
1

HybridDiff: An Algorithm for A New Tree
Editing Distance Problem

I-Chen Wu∗, Bing-Hung Lin∗, Loon-Been Chen∗∗, Jui-Yuan Su∗, and Po-Chun Hsu∗
∗Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

∗∗Department of Computer Science and Information Engineering, Tunghai
University, Taichung, Taiwan

icwu@csie.nctu.edu.tw, bhlin@csie.nctu.edu.tw

Abstract— Change detection between documents plays an
important role in many applications. Zhang and Shasha
defined an editing distance problem, called theChange
detection between documents plays an important role in
many applications. Zhang and Shasha defined an editing
distance problem, called the general editing distance
(GED) problem in this paper, between two ordered
labeled trees T1 and T2, and devised a new algorithm
to solve the problem in time O(|T1||T2|H(T1)H(T2)).
H(T) denotes min(D(T), L(T)) , where D(T) is the
longest depth of tree T and L(T) is the number of
leaves of tree T . Zhang also defined an editing distance
problem, called the constrained editing distance (CED)
problem in this paper, and devised a new algorithm to
solve it in time O(|T1||T2|).

This paper proposes a new editing distance problem,
called the hybrid editing distance (HED) problem, a
hybrid problem of both GED and CED problems.
Some tree nodes, called C-nodes, follow the restrictions
of the CED problem, while all the other tree nodes,
called G-nodes, follow the restrictions of the GED
problem. In a tree T , a G-subtree Tu is defined to be
a maximal connected component in T whose root is a
C-node u and whose other nodes are G-nodes. Thus,
this paper presents a new algorithm to solve it in time
O(|T1||T2|Hmax

1 Hmax
2), where Hmax

1 is the maximum
H(Tu) for all G-subtrees Tu in T1, and Hmax

2 is the
maximum H(Tu) for all G-subtrees Tu in T2. In the
case of all C-nodes, that is Hmax

1 = Hmax
2 = 1, the

time complexity is equal to that of Zhang’s algorithm.
In the case of all G-nodes, that is Hmax

1 = H(T1) and
Hmax

2 = H(T2), the time complexity is equal to that
of Zhang and Shasha’s. Finally, from our observation
on HTML files, this problem can be applied to the
editing distances of the document trees of HTML files.
In HTML files, inline elements are close to C-nodes,
while block-level elements are close to G-nodes.

Keywords: Algorithm, Change detection, Tree edit-
ing distance, General editing distance problem, Con-
strained editing distance problem, Hybrid editing
distance problem

Fig. 1. (a) general edit mapping (b) constrained edit mapping

I. INTRODUCTION

The problems of tree editing distance are to measure
the differences between trees. Applications include web
page comparisons, pattern recognition, biology comput-
ing, image analysis, database, compiler optimization, and
natural language processing, etc. [2], [6], [11]

Zhang and Shasha [10] defined an editing distance
problem, called the general editing distance (GED) prob-
lem in this paper, between two ordered labeled trees.
The GED problem is to derive the minimum editing
changes in both trees. On the other hand, it is to de-
rive the maximum number of matched nodes (or called
mapped nodes) which still maintain ancestor-descendant
and sibling-ordering relationships, defined in Section
II in more detail. For example, one edits an sentence
from “Browser-oriented data extraction systems” to
“Browser-oriented data extraction systems” by simply
modifying font styles in different parts of the sentence.
In HTML, the original is “<p>Browser-oriented
data extraction systems</p>”, while
the targeted is “<p><i>Browser-oriented data
extraction</i> systems</p>”. Figure 1 (a)
shows the maximum number of mappings between

- 962 -

2

both sentences in HTML trees for the GED problem.
Thus, clearly, the minimum editing distances are to
remove from the original and to add <i> only.
From our observation with HTML files, the problem
is well suited to inline elements [5] such as and
<i>. Zhang and Shasha [10] also devised an algo-
rithm to solve the GED problem with two trees T1

and T2 in time O(|T1||T2|H(T1)H(T2)). H(T) denotes
min(D(T), L(T)), where D(T) is the longest depth of
tree T and L(T) is the number of leaves of tree T .

Zhang [8] also defined a different editing distance prob-
lem, called the constrained editing distance (CED) prob-
lem. In the CED problem, all matched nodes (or called
mapped nodes) need additionally maintain the least-
common-ancestor (LCA) relationship, defined in Section
II in more detail. For the above example, Figure 1 (b)
shows the maximum number of mappings between both
sentences for the CED problem. From our observation
with HTML files, the problem is well suited to block-
level elements [5] such as <p> and <table>. Zhang
[8] also devised an algorithm to solve the GED problem
with two trees T1 and T2 in time O(|T1||T2|).

In this paper, we present a new editing distance prob-
lem for document trees, where some nodes, called C-
nodes, follow the restrictions of CED problems and all
the others, called G-nodes, follow that of GED problems.
This problem is called the hybrid editing distance (HED)
problem, a hybrid problem of both GED and CED prob-
lems. For example, the elements of HTML documents
are categorized into block-level and inline elements, ac-
cording to HTML 4.0 specification [5] developed by
W3C; and users may want to derive edit distances among
HTML files by letting block-level elements be C-nodes
and inline elements be G-nodes. In a tree T , a G-subtree
Tu is defined to be a maximal connected component in
T whose root1 is a C-node u and whose other nodes are
G-nodes. For simplicity of discussion, we assume that
all document trees are rooted at C-nodes. Note that a
pseudo C-node can be added into a document tree as
the root without loss of generality. Then, all trees can be
broken into a set of disjoint G-subtrees. In this paper, we
present a new algorithm to solve the HED problem in time
O(|T1||T2|Hmax

1 Hmax
2), where Hmax

1 is the maximum
H(Tu) for all G-subtrees Tu in T1, and Hmax

2 is the
maximum H(Tu) for all G-subtrees Tu in T2. In the
case of all C-nodes, that is Hmax

1 = Hmax
2 = 1, the

time complexity is equal to that of Zhang’s algorithm.
In the case of all G-nodes, that is Hmax

1 = H(T1) and
Hmax

2 = H(T2), the time complexity is equal to that of
Zhang and Shasha’s.

The remainder of this paper is organized as follows.
Section II reviews the GED and CDE problems. Section
III discusses the HED problem. Section IV concludes this
paper.

1In this paper, the root of a connected component C in a tree T is
defined to be the node in C that is the closest to the root of T .

II. GENERAL AND CONSTRAINED EDIT
DISTANCE PROBLEMS

In this section, we review the GED and CED problems.
In Subsection II-A, we describe the general edit mapping,
the GED problem and Zhang and Shasha’s algorithm
solving the GED problem. In Subsection II-B, we describe
the constrained edit mapping, the CED problem and
Zhang’s algorithm solving the CED problem.

A. General Editing Distance
A tree T is a labeled tree if each node of T is assigned

a symbol from a finite alphabet Σ. A null symbol is
denoted by λ. T is an ordered tree if there is a left-to-
right order among all siblings in T . Consider two ordered
labeled trees T1 and T2. Let u be a node with a symbol
text1(u) ∈ Σ∪λ in T1 where text1 is the label function
of T1, and v be a node with a symbol text2(v) ∈ Σ∪λ in
T2 where text2 is the label function of and T2. Following
[10] and [8], there are three edit operations defined for
ordered labeled trees: insert (denoted byλ → v), delete
(denoted by u → λ), and update (denoted by u → v).

An edit distance mapping MG is called a general edit
distance mapping from T1 to T2, if the following three
conditions hold for any two links u1 → v1 and u2 → v2

in MG.
C1 One-to-one condition: u1 = u2 iff v1 = v2.
C2 Ancestor condition: u1 if an ancestor of u2 iff

v1 is an ancestor of v2.
C3 Sibling condition: u1 is to the left of u2 iff v1

is to the left of v2.
Let the cost of MG be denoted by γ(MG). The general
edit distance is defined to be the minimum cost among all
the general editing distance mappings from T1 to T2, and
denoted by δG(T1, T2). The GED (general edit distance)
problem is to find the general edit distance.

In [10], Zhang and Shasha proposed an algorithm
solving this problem in time O(|T1||T2|H(T1)H(T2)) and
space O(|T1||T2|). Let u be any node in the tree using
the left-to-right postorder numbering. p(u) is the parent
of u. anc(u) are all ancestor nodes of u including p(u).
lleaf(u) is the leftmost leaf node in the subtree rooted at
u. Generally, 1..u is a forest in the tree and is denoted by
T [1..u], while T [lleaf(u)..u] is denoted by T [u], where
lleaf(u) is the leftmost node in the subtree rooted at u.
An example is shown in Figure 2.

Zhang and Shasha’s algorithm [10] used the technique
of dynamic programing to solve the problem without
the need of computing all subtree-to-subtree distances.
The distance between T1[u′..u] and T2[v′..v] is denoted
by fdist(u′..u, v′..v). Besides, fdist(1..u, 1..v) is also
denoted by fdist(u, v). The distance between subtrees
T1[u] and T2[v] is then denoted by tdist(u, v). Figure
3 shows all possible mappings between T1[u] and T2[v].
With the recurrence, we can use dynamic programming to
solve the GED problem in time O(|T1||T2|H(T1)H(T2)),
as proved in [10]. For simplicity of discussion, in the rest
of this paper, we omit the recurrences for all edit distances

- 963 -

3

Fig. 2. Tree and Forest

Fig. 3. General edit distance mapping: (a) delete (b) insert (c) update

when empty trees are involved. For example, fdist(u..u−
1, v..v − 1) = 0, fdist(u1..u2, v..v − 1) = Σu2

s=u1
γ(s →

λ) and fdist(u..u− 1, v1..v2) = Σv2
s=v1

γ(λ → s).

B. Constrained Editing Distance
A general edit distance mapping MC is also called a

constrained edit distance mapping from T1 to T2, if the
following condition holds in MC .2

C4 Least common ancestor (LCA) condition: For
any three links u1 → v1, u2 → v2 and u3 → v3

in MC , lca(u1, u2) is a proper ancestor of u3

iff lca(v1, v2) is a proper ancestor of v3, where
lca(u, v) represents the least common ancestor
of nodes u and v.

The LCA condition can also be written as: lca(u1, u2) =
lca(u1, u3) iff lca(v1, v2) = lca(v1, v3). Figure 4-(a)
illustrates a mapping satisfying the lca condition, while
Figure 4-(b) illustrates a mapping violating the condition.

2When we say that a is an ancestor of b, a can be b itself. When we
say that a is an proper ancestor of b, a cannot be b itself.

Fig. 4. (a) Constrained edit mapping (b) Not constrained edit mapping

Fig. 5. Constrained edit distance mapping: (a) delete (b) insert (c)
update

Fig. 6. Constrained edit distance mapping: (a) C-forest-1 (b) C-forest-2
(c) C-forest-3

The constrained edit distance is defined to be the
minimum cost among all the constrained editing distance
mappings from T1 to T2, and denoted by δC(T1, T2). The
CED (constrained edit distance) problem is to find the
constrained edit distance.

In [8], Zhang proposes an algorithm solving this prob-
lem in time O(|T1||T2|) and space O(|T1||T2|). Let u
be any node in T1 and v be any node in T2. Also, let
the children of u be u1, u2,..., unu

and the children
of v be v1, v2,..., vnv

. For simplicity, the forest of w,
T1[lleaf(u)..u−1], is denoted by F1[u]. The subtree and
forest of v are denoted likewise.

The constrained edit distance between subtrees T1[u]
and T2[v] is denoted by D(T1[u], T2[v]), while the con-
strained edit distance between forests F1[u] and F2[v] is
denoted by D(F1[u], F2[v]). Figure 5 and 6 illustrates
mappings between T1[u] and T2[v]. With these mappings,
Zhang [8] solve the CED problem in time O(|T1||T2|).

III. HYBRID EDITING DISTANCE
PROBLEM

In this section, we first define a new editing distance
problem, called the hybrid editing distance (HED) prob-
lem, a hybrid problem of both GED and CED problems,
in Subsection III-A. In Subsection III-B, we propose a
new algorithm for solving the HED problem, whose time
complexity is derived in Subsection III-C.

A. Problem Definition
In the HED problem, all the tree nodes are composed

of G-nodes or C-nodes. Conceptually, G-nodes satisfy
Conditions C1, C2 and C3, the same as those satisfied
in the nodes in the GED problem, while C-nodes satisfy
Conditions C1, C2, C3 and C4, the same as those satisfied

- 964 -

4

Fig. 7. A hybrid tree

Fig. 8. Hybrid edit distance mapping

in the nodes in the CED problem. Practically, Condition
C4 in the nodes in the HED problems are defined in more
detail in this subsection.

The constrained least common ancestor of two nodes
u1 and u2 in a tree T , denoted by CLCA(u1, u2),
is the least common ancestor C-node of u1 and u2.
The C-node frontier of u, denoted by CF (u), is the
set of C-node descendants v where all nodes on the
path from u (exclude) to v (exclude) are G-nodes. For
example, in Figure 7, the following hold, CLCA(a, c)=h,
CLCA(a, d) = h, CLCA(b, d) = h, CLCA(e, f) = h,
CLCA(e, g) = h, CLCA(i, j) = l, CLCA(e, i) = l,
CF (l) = h, CF (h) = b, d, CF (b) = {}, and CF (d) =
{}. Without loss of generality, a tree is assumed to be
rooted at a C-node, by adding a pseudo C-node into a
document tree as a root.

A general edit distance mapping MH is called a hybrid
edit distance mapping from T1 to T2, if the following
conditions hold in MH .

C5 For any three links u1 → v1, u2 → v2 and
u3 → v3 in MH , CLCA(u1, u2) is a proper
ancestor of u3, if and only if CLCA(v1, v2) is
a proper ancestor of v3.

The hybrid edit distance is defined to be the minimum
cost among all the hybrid editing distance mappings from
T1 to T2, and denoted by δC(T1, T2). The HED (Hybrid
Edit Distance) problem is to find the hybrid edit distance.

For example, in Figure 8, the hybrid edit mapping
can match items and delete node “b” and “u”, by letting
inline elements be G-nodes and block-level elements be
C-nodes in HTML files. Such an edit distance seems more
reasonable for HTML documents, since users only change

the outlook of contents.

B. Algorithm for the HED Problems

In this subsection, a new algorithm is proposed to solve
the HED problem. A subgraph of tree T is called a G-
forest of C-node u, denoted by FH [u], if all nodes v in the
subgraph are G-nodes and all the nodes on the path from
u (exclusive) to v (exclusive) are G-nodes. The G-subtree
of u, denoted TH [u], is defined to be FH [u] ∪ {u}. Let
lleafH(u) denote the leftmost node TH [u] ∪ CF (u). As
in Figure 7, TH [l] = i, j, k, l, TH [h] = e, f, g, h, TH [b] =
a, b, lleafH(l) = h, lleafH(e) = b, and lleafH(g) = f .
From the above definition, we can easily obtain that a
document tree consists of disjoint G-subtrees.

Let u be a C-node in T1 and v be a C-node in
T2. The hybrid edit distance between subtrees T1[u]
and T2[v] is denoted by DH(T1[u], T2[v]) and the hy-
brid edit distance between forests F1[u] and F2[v] is
denoted by DH(F1[u], F2[v]). Let G-subtree T1H [u] =
i1, i2, ..., ik, u and G-subtree T2H [v] = j1, j2, ..., jk′ , v.
The hybrid edit distance between G-subtrees T1H [u] and
T2H [v] is denoted tdistH (u, v). The hybrid edit distance
between G-forests F1H [u] and F2H [v] is denoted by
fdistH(i1..u, j1..v). Let CF (u) = d1, d2, ..., dn′

u
and

CF (v) = d′1, d
′
2, ..., d

′
n′

v
. Then, Lemma 1 shows that the

following recurrences hold.

DH(T1[u], T2[v]) =

min


DH(T1[u], λ) + min

n′u
s=1{DH(T1[ds], T2[v])−DH(T1[ds], λ)}

(illustrated in Fig. 9-(a))

DH(λ, T2[v]) + min
n′v
t=1{DH(T1[u], T2[d

′
t])−DH(λ, T2[d

′
t])}

(illustrated in Fig. 9-(b))
DH(F1[u], F2[v]) + γ(u → v)

(illustrated in Fig. 9-(c))

DH(F1[u], F2[v]) =

min


DH(F1[u], λ) + min

n′u
s=1{DH(F1[ds], F2[v])−DH(F1[ds], λ)}

(illustrated in Fig. 10-(a))

DH(λ, F2[v]) + min
n′v
t=1{DH(F1[u], F2[d

′
t])−DH(λ, F2[d

′
t])}

(illustrated in Fig. 10-(b))
fdistH(i1..u, j1..v)

(illustrated in Fig. 11)

Lemma 1: The above two recurrences hold.
Proof: The proof is skipped due to page limitation.

Lemma 2: Let Ti[u] = T1H [u] ∪ CF (u) =
i1, i2, ..., ik, u and the Tj [v] = T2H [v] ∪ CF (v) =
j1, j2, ..., jk′ , v. By letting i1≤u′≤u and j1≤v′≤v, the
following recursions hold.
fdistH(i1..u′, j1..v′) =

min



fdistH(i1..u′ − 1, j1..v′) + γ(u′ → λ)
(u′ ∈ G-node, illustrated in Fig. 11-(a))

fdistH(i1..u′ − 1, j1..v′) + DH(T1[u′], λ)
(u′ ∈ C-node, illustrated in Fig. 11-(b))

fdistH(i1..u′, j1..v′ − 1) + γ(λ → v′)
(v′ ∈ G-node, illustrated in Fig. 11-(c))

fdistH(i1..u′, j1..v′ − 1) + DH(λ, T2[v′])
(v′ ∈ C-node, illustrated in Fig. 11-(d))

G− forest− 3− 3− cost
(u′ ∈ G-node and v′ ∈ G-node)

fdistH(i1..u′ − 1, j1..v′ − 1) + DH(T1[u′], T2[v′])
(u′ ∈ C-node and v′ ∈ C-node, illustrated in Fig. 11-(f))

- 965 -

5

Fig. 9. Hybrid edit distance mapping: (a) delete (b) insert (c) update

Fig. 10. Hybrid edit distance mapping: (a) C-forest-1 (b) C-forest-2 (c) C-forest-3

Fig. 11. Hybrid edit distance mapping: (a) G-forest-1-1 (b) G-forest-1-2 (c) G-forest-2-1 (d) G-forest-2-2 (e) G-forest-3-1 (f) G-forest-3-2

There are two conditions for deriving the G− forest− 3−
3− cost:

1) If lleafH(u′) = lleafH(u) and lleafH(v′) = lleafH(v), the
G − forest− 3− 3− cost is

fdistH(i1..u
′ − 1, j1..v

′ − 1) + γ(u
′ → v

′
),

as illustrated in Fig. 11-(e).
2) If lleafH(u′) 6= lleafH(u) or lleafH(v′) 6= lleafH(v), the G−

forest− 3− 3− cost is

fdistH(i1..u′ − 1, j1..v′ − 1) + tdistH(u′, v′),

as illustrated in Fig. 11-(f), but u′ and v′ are both G-nodes.

Proof: The proof is skipped due to page limitation.

Figure 9, 10 and 11 show mappings of above Lemmas.
From these recurrences, we can solve the hybrid edit
distance problem by a dynamic programming algorithm 1.
Like [10], we use keyroots to reduce the time complexity
of Lemma 2.

C. Time Complexity
In this subsection, we show the space and time com-

plexity of our HED algorithm. Also, we discuss condi-
tions that our algorithm runs as same time complexity as
the Zhang and Shasha’s algorithm [10] or the Zhang’s
algorithm [8].

First, consider the space complexity of our algorithm.
In our algorithm, four matrices are used to store re-
sults of DH(F1H [u], F2H [v]), DH(T1H [u], T2H [v]) and
fdistH(i1..u, j1..v) during the computation (see the HED
algorithm 1). The size of each matrix is at most |T1||T2|.
Hence, the space complexity is O(|T1||T2|).

Second, investigate the time complexity of our algo-
rithm. Let C(T) be the set of C-nodes and G(T) be the
set of G-nodes in T . Let H(T) = min(D(T), L(T)),
D(T) be the longest depth of T , and L(T) be the
number of leaves of T . In our HED algorithm, the rou-
tine gConnectedComponent dominates the time com-
plexity. Because of the property of Keyroot [10], the
time complexity of procedure gConnectedComponent

- 966 -

6

Algorithm 1 The HED algorithm
Input: Two subtrees T1 and T2

Output: DH (T1[u], T2[v]), where 1≤u≤|T1 | and 1≤v≤|T2 |
Main loop
for u=1 to |T1 |

initialize D(F1[u], λ);
initialize D(T1[u], λ);

for v=1 to |T2|
initialize D(λ, F2[u]);
initialize D(λ, T2[u]);

for u=1 to |T1|
for v=1 to |T2|

if u∈C-node and v∈C-node
The G-subtrees are T1H [u] = {i1, i2,..., ik , u} and T2H [v] =

{j1, j2,..., jk′ , v}
Compute fdistH (i1..u, j1..v) (gConnectedComponent(u, v))
Compute DH (F1[u], F2[v]); (Lemma 1)
Compute DH (T1[u], T2[v]); (Lemma 1)

End

Procedure
gConnectedComponent(u, v)
Input: Two hybrid subtrees
T1H [u] and T2H [v]
Output: fdistH (i1..u, j1..v)
Compute lleafH and Keyroots
of T1H and T2H separately
for u”=1 to |Keyroots(T1H)|

for v”=1 to |Keyroots(T2H)|
s = Keyroots[u”];
t = Keyroots[v”];
Compute tdistH (s, t);

Procedure tdistH(u, v)
for u′=i1 to u

initialize fdistH (i1..u′, λ);
for v′=j1 to v

initialize fdistH (λ, j1..v′);
for u′=i1 to u

for v′=j1 to v

Compute fdistH (i1..u′,
j1..v′); (Lemma 2)

is O(|T1H [u]| × |T2H [v]| × H(T1H [u]) × H(T2H [v]))
where H(T1H [u]) = min(D(T1H [u]), L(T1H [u])) and
H(T2H [v]) = min(D(T2H [v]), L(T2H [v])). The total
time complexity is:

Σu∈C(T1)Σv∈C(T2)O(|T1H [u]|×|T2H [v]|×H(T1H [u])×H(T2H [v]))

≤ O(Σu∈C(T1)(|T1H [u]|×H(T1H [u]))×Σv∈C(T2)(|T2H [v]|×H(T2H [v])))

= O(time1).

Let Hmax
1 be the maximum H(T1H [u]) among all G-

subtrees T1H [u] in T1 and Hmax
2 be the maximum

H(T2H [v]) among all G-subtrees T2H [v] in T2. The total
time complexity is:

O(time1)

≤ O(Hmax
1 ×Hmax

2 ×Σu∈C(T1)(|T1H [u]|)×Σv∈C(T2)(|T2H [v]|))

= O(time2).

Since ΣC1
u=1|T1H [u]| is the sum of sizes of all G-

subtrees T1H [u] in T1, the summation is at most O(|T1|).
ΣC2

v=1|T2H [v]| is the sum of sizes of all G-subtrees T2H [v]
in T2, and the summation is at most O(|T2|). The total
time complexity is:

O(time2) ≤ O(Hmax
1 ×Hmax

2 × |T1| × |T2|).

Third, compare the time complexity of ours with that
of Zhang and Shasha’s algorithm in [10] and [8]. If all
nodes are G-nodes, then |T1|=|G1| and |T2|=|G2|. Since
our HED algorithm computes gConnectedComponent
only once, the total time complexity is:

O(|T1H [u]| × |T2H [v]| ×H(T1H [u])×H(T2H [v]))

= O(|T1| × |T2| ×min(D(T1), L(T1))×min(D(T2), L(T2)).

the same as that of Zhang and Shasha’s algorithm. How-
ever, when these trees contain some more C-nodes, e.g.,
block-level elements in HTML files, the G-subtrees get

smaller and the values Hmax
1 and Hmax

2 also get smaller.
When the sizes of G-subtrees become all ones, i.e., all are
C-nodes, the time complexity is reduced to O(|T1||T2|),
the same as that of Zhang’s algorithm.

IV. CONCLUSION
The first contribution of this paper is to propose a

new editing distance problem, called the hybrid editing
distance (HED) problem, a hybrid of GED and CED
problems. For the document trees in this problem, some
nodes (called C-nodes) follow the restrictions of CED
problems and others (called G-nodes) follow those of
GED nodes. Based on our observation on HTML files,
this problem can be applied to the editing distances of
the document trees of HTML files. In HTML files, inline
elements are close to C-nodes, while block-level elements
are close to G-nodes.

The second contribution of this paper is to present
a new algorithm to solve the HED problem in time
O(|T1||T2|H ,,max

1 Hmax
2), where Hmax

1 is the maximum
H(Tu) for all G-subtrees Tu in tree T1, and Hmax

2 is the
maximum H(Tu) for all G-subtrees Tu in tree T2. (G-
subtrees are defined in Subsection III-B.) In general, our
algorithm runs as fast as Zhang and Shasha’s algorithm,
when Hmax

1 = T1 and Hmax
2 = T2; and faster than

Zhang and Shasha’s algorithm when Hmax
1 < T and

Hmax
2 < T2. When Hmax

1 = 1 and Hmax
2 = 1, our

algorithm runs as fast as Zhang’s algorithm.

REFERENCES

[1] P. Bille, A survey on tree edit distance and related problems,
Theoretical Computer Science 337(1-3), 217-239 (2005).

[2] M. Chodorow and J. L. Klavans, Locating syntactic patterns in text
corpora, Mnuscript, Lexical systems, IBM Research, T. J. Watson
Research Center, Yorktown Heights, New York (1990).

[3] S. Dulucq and H. Touzet, Decomposition algorithms for the tree
edit distance problem, Journal of Discrete Algorithms 3, 448-471
(2005).

[4] C. L. Lu, Z. Y. Su, and C. Y. Tang, A new measure of edit distance
between labeled trees, Proceedings of the 7th Annual International
Conference on Computing and Combinatorics (2001).

[5] L. Quinn, HTML 4.0 Reference:
http://www.htmlhelp.com/reference/html40/, WDG (1998).

[6] B. A. Shapiro and K. Zhang, Comparing multiple RNA secondary
structures using tree comparisons, Computer Appl. Biosci. 6(4),
309-318 (1990).

[7] R. A. Wagner and M. J. Fischer, The string-to-string correction
problem. Journal of the ACM 21(1), 168-173 (1974).

[8] K. Zhang, Algorithms for the constrained editing distance between
ordered labeled trees and related problems, Pattern Recognition
28(3), 463-474 (1995).

[9] K. Zhang, A constrained edit distance between unordered labeled
trees, Algorithmica 15(3), 205-222 (1996).

[10] K. Zhang and D. Shasha, Simple fast algorithms for the editing
distance between trees and related problems, SIAM Journal of
Computing 18(6), 1245-1262 (1989).

[11] H. Zhang, D. Shasha and J. T. L. Wang, Approximate tree
matching in the presence of variable length don’t cares, Journal
of the ACM 16, 33-66 (1994).

- 967 -

