

A Cost-effective Ultra-Reliable Fault-tolerant Switching Software Architecture
for Next Generation Networks

Shih-Jeh Chang

Dept. of Communications Engineering, Yuan-Ze University
sjchang@saturn.yzu.edu.tw

ABSTRACT

Next Generation Network (NGN) applications such

as voice and data convergence, voice over packets and
emerging new 3G mobile and WiFi/WiMax Wireless
services demand fast time to market. A successful
NGN switching software architecture must be able to
quickly absorb new technologies and respond to new
market needs. This presents a new challenge to
switching software architects because a switching
platform must also be able to meet very stringent
reliability requirements. One such requirement is no
more than 0.5 minute per year of total downtime
(namely. better than six 9’s) as specified in Telcordia’s
GR-929-CORE.

Based on Markov modeling and reliability analysis,

this paper demonstrates that judicious applications of
software redundancy can cost-effectively transform a
worse than five 9’s simplex software system into a
better than six 9’s system and thus establishes an
ultra-reliable cost-effective software architectural
framework for NGN switching platform while meeting
the needs of fast-time-to-market.

1: INTRODUCTIONS

The reliability requirements imposed on Public

Switch Telephone Network elements are very stringent.
One such requirement is no more than 0.5 minute per
year of total downtime (i.e. better than six 9’s of total
system availability) as specified in Telcordia’s
GR-929-CORE. This includes all causes: hardware,
software and procedural failures. A common
approach to meet this stringent requirement is to use
some forms of redundancy. This approach has been
utilized ever since the development of AT&T's No. 1
Electronic Switching System (ESS).

Moore and Shannon noted over forty years ago that it
was possible to obtain a reliable system by properly
configuring unreliable components through the use of
redundancy [2]. Redundancy enables switching
system architects to cost effectively design a reliable
switching system from a collection of not-so-reliable
components. They are often utilized in the

construction of reliable hardware systems. Applications
of redundant architectures in hardware reliability
engineering are very well documented. It was pointed
out, however, that redundancy alone does not guarantee
fault tolerance [3]. The only thing it does guarantee is
a higher fault arrival rate compared to a non-redundant
system of the same functionality. Thus, proper
management of redundancy is needed to improve fault
tolerance.

Based on Markov modeling and reliability analysis,
this paper demonstrates via examples that judicious
applications of physical software redundancy can easily
and cost-effectively transform a worse than five 9’s
simplex software system into a better than six 9’s
system and thus establishes an ultra-reliable
cost-effective software architectural framework for
NGN switching platform while meeting the needs of
fast-time-to-market. Two sets of Markov models will be
presented for analyzing and evaluating the benefits of
using loosely coupled duplicated software architecture,
commonly known as active-standby pair architecture.

The software redundancy considered here is physical
redundancy. Namely, multiple duplicated copies of one
software system run on multiple loosely coupled
processors. This software architecture can be easily
obtained by duplications. It is not the recovery block
approach [8] nor the N-version programming [5,6, 7]
which both use different programs to execute on the
same set of data. Also, it is not the on-line retry
approach [9] that uses the same program to operate on a
different but consistent set of data [10] obtained through
message reordering.

This paper shows that, by judiciously extrapolating
proven results in hardware redundancy, physical
software redundancy will provide a cost-effective
solution to improve switching software reliability in the
Next Generation Networks such as softswitches (a.k.a.
media gateway controllers) and other network nodes
where fast time to market is crucial.

The aspect of software reliability we shall consider
below is downtime/outages induced by software faults.

2: SWITCHING SOFTWARE
RELIABILITY KEY ATTRIBUTES:
Faults, Errors, Failures, Recovery and
Outages

- 738 -

Software and hardware outages differ drastically in
nature. Before extrapolating proven hardware
redundancy results to construct the aforementioned two
sets of software redundancy Markov models, it is
essential to understand the distinctions between
hardware and software faults, failures, outages and
recovery from switching system perspective.

Hardware outages are mostly caused by hardware faults,
due to device aging and deterioration. The nature of
hardware faults is such that faulty devices cease
functioning the way they were designed to
perform. Stuck-at faults and bridge faults are good
examples. Hardware faults can be repaired by replacing
faulty devices with good ones. When a repair is done,
the system becomes free of hardware faults and the
process repeats.

Device aging is very well understood. It can be
described by a 'bath-tub' curve. After an adequate
burn-in, the probability of developing a failure is
constant over time. Namely, it is a random process.

It should be pointed out, however, that the presence of a
hardware fault does not necessarily bring the system
down. To bring down the system, the following
conditions must be met:

C1 The hardware fault must be activated and
induce errors.

C2 The induced errors are so severe that the
system can not continue to perform its
primary functions (e.g. call processing for
softswitches).

The first condition C1 is traffic dependent. In other
word, a fault may not cause any system outages
during light traffic hours. To simplify hardware
reliability modeling and analyses, it is a common
practice to assume that as soon as a critical fault occurs,
it will be activated and induce severe and critical errors
that will bring down the system in question. This
approximation approach is consistent with worst-case
engineering practice.

Software outages, on the other hand, are due to
software faults which are either design errors,
specification deficiencies or programming bugs.
Software faults can be characterized by the following
attributes:

Attr. 1 A certain number of software faults are loaded

into the system since the system is put into
service. There would be no software
outages if they were not installed/loaded
into the system. Namely, there is no
software fault-free state for most new systems.

Attr. 2 Once a switching system reaches software
fault-free state, it will no longer cause any
software outages.

Attr. 3 Software faults are loaded into the system due
to inadequate system testing, design and/or
programming mistakes or
specification/requirement deficiencies.

Attr. 4 Some software faults are severe; and, some are
not. Severe faults will cause system
outages under certain conditions. They do not
always bring down the system. Furthermore,
we can not assume that the presence of a
severe software fault will bring down the
system as we do in dealing with
critical hardware faults. The reason is that
if we do so, the system would have been down
permanently.

Attr. 5 Software faults, design or programming bugs,
are removed when they are discovered.
Thus, they live in the system long enough to
induce some errors. However, new
software faults may be injected into the
system while old ones are being removed.

Attr. 6 Adding new software to introduce new features
will most likely induce new software faults.

Most software outages can be recovered

automatically by some sequence of software
recovery actions to remove the conditions which cause
the system to go down. Normally, this can be
achieved within several minutes.

Most switching systems are well tested before being

placed into services. Therefore, most switching
software faults function properly under normal
conditions. For instance, software faults inside
infrequently exercised code segments handling
abnormal conditions such as fault recovery or overload.
They induce errors that lead to system failures only
under certain abnormal conditions. If not detected and
treated immediately, these errors could propagate and
induce new software faults and eventually become so
severe that the system cannot continue to function and
lead to system outages. A famous example is a bug in a
C switch statement in AT&T’s 4ESS® Switch that
caused nine hours of telephone network outage in 1990
[11]. With judicious fault tolerant designs, these
errors can often be recovered/reconciled and
contained without further causing noticeable
system outages.

Thus, under certain rare conditions severe software

faults will induce errors which in turn will induce
failures so severe that the system has to go down.
Most likely, these conditions are unique for each severe
software fault. Once identified, severe software faults
will very likely be permanently removed from the
system. From that point on, the system will function
properly even if identical rare conditions occur again.
Consequently, the rate of occurrences of these severe
errors is not as easily predictable as hardware faults. It,
however, can be measured and observed over time.
Nevertheless, it is a random process just the same as

- 739 -

incoming traffic. Thus, software outages can be
modeled by a constant software failure rates.

3: SIMPLEX FAULT-TOLERANT
SOFTWARE ARCHITECTURE AND
SOFTWARE FAILURE RECOVERY

To repair hardware faults, a repair person must be
physically present. However, a switching system can
automatically recover from most software failures
without manual intervention. To meet the LATA
Switching Systems Generic Requirements (LSSGR), or
equivalent, stringent downtime requirements, a
switching system must automatically recover itself from
most, if not all, software failures. This software
self-recovery can often be implemented in the form of
multi-level recovery with abilities to automatically
escalate to the next higher levels. However, this
ability can only be achieved with appropriate run-time
software fault recovery architecture. A proven
architecture is multi-level software failure recovery
which has been implemented in Lucent’s 5ESS® Switch
[12] and Reliable Cluster Computing [13] product lines.

Note that Ai+1 is a more severe recovery action than Ai

for all i
Figure 1 Switching Software recovery

In general, a multi-level recovery begins with error
counting and masking. If the encountered software
fault induces an error rate exceeding a pre-determined
threshold, the system will attempt to recover from the
failure by performing a higher level and more drastic
recovery action. In the 5ESS® Switch, a software
recovery starts from Return To the points of Interrupts
(RTIs). The second level recovery is called a Single
Process Purge (SPP). Each SPP is expected to affect
only one phone call. RTIs and SPPs do not cause
system outages. If SPPs still fail to recover from the
failure, a next higher level and more drastic recovery
action called selective initialization is taken. In this
manner, a multi-level recovery progressively escalates
itself from graceful to drastic in term of its impact, a
measure of degradation to system’s call processing
ability, to end-users. A drastic impact means a loss of
a large number of transient (in-progress) and/or stable
(in talking state) calls for a sufficiently long duration;
and, the system may be totally or partially down
during this period.

Figure 1 shows a switching software recovery schema

as outlined above. It should be pointed out that the
initial actions of a software recovery, such as RTIs and
SPPs, may not cause outages and, thus, may not be the
beginning of a software failure. Software failure rate
should be assessed accordingly.

As reported by the author [1], a very common

component of modern microprocessor called memory
management unit can also be used to further improve
software fault tolerance of a simplex processor.

4: IMPROVING SOFTWARE
RELIABILITY WITH
ACTIVE-STANDBY PAIR

The software architecture we shall consider is described
below. There are two copies of one software system
running on two loosely coupled processors – one is
called the active processor and the other standby,
referred to as the Active-Standby (AS) pair.

The basic recovery strategy is that, upon the
presence of a software failure, as long as the
active processor is able to gracefully recover
without adverse effects to end users (causing long
system outages), let it remain as the active;
otherwise, switch to the standby.

In other words, we let the active take minor and graceful
recovery actions such as error counting and single
process purges, which affect only a small number of
calls. Suppose after performing several single process
purges the active is still in trouble, we then invoke a
switchover to the standby so that the old standby
becomes the new active and the old active becomes the
standby. The new active immediately processes new
calls while the new standby continues to recover
itself from the pending failure.

In this way, more drastic software recovery actions are
performed in the standby; and thus, the effects of drastic
software recovery actions are hidden or shielded from
the end customers. This makes the system more
robust and fault-tolerant; and, as a result, the system
reliability should improve.

In most cases, each copy is able to automatically
recover from detectable software failures. If a failure
is neither detectable nor automatically recoverable, the
failing processor will require either assistance from the
mate processor or human interventions to restore it into
normal operation. Human interventions prolong
recovery time. Thus, a reliable switching software
system engineering should eliminate human
interventions as much as possible.

We shall construct two sets of Markov models to
demonstrate the benefits of a loosely coupled
active-standby software architecture. For the first set,
we shall assume a perfect coverage. Then we will

- 740 -

remove the assumption and consider a more general
model with imperfect coverage. A perfect coverage
means all software failures are detectable and
recoverable.

5: MARKOV MODELS FOR
ACTIVE-STANDBY PAIR WITH
PERFECT COVERAGE

Let’s consider a software system consisting of two
identical copies of software. Figure 2 presents two
Markov models for comparing software reliability with
and without Active-Standby pair software redundancy.
We shall make the following assumptions:

As.1 The failure processes of these two software
copies are mutually independent with identical
constant failure rates.

As.2 Each copy is able to automatically recover
from all software failures. Namely, every
failure is induced by detectable errors and
every failure is recoverable

Figure 2-(a) depicts a Markov reliability model for a
simplex software system. It is a two-state model. State
0 denotes the normal condition while State 1 represents
the condition that the software develops a failure. The
software failure rate is denoted by λ. The recovery
rate is denoted by r2. Thus, State 1 denotes the
condition that system is unavailable. Let pi denotes the
probability that the system is in State i, for i=0,1. Also,
let y be the probability that the software fails. We have,

2
12),(rpry +== λ

λλ

Figure 2(b) depicts a Markov reliability model for a
system with the AS pair software redundancy. It is a
five-state model. State 0 denotes the normal condition
while States 1~4 represent the condition that the software
develops some failures. The software failure rate is
denoted by λ. The switchover and recovery rates are
denoted by r1 and r2, respectively

Figure 2 Markov Models for Perfect Coverage

These five states represent the following conditions.

1) State 0: normal condition.

2) State 1: Active copy develops a failure and
initiates a switchover to the standby copy
with a rate of r1 including failure detection.

3) State 2: Standby becomes the Active and the
recovery in the failing copy is in progress.

4) State 3: Both copies are failing. This
represents the condition that the system is
unavailable.

5) State 4: Standby copy develops a failure and
initiates a recovery.

Again, let Pi denotes the probability that the system is in
State i, for i=0, 1,…, 4. To determine these P’s, one
can apply the “rates in equal rates out” property of a
Markov chain to obtain a set of five simultaneous
equations, one for each state. After some manipulations,
the following set of equations can readily be obtained:

The notation a>> b indicates that a is many orders of

magnitude larger than b. Thus, a+b can be
approximated by a. Namely, a+b≅ a

Thus, the probability of software system unavailability,
denoted by x, is the probability that the software is in
State 1 or State 3. Namely, x = P1+ P3.

Let’s define a software redundancy gain function, G, as

follows:

To illustrate the usefulness of this gain function, let us
consider the following example.

Example 1

Supposed it is desired to determine the gain for using
the AS pair to improve software unavailability. Let’s
assume the failure rate is one failure per four months
and switchover times from the failing active to the
standby of 1, 2 and 10 seconds are to be evaluated.
Three plots of the gain as a function of recovery rate, r2,
are shown on Figure 3. The x-axis shows the recovery
rate in terms of number of recoveries per hour. Thus, x
= 100 is equivalent to a recovery time of 36 seconds. All
three plots start from a recovery time of 20 minutes

0
2

4022
2

2
3

0222011

;]2[

;]1[;

p
r

pprrp

prrpprp

λ
λλλ

λλλ

+
=+=

+==

2
221

2
21

3121

)/(2)/(2)/(1
)(2)/(

),,(

rrr
rr

pprrx

λλλ
λλ

λ

+++
++

=

+=

])(2)/)[((
})/(2)/(2)/(1{
),,(/),(),,(

2
211

2
221

21221

rrr
rrr

rrxryrrG

+++
+++

=

=

λλλ
λλλλ
λλλ

- 741 -

Figure 3 Software Redundancy Gain with Perfect
Coverage

The bottom curve of Figure 3 corresponds to 10-second
switchover time; the middle one is 2 seconds; and, the
top one is one second. A study of these three plots
reveals that

1) The shorter the switchover time, the higher the
gain is.

2) The faster the recovery speed in each copy, the
lower the gain is.

3) A gain of 100X can be achieved if the recovery
takes an average of 20 minutes and a switchover
time of 10 seconds. Namely, by using a
duplicated software, a software availability of
about 60.8 minutes per year, or 0.999842 (almost
four 9’s), can be improved to better than 0.61
minute per year, or 0.99999842 (near six 9’s).

4) There is no gain, if the recovery speed equals the
switchover speed.

6: MARKOV MODELS FOR
DUPLICATED SOFTWARE WITH
IMPERFECT FAILURE RECOVERY

We shall now consider a more general situation by
allowing imperfect failure recovery with distinct failure
rates, λ and λ2, and coverage factors, c and c2, for
the active and the standby copies respectively. A
coverage factor is defined here as the fraction of
software failures in the processor in question that can

Figure 4 Imperfect Coverage Markov Models

automatically recover by itself. Reasons for the
imperfections are: (a) imperfect failure detections - in
either the active or the standby software copies and in
the simplex case as well, or (b) unsuccessful automatic
fault recovery in either copy. Thus, software failures
in this class require either assistance from the mate
processor or human interventions (i.e. manual
restorations/repairs) to recover with a rate denoted by γ3
and R, respectively. Detectable and recoverable
software failures are recovered automatically with a rate
of γ2 for both simplex and duplicated software. Finally,
the switchover rate is noted by γ1

In Figure 4-a), the probability of the simplex software
unavailability, denoted by y2, is the probability that
the software is in State 1 or State 2. Namely, y2 = p1+
p2.
 (1)

For Figure 4-b), the probability of the software
unavailability being analyzed, denoted by x2, is the
probability that the software is in States 1, 3, 4, 6, 8, 9
or 10. Namely, x2 = P1+ P3+P4+ P6+ P8+ P9+ P10.
To determine these P’s, at each state, one can apply the
“rates in equal rates out” property of a Markov chain to
obtain a set of 12 equations. After some manipulations,
the following set of equations can readily be obtained:

;)1(; 0
2

2011 pcr
cpprcp λ
λλ
−+==

0
3

40
22

2

3
)1(;})1({

)(pr
cppcrr

cp −=−+= λ
λ

λ

;])1([;)1(0
22

22
60

2

22
5 pcrr

ccppcr
cp λ

λλ
λ

λ
−+=−+=

220
3

7)1{()1(
1 λλ cprcp −+−=

 };)1(
)1()1(

2

22
λ
λλλ cr

ccc −+
−

+−+

222

22
028)1(

)1({1
λ
λλ

cr
ccprp −+

−
=

]})1(
)1()1()1[()1(2

22
22

3 λ
λλλλλ

λ
cr
ccccrc

c
−+

−
+−+−+−+

79
)1(p

R
cp −

=
λ

})1(
)1()1()1{(])1([

)1(
2

22
22

3

0

λ
λλλλλ

λ
cr
ccccrcR

pc
−+

−
+−+−+−

−
=

0
2222

22
10])1([

)1(pcrr
ccp λ
λλ

−+
−

=

∑
=

=
10

0
1

i
ip

Rcrc
RcrcRrcy /)1()/(1

/)1()/(),,,(
2

2
22 λλ

λλ
λ −++

−+
=

- 742 -

 ...})1({
)(

)1(1{
22

2

210 +−++−+++= λ
λ

λ
λλ

crr
c

cr
c

r
cp

 }])1([
)1(

2222

22
λ
λλ

crr
cc
−+

−
+

For switching applications, the following relations apply:

iRRrr ii ∀>>>>>>>> ;;;; 22 λλλλ

Thus, we obtain the following approximation
for),,,,,,(21222 Rrrccx λλ ,

109864321222),,,,,,(PPPPPPPRrrccx 1 ++++++=λλ

2
22

22
2

22

1210
)1({1)1(

)1({ r
cc

rr
cc

r
c

cr
crcp λλλλλ

λ
λλ −

++−+−++≅

]})1()1()1[(
2

22
223 r

ccccr
c λλλλλ −

+−+−+

})1(})1()1()1{()1(
2

2

22
2

22
22

3 r
cc

r
ccccRr

c λλλλλλλ −
+

−
+−+−−+

(2)

where,

2
2

22
2

22

1
2

2

2

21

)1()(1{
0

1
r
cc

r
c

r
c

r
c

rcrcp
λλλλλλλ ++−++++≅

])1()1()1[(1
2

22
223 r

ccccr
λλλλ −

+−+−+

]})1()1()1[()1({1
2

22
2232

22
2 r

ccccr
c

r
cc

r
λλλλλλλ −+−+−+−+

2

2

22
2

22
22

3

)1(])1()1()1[()1(
r

cc
r

ccccRr
c λλλλλλλ −

+
−

+−+−−+

7: BENEFITS OF AS PAIR SOFTWARE
REDUNDANCY WITH IMPERFECT
COVERAGE

To study the potential benefits of utilizing AS pair
software redundancy with imperfect coverage, we shall
consider the following gain function:

),,,,,,(

),2,,(2),,,,,,(
21222

21222 Rrrccx

Rrcy
RrrccG

λλ

λ
λλ =

By substituting Equations (1), (2) into 2G , we can
readily obtain expressions for),,,,,,(21222 RrrccG λλ

Example 2

To illustrate how this gain function can be utilized to
optimize fault tolerance, a plot of G2 as a function of
coverage factor c is given in Figure 5. These two
curves were obtained by setting the remaining
parameters as below:

a) c2=0.95;

b) λ=λ2=1/(24*120), a failure rate of one failure
per 120 days, about four months;

c) R=0.25, mean manual repair time of 4 hours
for software failures;

d) r1=3600, mean switchover time of 1 second;
e) r2=12, mean auto software failure recovery

time of 5 minutes; and,
f) r3=3, mean software failure recovery time of

20 minutes with assistance from the mate
processor. If the failing processor is the active,
a switchover of the standby to the active will
occur

 This G2 plot reveals that the gain is a monotonic

increasing function of c starting at around 12.5, more
than one order of magnitude, at c=0.7 and ending near
60 at c=1.

Figure 5 Software Redundancy Gain with

Imperfect Coverage

Also, two plots of software unavailability for a simplex
system and an AS pair software redundancy with
imperfect coverage are given in Figure 6. This figure
clearly demonstrates that an AS pair loosely coupled
software architecture can transform a simplex
software system worse than five 9’s into a better than
six 9’s software system.

8: SUMMARY AND DISCUSSIONS

By extrapolating proven results with hardware
redundancy, this paper has shown that judicious
applications of software redundancy can drastically and
cost-effectively improve software availability of a
loosely coupled switching system with active-standby
pair software redundancy.

It is also important to point out that a large portion of
procedural errors cause only software failures. Thus,
effective use of software redundancy can, as a
by-product, further improve system reliability by
avoiding total system outages caused by some otherwise
severe procedural errors.

In summary, Next Generation Network (NGN)

- 743 -

applications such as voice and data convergence, voice
over packets and emerging new 3G mobile and
WiFi/WiMax Wireless and other innovative services
demand fast time to market. To succeed in the global
market, switching software architectures must be able to
quickly absorb new technologies and respond to new
market needs. This presents a new challenge to
switching software architects because a switching
platform must also be able to meet very stringent
reliability requirements. Based on Markov modeling
and reliability analysis, this paper has demonstrated that
judicious applications of physical software redundancy
can cost-effectively transform a simplex software
system worse than five 9’s into a better than six 9’s
system and thus establishes a cost-effective
ultra-reliable software architectural framework for NGN
switching platform while meeting the needs of
fast-time-to-market.

REFERENCES

[1] Shih-Jeh Chang and Prudence T. Zacarias Kapauan, “Modeling

and Analysis of Using Memory Management Unit to Improve
Software Reliability”, 12th International Symposium on
Software Reliability Engineering (ISSRE 2001), 96-102

[2] E.F. Moore and C.E. Shannon(1956),"Reliable circuits using less
reliable relays", Journal of the Franklin Institute, 262, 191- 208,
281-97

[3] J.H. Lala, et al, ”A Design Approach for Ultrareliable Real-time
Systems”, IEEE Computer, May, 1991.

[4] Musa, Lannino and Okumoto,”Software Reliability:
Measurement, Prediction, Application”, McGraw-Hill, 1987

[5] A. Avizienis, "The N-Version Approach to Fault-Tolerant
Software," IEEE Transactions on Software Engineering
SE-11(12) (Dec. 1985) pp. 1491-1501.

[6] Michael R. Lyu, Algirdas Avizienis,”Assuring Design Diversity
in N-Version Software: A Design Paradigm for N-Version
Programming” Proceedings 2nd International Working
Conference on Dependable Computing for Critical Applications,
Tucson, Arizona

[7] A. Avizienis, “TheN-version approach to fault-tolerant
software,” IEEE Trans. on Software Engineering, Vol. SE-1 1,
No. 12, pp. 1491-1501,Dec. 1985.

[8] B. Randell, “System structure for software fault tolerance,”
IEEE Trans. on Software Engineering, Vol. SE-1, No. 2, pp.
220-232, June 1975.

[9] J. Gray and D. P. Siewiorek, “High-availability computer
systems,” IEEE Computer Magazine, pp. 3 9 4 8 , Sept. 1991.

[10] P. E. Ammann and J. C. Knight, “Data diversity: An approach to
software fault-tolerance,’’ in Proc. IEEE Fault-Tolerant
Computing Symposium, pp. 122-126, 1987.

[11] M.N.Meyers, “The AT&T telephone network outage of January
15, 1990.” Invited Talk at IEEE Fault-Tolerant Computing
Symposium, 1990.

[12] F.H. Keeve, et al, “5ESSTM Switching System Software:
Software Fault Detection and Recovery”, AT&T Technical
Journal, January, 1986, p. 153~165

[13] Michael R. Lyu and Veena B. Mendiratta, “Software Fault
Tolerance in a Clustered Architecture: Techniques and
Reliability Modeling”, Aerospace Conference, 1999.
Proceedings. 1999 IEEE, 30 Oct.-2 Nov. 1996
Page(s):99 – 103

[14] LSSGR, Bellcore, TRTSY -000064, FSD 00-00-0100, July 1989
[15] Reliability and Quality Measurements for Telecommunications

Systems (RQMS-Wireline), Telcordia Technologies Generic
Requirements GR–929–CORE Issue 6, December 2000

[16] M.L. Shooman,” Reliability of Computer Systems and
Networks-Fault Tolerance, Analysis and Design”, John Wiley &
Sons, Inc.., 2002 ISBN 0-471-29342-3

Figure 6 Software Unavailability Comparison:

Simplex vs. AS Pair Software Redundancy with
Imperfect Coverage

- 744 -

