-1)=0
(mod2) if i=l,1<;<2u . If i+l ,

then 1+S(B™') =1+2u=1(mod2)#0 . In other
words, for the case of even errors, there are precisely v
roots in {B°,B',---, "'} such that 1+S(x)=0, i.e.,

W(x)= ﬁ(l -p g X) | (1+S(x)). This completes the
j=1

proof of Theorem 1.
n-l1
Additionally, the fact [](1-p'x)=x"-1 implies that
i=0
the greatest common division (g.c.d) of S(x) (resp.,
1+S(x)) and x" —1 is the error locator polynomial
W(x) for v odd (resp., v even).
The EEA is applied to find the g.c.d of two
nonzero polynomials a, and b over GF(q). Given the

initial conditions
ryo=a,1rp=bu=Lu,=0,v_ =1, vy =0, it
proceeds according to the following recursion relation:

i =V =4l Uy SU_ —qilliy,
_ ) (®)
Vi =Vip —4iViq
where degr,_, <degr;. For all 7, we have the relation
u,a+v,b=r;. The key equation in Equation (6) can
be rewritten as follows.
W(x)T(x)+60(x)(x" —1) = P(x) . 9)
Let polynomial S(x) (resp., 1+S(x)) replace to 7(x)
in Equation (6), when the weight v of E(x) is odd
(resp., even). If we use the EEA to determine the g.c.d

of T(x) and x" —1, we generate sets of solutions
W, (x),P(x),6,(x)). W,(x) and P (x)are useful for
our decoding method. The particular solution W, (x)

is the error locator polynomial when P, (x) is degree
less than (n+k)/2.

4:THE NEW DECODING ALGORITHM
OF QR CODES

The new decoding algorithm for the QR codes and
an example of (17, 9, 5) QR code are given in the
section.
If the syndromes are all zero calculated by Equation
(3), there is no error in the received word. When the
errors occur in received word, the decoding algorithm
is summarized below by nine steps.
Stepl: Calculate the remainder polynomial r(x) by
Equation (2).

Step2: Evaluate the known syndromes by using
Equation (3)

Step3: Initialize by letting v=1.

Step4: Compute the unknown syndromes by
applying the technique in [13].

Step5: Solve congruence in equation (6) by

applying the EEA to x" —1 and T(x), and

the unique pair of polynomials P,(x) and
W,(x) are determined.

Step6: Applying Chien search to find the roots of
W, (x).

Step7: If there are exists v errors, go to Step9.
Otherwise, set v=v+1.

Step8: If v>¢, stop. If not, go to Step4.

Step9: The error polynomial is determined and then

the received word can be corrected.

An example of decoding (17, 9, 5) QR code is
shown as follows to explain our proposed decoding
algorithm in detail.

Example:

Let o be a root of the primitive
polynomial x* +x* +x* +x*+1 and let B=

8 . .. . .
a® DM =" be a primitive 17st root of unity in

GF(2%). The set of quadratic residue modulo 17 is

0,=1{1, 2, 4, 8 9, 13, 15, 16 } . The generator

polynomial of binary (17, 9, 5) QR code can be written

as

g(x)= H(x—ﬂi) =l+x+x" +x* +x% +x7 + x5
i€Qyy

If the information polynomial m(x) is
m(x) =1+x* +x* +x° + x5,
then the code polynomial C(x) is
C)=l+x+x>+x" +x° +x7 +x*

+x"0 x4 x it
which is a multiple of g(x). We assume that the error
polynomial E(x) is
E(x)=x"+x".

Then the received polynomial is the sum of the code
polynomial C(x) and the error polynomial E(x), i.e.
R(x) =C(x)+ E(x) =r(x) mod g(x)

=1+x* +x* +x°.

The decoding process developed in this paper is
described as follows. First of all, the known syndrome
S, for each k in @, can be calculated from the

remainder polynomial 7(x). That is,

16 )
A :zr;(ﬂk)la keQ;.

i=0
For the binary (17, 9, 5) QR code, every known
syndromes (resp., unknown syndromes) can be
expressed as some power of primary syndrome S,

(resp., S,). The relations among syndromes for (17, 9,
5) QR code is given in following:

S, :SIZ,S4 :S14’SS :S183S16 25116:

Sis 25132a513 :S164759 251128’

S :S32»S12 :S;»S7 :S38,S14 :S316»

Sy :S332,S5 :S364:Sw :S3128~
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By evaluating r(x) at the roots of g(x) mentioned
above, the primary known syndrome is S, = a¥ =0,
which means that there are errors occurred in the
received polynomial r(x).

If the number of errors is one, i.e., v=1, the primary
unknown syndrome is S;=S; =a’ . After the
determination of the primary syndromes S, and S,

all syndromes can be also determined. Therefore, we
further obtain the syndrome polynomial
S(x) = Cme + 0{174)(2 + 6{6)(,'3 + 0{93)64 + amxs + a12x6 + 0.’48)67 +

alxﬁxx+al71x9+a3x10+a]92xll +a24x12+a213x13+

96 14 23415 117 16
a'x tax +to x .

The EEA is applied to polynomial 7(x)=S(x)+1 and
x" —1in Equation (9). This is accomplish by the
recursive formulas Equation (8) illustrated in Table 1,
where initially P, (x)=x"-1 and P,(x)=T(x) .
From Table 1, one observes that
deg P(x) =deg P, (x) =12 <(17+9)/2=13 . Thus,
the computation terminates at this point for i=4, and

W,(x)= 1+a® x* +a"x*.

Using Chien search to find the root of the W, (x), there
is no root {A’ | 0<i<16} in W,(x), and thus the

assumption is not valid.
If the number of the errors is two, the primary
unknown syndrome S, can be determined by the

technique developed in [13]. A computer search is used
to find the following matrix of size 3x3

SO Sl S2
Sl S2 S3
SlS Sl() SO

There is only one unknown syndrome S, among the

entries of this matrix. By [13], the determinant of the

above matrix is zero. The unknown syndrome S, for

the two-error case is thus

S, = 5,5,816 + 55815 .
S$,8is

where S, =0 and S, =a*". Since v=2 is even, the

polynomial 7(x)=1+S(x) is used in the EEA. Similarly,
the processing of the EEA is illustrated in Table 2. The

computation terminates at this point for /=4, and

W,(x)=1+a"x+a™”x".

b

There exists exactly two roots A7, f¢, in W,(x)
via Chien search. In other words, the error polynomial

e(x)=x"+x" is determined.

5: CONCLUSION

In this paper, a new decoding algorithm of the QR
codes is proposed. We apply the remainder technique
and the key equation of the Gao’s algorithm in our
decoding method. The remainder technique is used in

calculating known syndromes effectively and the key
equation of the Gao’s algorithm supplies a successful
condition to determine the error locator polynomial. It
would be interesting to see if there exists a generalized
condition to determine the number of occurred errors.
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Table 1. Applying the EEA to find W(x) as v=1
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