
Fast Packet Classification Using Bit
Compression with Fast Boolean Expansion

Chien Chen, Chia-Ren Hsu, Chi-Chia Huang and Chia-Sheng Chou

Department of Computer Science
National Chiao Tung University

HSINCHU 30050, TAIWAN, ROC
chienchen@cs.nctu.edu.tw, gis91597@cis.nctu.edu.tw, chifatty.cis91@nctu.edu.tw, gis93584@cis.nctu.edu.tw

 Abstract⎯In order to support Internet security, virtual
private networks, Quality of Service (QoS), etc., Internet
routers need to classify incoming packets quickly into flows.
Packet classification uses information contained in the
packet header and a predefined rule table in the routers. In
general, packet classification on multiple fields is a difficult
problem. Hence, researchers have proposed a variety of
algorithms. This paper presents a novel packet
classification algorithm, called bit compression algorithm.
Like the previously best known algorithm, bitmap
intersection, bit compression is based on the multiple
dimensional range lookup approach. Since bit vectors of the
bitmap intersection contain lots of ‘0’ bits, the bit vectors
could be compressed. We compress the bit vectors by
preserving only useful information but removing the
redundant bits of the bit vectors. An additional index table
would be created to keep tract of the rule number
associated with the remaining bits. Additionally, the
wildcard rules also enable more extensive improvement in
storage requirement. A novel Fast Boolean Expansion
enable our scheme obtain much better classification speed
even under large number of wildcard rules. Comparing
with the bitmap intersection algorithm, the bit compression
algorithm reduces the storage complexity in the average
case from Ө(dN2) of bitmap intersection to Ө(dN·logN),
where d denotes the number of dimensions and N
represents the number of rules. With less memory
requirement, the proposed scheme not only cut the cost of
packet classification engine down, but also increases
classification performance by accessing less memory which
is the performance bottleneck in the packet classification
engine implementation using a network processor.

I. INTRODUCTION

The accelerated growth of Internet applications has
increased the importance of the development of new
network services, such as security, virtual private
network (VPN), quality of service (QoS), accounting,
and so on. All of these mechanisms generally require the
router to be able to categorize packets into different
classes called flows. The categorization function is
termed packet classification.

An Internet router categorizes incoming packets into
flows utilizing information contained in the packet
header and a predefined rule table in the router. A rule
table maintains a set of rules specified based on the
packet header fields, such as the network source address,
network destination address, source port, destination port,
protocol type and possibly other fields. The rule field can
be a prefix (e.g. a network source/destination address), a
range (e.g. a source/destination port) or an exact number
(e.g. a protocol type).

When a packet arrives, the packet header is extracted
first and then compared with the corresponding fields of
rule in the rule table. A rule matching in all
corresponding fields is considered a matched rule. The
packet header is compared with every rule in rule table,
and the matched rule with the highest priority yields the
best-matching rule. Finally, the router performs an
appropriate action associating with the best-matching
rule.

The general packet classification problem can be
viewed as a point location problem in multidimensional
space [1][2]. Rules have a natural geometric
interpretation in d dimensions. Each rule Ri can be
considered a “hyper-rectangle” in d dimensions, obtained
by the cross product of Fj,i along each field. The set of
rules R thus can be considered a set of hyper-rectangles,
and a packet header represents a point in d dimensions.

A good packet classification algorithm must classify
packets quickly with minimal memory storage
requirements. This study proposes a novel bit
compression packet classification algorithm. This
algorithm succeeds in reducing the memory storage
requirements in the bitmap intersection algorithm [3],
proposed by Lakshman and Stiliadis. As shown in Fig. 1,
the bitmap intersection algorithm converts the packet
classification problem into a multidimensional range
lookup problem and constructs bit vectors for each
dimension. Since the bit vectors contain lots of ‘0’ bits,
the bit vectors could be compressed. We compress the bit
vectors by preserving only useful information but
removing the redundant bits of the bit vectors. An
additional index table would be created to keep tract of
the rule number associated with the remaining bits.
Additionally, the wildcard rules also enable more
extensive improvement. The bit compression algorithm
reduces the storage complexity in average from O(2dN)
of bitmap intersection to Ө (dN·logN), where d denotes
the number of dimensions and N represents the number
of rules, without sacrificing the classification
performance. Although the authors of bitmap intersection
proposed a scheme, called incremental read, which can
reduce the storage complexity from O(dN2) to
Ө(dN·logN), however it requires more memory access
than its original scheme. The incremental read takes an
advantage form the fact that any two adjacent bit vectors
different by only one bit. Therefore, instead of store the
entire bit vectors for each interval, it store the position of
single bit which different between theses two bit vectors.
However, when a complete bit vector of an interval
needs to be reconstructed the increment read will access

- 709 -

1

2

3

4

5

6

7

8

9

10

0
0
0
0
0

0
0

1
0
0

0
0
0
0
0

0
1

1
0
1

0
0
0
0
0

0
0

1
0
1

0
0
1
0
0

1
0

1
1
0

1
0
1
0
0

1
0

1
1
0

1
1
0
0
0

0
0

1
1
0

0
0
0
0
0

0
0

1
0
0

0
0
0
1
0

0
0

0
0
0

0
0
0
1
1

0
0

0
0
0

X

Y

1
2
3
4
5
6
7
8
9
10

CR1 CR2 CR3 CR4X1 X2 X3 X4 X5 X9X8X7X6

Fig. 1: The bitmap in dimension X of a 2-dimensional
rule table with 10 rules.

1

2

3

4

5

6

7

8

9

10

0
0
0
0
0

0
0

1
0
0

0
0
0
0
0

0
1

1
0
1

0
0
0
0
0

0
0

1
0
1

0
0
1
0
0

1
0

1
1
0

1
0
1
0
0

1
0

1
1
0

1
1
0
0
0

0
0

1
1
0

0
0
0
0
0

0
0

1
0
0

0
0
0
1
0

0
0

0
0
0

0
0
0
1
1

0
0

0
0
0

X

Y

1
2
3
4
5
6
7
8
9
10

CR1 CR2 CR3 CR4X1 X2 X3 X4 X5 X9X8X7X6

Fig. 2: Space saving by removing redundant ‘0’ bits.

not only multiple bit positions but also a complete bit
vector as a final reference. Another famous scheme is
aggregated bit vector algorithm (ABV) [4]. Even though
ABV has much less memory access close to bit
compression algorithm, it demands larger memory
storage than bit compression algorithm. The ABV
attempts to reduce number of memory access by adding
smaller bit vectors called ABVs, which partially captures
information from the complete bit vectors. An ABV is
created along with a original bitmap vector to speed up
packet classification performance by accessing only
corresponding chunk of bits in the regular bit vector
identified by the ABV.

The rest of this paper is organized as follows. The bit
compression algorithm is described in Section 2. Section
3 summarizes the performance results. Conclusions are
finally made in Section 4.

II. BIT COMPRESSION ALGORITHM

A. Motivation
 As mentioned in the previous section, bitmap

intersection is a hardware oriented scheme with rapid
classification speed, but suffers from the crucial
drawback that the storage requirements increase
exponentially with the number of rules. The space
complexity of bitmap intersection is O(2dN), where d
denotes the number of dimensions and N represents the
number of rules. Even though the ABV algorithm
improves the search speed, but requires even more
memory space than bitmap intersection algorithm. For a
hardware solution of packet classification, memory
storage is an important performance metric. Decreasing
the required storage will reduce costs correspondingly.
The question thus arises whether any method exists way
of solving the extreme memory storage of a large rule
table. Observing the bit vectors produced by each
dimension, as mentioned in [4], the set bits (“1” bits) are
very sparse in the bit vectors of each dimension, there are
considerable clear bits (“0” bits). The authors of [4] used
this property to reduce memory access time, but this
property can also be applied to reduce memory storage
requirements. For the example of Fig. 2, an
approximately 60% space saving can be achieved by
removing redundant ‘0’ bits. The shaded parts of Fig. 2
illustrate the removable ‘0’ bits.

Therefore, our challenge is how to represent
compressed format of bit vector. We try to segment each
dimension into several sub-ranges. We call the sub-range
“Compressed Region” (CR), where a CR denotes the
range of a series of consecutive intervals. In each CR,
only an extreme small number of rules are overlapped,
while the corresponding bits of the non-overlapped rules
in this CR are all 0 bits. If a packet falls into a CR,
denoted by CRm, only the overlapped rules need to be
taken into consideration, while the non-overlapped rules
do not. The corresponding bits of the non-overlapped
rules in CRm are all 0 bits. Neglecting the non-overlapped
rules means these 0 bits corresponding to the non-
overlapped rules of the bit vectors in CRm can be
removed. This study calls the bit vector after removing
redundant 0 bits CBV (Compressed Bit Vector).

For example, consider the two-dimensional rule table
like Fig. 1. By dividing dimension X into four CRs, CR1,
CR2, CR3 and CR4. Only R1, R3 and R4 are overlapped
with CR1. Therefore, if a packet falls into CR1, only R1,
R3 and R4 have to be considered. Consequently,
maintaining the first, third and forth bits of the bit
vectors while removing the ‘0’ bits of the non-
overlapped rules in CR1 are sufficient to looking for
matching rules.

However, recall that in the bit map intersection the bit
order of a bit vector indicates to the rule order (i th bits in
a bit vector corresponds to i th rule in rule table). ‘0’ bits
are removed from a bit vector in such a way that it is no
longer known which remaining bits represent what rules.
To solve this problem, this study claims an “index list”
with each CR, which stores the rule number associated
with the remaining bits. Collections of the “index list”
form an “index table”. For example in Fig. 1, after
removing the redundant 0 bits, the bit vectors in CR1
remain three bits. In order to keep track of the rule
number of the three remaining bits, an index list [1, 3, 4]
is appended in CR1. Each CR associates an index list,
and the index table comprising four index lists shows in
Fig. 3.

After removing redundant 0 bits, we build the CBVs
and index list for each CR. Because the length (number
of bits) of CBV is related to the number of overlapped
rules in the corresponding CR, the length of the CBVs is
different for each CR, For example as Fig. 3, the length
of CBVs in CR1 should be three bits, while the length of

- 710 -

1

2

3

4

5

6

7

8

9

10

X

Y

0
0
0
0
0
1
1

0
0

1
0
0

0
0
0
0
0
1
1

0
1

1
0
1

0
0
0
0
0
1
1

0
0

1
0
1

0
0
1
0
0
1
1

1
0

1
1
0

1
0
1
0
0
1
1

1
0

1
1
0

1
1
0
0
0
1
1

0
0

1
1
0

0
0
0
0
0
1
1

0
0

1
0
0

0
0
0
1
0
1
1

0
0

0
0
0

0
0
0
1
1
1
1

0
0

0
0
0

1
2
3
4
5
6
7
8
9
10
11
12

11
12

X1 X2 X3 X4 X5 X9X8X7X6
CR1 CR2 CR3 CR4

Fig. 4: The bitmap in dimension X of a 2-dimensional rule
table which has two wildcarded rules R11 and R12 in
dimension X. rule table with 10 rules.

CBVs in CR2 should be five bits. However, the bitmap
intersection is a hardware-oriented algorithm, and our
improvement scheme is also hardware-oriented. For
convenience of memory access, the length of bit vectors
should be fixed, and thus CBVs maintaining fixed length
are also desired. Therefore, the length of all CBV should
be based on the longest (maximum bits) CBV, and fill up
‘0’ bits to the end of the CBVs which are shorter than the
longest CBV. Notably, a similar idea is applied to the
index lists, where the index lists should have the same
number of entries.

Furthermore, rules are considered to have wildcards.
This study notes that if rule Ri is wildcard in dimension j,
the i th bit of each bit vector in dimension j is set,
therefore forms a series of ‘1’ bits over dimension j. For
example, Fig. 4 illustrates the rule table with two
wildcard rules in dimension X, rule R11 and R12. The last
two bits of each bit vector are set because the ranges of
R11 and R12 cover all intervals in dimension X. In [4], the
authors mentioned that in the destination and source
address fields, approximately half of rules are wildcard.
Consequently, half of each bit vector in the destination
field (or source field) is set to ‘1’ owing to wildcards.
Intrinsically, lots of these ‘1’ bits are redundant. The idea
is that for each dimension j, regardless of the interval that
a packet falls in, the packet always matches the rules
with wildcards in dimension j. Thus there is no need to
set corresponding ‘1’ bits in every interval for recording
these wildcard rules, and instead these rules are stored
just once. Additional bit vectors, here called “Don’t Care
Vectors” (DCV), are utilized to separate the wildcard and
non-wildcard rules. A DCV is established for each
dimension. Removing the redundant ‘1’ bits caused by
wildcard rules helps further reduce storage space. A
DCV resembles a bit vector. Note that in a bit vector, bit
j in the bit vector is set if the projection of the rule region
corresponding to rule j overlaps with the related interval.
In the DCV, bit j is set if the corresponding rule j is
wildcarded, otherwise bit j is clear. For example, the last
two bits of each bit vector in Fig. 4 could be removed
and DCV “000000000011” added instead, which
indicates that the 11th and 12th rules are wildcarded and
others are not.

B. Bit Compression Algorithm
Using the above ideas, this study proposed an

improved approach of bitmap intersection, called “bit

compression”. Before describing the proposed bit
compression scheme, this study presents some
denotations and definitions.

For a k-dimensional rule table with N rules, let Ii,j
denotes the i th non-overlapping interval on dimension j
and ORNi,j denotes the overlapped rule numbers for each
interval Ii,j. Furthermore, BVi,j denotes the bit vectors
associated with the interval Ii,j and CBVi,j represents the
corresponding compressed bit vector. Finally, DCVj is
the “Don’t Care Vector” for dimension j and DCVi,j is the
i th bit in DCVj.

Definition: For a k-dimensional rule table with N rules,
“maximum overlap” for dimension j, denoted as MOPj,
is defined as the maximum ORNi,j for all intervals in
dimension j.

The preprocessing part of bit compression algorithm
is as follows. For each dimension j, 1 ≤ j ≤ k,
1. Construct DCVj. For n from 1 to N, if RN is

wildcarded on dimension j then DCVn,j is set,
otherwise DCVn,j is clear.

2. Calculate the value of MOPj and segment the entire
range of dimension j into t CRs, CR1, CR2, …, CRt .
The rules, where the rule projection overlaps with
CRi, 1 ≤ i ≤ t, form a rule set RSi, where the entry
number of each rule set should be smaller than or
equal to MOPj. (according to the subsequently
described “region segmentation” algorithm)

3. For each CR CRi, 1 ≤ i ≤ t, construct a compressed
bit vector and corresponding index list based on RSi.
Then gather the index lists to compose an index
table. Furthermore, use listi to denote the index list
related to CRi and listx,i to represent the x th entry of
listi.

4. For each CR CRi, 1 ≤ i ≤ t, append “index table
lookup address” (ITLA), which is the binary of (i-1),
in front of each CBV. For convenient hardware
processing, the number of bits of ITLA in each CR
are all the same.

The classification steps of a packet are as follows. For

each dimension j, 1 ≤ j ≤ k,
1. Find the interval Ii,j to which the packet belongs and

obtain the corresponding compressed bit vector
CBVi,j and ITLA.

2. Use ITLA to look up the index table to obtain the
corresponding index list, assume listm.

1
2

3

4
5

6

7

8

9

10

11
12

0762110

00010 911

8652101

0043100

0762110

00010 911

8652101

0043100

don’t care vector

1 1 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1

Set
bit_1
= 1 Set

bit_2
= 1

Set
bit_5
= 1

Set
bit_8
= 1

1 1 0 0 1 0 0 1 0 0 1 1

P

Index table

0
0
1
0
0
0
0

0
0
1
1
1
0
0

0
0
1
1
0
0
0

0
1
1
1
1
0
1

1
0
1
1
1
1
0

0
1
1
1
1
1
1

1
0
1
0
0
0
0

1
1
1
0
0
0
0

1
1
1
1
0
0
0

Compressed bit map

X1 X2 X3 X4 X5 X9X8X7X6

CR1 CR2 CR3 CR4

Fig. 3: An example of bit compression algorithm.

- 711 -

3. Read the DCVj into the final bit vector.
Subsequently, read the index list found in step 2
entry by entry. If the x th bit in CBVi,j is ‘1’, then
access listx,m and set the corresponding bit in the
final bit vector.

4. Take the conjunction of the final bit vector
associated with each dimension and then determine
the highest priority rule implied to the packet.

Figure 3 illustrates the bit compression algorithm.

First, construct the DCV “000000000011” for dimension
X. As shown in Fig. 1, the dimension X is divided into 4
CRs. In CR1, the corresponding rule set RS1 is {R1, R3,
R4}, and thus the CBV in CR1 is constructed by
considering R1, R3, R4 only and the index list list1 is [1, 3,
4]. An ITLA “00” then is appended in front of the CBVs
in CR1. As mentioned previously, additional ‘0’ bits are
filled up in the CBVs and index table for the
convenience of hardware implementation. Furthermore,
similar steps are manipulated for CR2, CR3 and CR4.

Consider an arriving packet p shown in Fig. 3, which
falls into interval X4. The ITLA “01” and CBV “11101”
associated with X4 thus are accessed. The ITLA “01”
serves as the lookup address in the index table to access
index list [1, 2, 5, 6, 8]. The bits of “11101” then are
known to represent R1, R2, R5, R6 and R8 respectively.
Read DCV “000000000011” and set the first, second,
fifth and eighth bits to form the final bit vector. The final
bit vector in dimension X is “110010010011”, the same
as the bit vector of interval X4 produced by the bitmap
intersection scheme in Fig. 1. Similar processes are
operated to form the final bit vector of dimension Y.
Take the conjunction of the final bit vectors in dimension
X and Y, and then the matched highest priority rule is
obtained.

C. Fast Boolean Expansion (FBE)
One can see that more memory access, compared to

bitmap intersection, is needed by the algorithm
introduced in the previous section while processing an
arriving packet with wildcard rules. For each dimension,
our scheme needs not only to access CBV and index list,
but also to access extra wildcard rules knowledge, DCV,
which size is identical with bit vector of bitmap
intersection algorithm. In this section, we introduce a
classification scheme modified from the original bit
compression scheme in previous section. The intent is to
minimize the amount of memory access by accessing the
appropriate parts of DCV instead of accessing the
complete DCV.

In bit compression algorithm, DCV is employed to
keep track of every wildcard. If rules are not considered
to have wildcards, the lookup performance of bit
compression outperforms bitmap intersection scheme as
shown later in simulation. However, from [4], we have
known that approximately half of rules are wildcard in
the destination and source address field. The question
now arises: How to reduce the performance degradation
caused by accessing DCV.

To gain some intuition, the two dimension rule table
is considering. We translate the steps of classification
scheme into a Boolean expression:

(CBVs+DCVs)．(CBVd+DCVd) (1)

, where CBVs+DCVs and CBVd+DCVd means the step 1
to 3 of bit compression algorithm in section III.B for
source dimension and destination dimension respectively,
and the notation “．” means the conjunction of the final
vector associated with each dimension, i.e. step 4. In (1),
several interesting observations come to our notice. First,
full-length DCVj is always accessed whatever the length
of CBVj will be. Secondly, what we consider is the
relation between set bits in CBVi and their corresponding
bit in DCVj, as well as whether any matching existed
between CBVi and CBVj, where i ≠ j. Finally, it is
unworthy to conjoin two complete vectors if the
probability of the ith bit is set in both vectors is rare. This
inspires us: if we can early combine CBVs and essential
parts of DCVs appropriately to obtain the intergraded
matchings, then the only thing what we should do is to
select the highest priority matching from those
intergraded matchings. Therefore, basing on this idea, we
expand the original Boolean expression to a new form:

(CBVs．CBVd) + (CBVs．DCVd) +(DCVs．CBVd)+
(DCVs．DCVd) (2)

In (2), a matching rule for a packet is obtained by

comparing the priority of the four rules generating from
the four clauses of (2). Processing (CBVs．CBVd) takes
few memory accesses since CBVs and CBVd are
compressed bit vectors. In order to reduce the number of
memory access, while conjoining (CBVs．DCVd) and
(DCVs．CBVd), we only extract the essential bits from
DCV which are corresponding to set bits of CBV instead
of reading complete DCV. Moreover, it has no need to
process (DCVs ． DCVd) since we have known the
conjunction of DCVs and DCVd is the default rule. Based
on this modification, the bit compression algorithm can
obtain much better classification speed as shown in
simulation even under large number of wildcard rules.

III. PERFORMANCE RESULTS

For a d-dimensional rule table with N rules, the query
time of the proposed bit compression scheme comprises
the time required for interval lookup, TIL, and the time to
access ITLAs, CBVs, index lists and DCVs. The time
complexity is Ө(d·(TIL+(logr+n+n·logN+N)/W)), where
r denotes the number of index lists, n represents the
value of maximum overlap and W is the memory
bandwidth, while the time complexity of bitmap
intersection algorithm is Ө(d· (TRL+N/W)).

The space requirement of the bit compression
comprises four parts – ITLAs, CBVs, index table and
DCVs. This study neglects the space complexity of the
DCV because of having much smaller size than the other
three parts. In average case, the memory space
complexity is Ө(d·N·(logr+n+logN)). The storage
complexity is reduced from Ө(dN2) of bitmap
intersection to Ө(dN·logN).

In worst case, for N rules, a maximum of 2N+1 non-
overlapping intervals are created on each dimension;

- 712 -

each interval is associated with an N-bit bit vector;
therefore, the storage consumption is Ө(N2). For bit
compression the storage consumption is calculated as:
for each dimension, the ITLA has a log|CR|-bit index for
each intervals, i.e. (2N+1)·log|CR|; the CBV has a MOP-
bit vector for each intervals, in the worst case, MOP is N,
so it consumes N·(2N+1) bits; index table consumes
|CR|·MOP·logN=|CR|·N·logN bits; DCV consumes N
bits. Therefore, the total space consumption is
Ө(d((2N+1)·log|CR|+N·(2N+1)+|CR|·N·logN+N)), if we
take |CR| as a constant, this is equivalent to Ө(dN2). Even
though the theoretical space consumption is not
improved, the actual memory requirement can be
reduced, as is seen in Fig. 5.

This study considers the complexity of storage
requirement and classification performance. We compare
the proposed bit compression scheme with the bitmap
intersection scheme. This study focuses on the two
dimensional rule table, IP destination address and IP
source address. The proposed scheme randomly
generates two field rules to create a synthesized rule
table, as previous experiments consider the prefix length
distribution and β [5], where is a controlling rule
overlapping probability. The overlapping probability
increases with increasing of β. This study considers
β=10-5[8].

 .
We implement the bitmap intersection and bit

compression algorithm with Microengine C.
Experiments are conducted on the Intel IXP2XXX
(Internet Exchange Processor) Developer WorkBench [7].
IXP 2400 is a network processor, which consists of a
core processor, StrongARM, and eight microengines [6].
Memory hierarchy in IXP2400 consists of multiple
memories, and three primary storage devices (Scratchpad
memory, SRAM and SDRAM) are focused on.

Figures 5 compare the memory requirements (based
on log2) for the bitmap intersection and bit compression
schemes. Notably, since the bitmap intersection and bit
compression use the same size of memory storage to
store interval boundary, we omit the memory storage of
interval boundary in memory requirements. The
experimental results demonstrate that the proposed
scheme performs better than bitmap intersection. Under
β=10-5, with the rule table size of 5K, we need only 164
Kbytes to store the bit compress algorithm compared
with 12.5 Mbytes by bitmap intersection. And with the
rule table size of 10K, 374 Kbytes is needed to store the
bit compress algorithm compared with 48 Mbytes of
bitmap intersection. When the rule number doubles, the
memory consumption of bit compression increases
(374/164) = 2.28 times, which approximates
N·logN=2·log2=2. The difference is caused by storing the
ndex table and related information. The memory
consumption of bitmap intersection increases
(48/12.5)=3.84 times, which approximates N2=4. The
simulation result shows our bit compression algorithm
significantly decreases memory consumption while rule
number increases and the proportion presents as we
expect. The memory storage for bitmap intersection
scales quadratically each time the number of rules
doubles, while our bit compression is almost with rule
numbers. Bit compression algorithm prevents memory

exploration with large rule tables. The difference
between theoretical measurement and implementation on
IXP2400 is that the lengths of CBV, index list and DCV
are a multiple of 32 bits when stored on IXP2400 for
convenient memory access, creating a certain amount of
space wastage. The memory storage with implementation
on IXP2400 is higher than the theoretical storage
requirements.

As noted previously, the space of index table can be
further reduced by merging the rule sets. Figure 6
displays the total memory space consumed by the rule
table of the bit compression scheme with and without
merging under. As a result, the required space is reduced
around 25%~40% after merging the rule sets.

In the bitmap intersection scheme, the rule table is
expected to store in SRAM. But the memory storage
increases rapidly such that the required storage exceeds
the size of SRAM (8MB). For example, under β = 10-5,
the required storage space for the rule table with rules
more than 4K exceeds 8MB. Thus the rule table of more
than 4K rules must be stored in SDRAM.

In the bit compression scheme, the memory
exploration is prevented. For 2-dimensional rule table
with 10K rules, the bit compression scheme still store the
bit vector and index table using SRAM without SDRAM.
Moreover, because most memory access cost of the bit
compression scheme is expended to access the DCVs, we
take advantage of memory hierarchy to store the DCVs
in the smallest (4KB) but fastest scratchpad memory
rather than SRAM. Storing the DCVs in the scratchpad
memory facilitate decreasing memory access time for our
bit compression scheme, while the bitmap intersection
can only use SRAM or SDRAM. Therefore, although the
times of memory access of bit compression are more

0
50

100
150
200
250
300
350
400

M
em

or
y

St
ro

ag
e

(K
B

s)
1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Number of Rules

before merging after merging

Fig. 6. Showing the improvement of memory storage by merging

rule sets under β=10-5.

0

2

4

6

8

10

12

14

16

18

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

number of rules

m
em

or
y

st
or

ag
e

(K
B

s)
(b

as
ed

 o
n

lo
g2

)

bit-compression (theoretical) bitmap intersection (theoretical)
bit-compression (on IXP1200) bitmap intersection (on IXP1200)

Fig. 5. Showing the variation of the memory requirements between
the bit compression and the bitmap intersection algorithm under

β=10-5

- 713 -

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

1 2 3 4 5 6 7 8 9 1 0

n u m b e r o f r u le s

tr
an

sm
is

si
on

 r
at

e(
M

bp
s)

A B V b itm a p c o m p re s s io n b itm a p in te r s e c tio n

Fig 7. Showing the transmission rate of bitmap intersection algorithm,
bit compress algorithm and aggregated bit vector algorithm where the
rule table of various number of rule with no wildcard.

than bitmap intersection for the same size rule tables, the
memory access performance of bit compression is better.

As mentioned above, the bit compression needs less
memory access time than bitmap intersection. But
notably, compared with bitmap intersection, the bit
compression algorithm requires decompressing the CBV
to full bit vector. Extra processing time for
decompression is required, which will degrade the
classification performance of the bit compression
algorithm. However, the time for decompression is
actually much less than memory access time. The
memory access time dominates the classification
performance. Therefore, even the bit compression
scheme requires extra processing time for decompression.
The bit compression can still outperform bitmap
intersection as illustrated in Fig. 7. Figure 7 presents the
packet transmission rates for bitmap intersection,
aggregated bit vector and bit compression scheme with
different size of rule tables without wildcards under β
=10-5 on IXP 2400. The minimum size packets (46 Bytes)
were created as arriving data. In the bitmap intersection
scheme, the rule tables are stored in SDRAM. In the bit
compression scheme, the rule table is stored in SRAM
only. Because the memory access time for reading a
CBV and index list is less than reading a full bit vector.
Although extra processing time for decompression is
required for bit compression scheme. Our bit
compression scheme outperforms bitmap intersection
scheme. Moreover, since the length of CBVs and index
lists almost remain a fixed value (according to maximum
overlap), the transmission rate of our bit compression
scheme remain constant. In contrast, the transmission
rate of bitmap intersection however decreases linearly
with number of rules.

Figure 8 demonstrate the performance of bitmap
intersection algorithm, aggregated bit vector algorithm
and proposed bit compression algorithm with and
without Fast Boolean Expansion in different amount of
rules with a various percent of wildcard. When rules are
not considered to have wildcards, the results shown in
Figure 7 demonstrate that proposed bit compression
algorithm outperforms bitmap intersection algorithms
and is slide better than aggregated bit vector for the
amount of rules 1000 to 10000. As previous mentioned
DCV is used to reserve the wildcard information if rule
database is considered to have wildcards. Therefore, in

practice, we can even omit DCV and no need to access it
if rule database do not comprise wildcards.

However, the result is contrary if the rule database is

considered to have wildcards. Figure 8(a) and 8(b) with
20%, 50% wildcards respectively indicate the
performance comparison between the three algorithms.
As figure 8(a) and 8(b) indicate, expectably, bit
compression algorithm has the poorest behavior
compared to bitmap intersection algorithm and
aggregated bit vector algorithm. In order to improve the
performance, we employ the conception of Fast Boolean
Expansion which is proposed in previous section. The
results are also presented in figure 8(a) and 8(b).

As figure 8(a) and 8(b) indicates, bit compression
algorithm with Fast Boolean Expansion has a better
behavior than bit compression algorithm without Fast
Boolean Expansion and bitmap intersection algorithm. It
also outperforms aggregated bit vector algorithm slightly.
This figure proves that proposed Fast Boolean Expansion
indeed decreases the amount of memory access. For a
10000 rules with 50% wildcards example, bit
compression algorithm with FBE takes at most 38
memory accesses since we had mentioned in previous
section that there are at most 9 rule overlaps in each bit
vector. But bitmap intersection algorithm takes 626
memory accesses and aggregated bit vector algorithm
only need 30 memory accesses. Although aggregated bit
vector algorithm has less memory access than proposed
bit compression algorithm, the storage aggregated bit
vector algorithm requires is huger than which proposed
bit compression algorithm requires.

IV. CONCLUSION

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

1 2 3 4 5 6 7 8 9 1 0

n u m b e r o f r u le s

tr
an

sm
is

si
on

 r
at

e(
M

bp
s)

A B V b i tm a p c o m p r e s s io n b itm a p in te r s e c t io n b itm a p c o m p r e s s io n (F B E)
(a). Rule table contains 20% wildcard

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

1 2 3 4 5 6 7 8 9 1 0

n u m b e r o f r u le s

tr
an

sm
is

si
o
n

ra
te

(M
b
p
s)

A B V b i tm a p c o m p r e s s io n b i tm a p in te r s e c t io n b i tm a p c o m p r e s s io n (F B E)
 (b). Rule table contains 50% wildcard

Fig. 8. Showing the transmission rate of bitmap intersection algorithm,
bitmap intersection algorithm (FBE), bit compress algorithm and
aggregated bit vector algorithm where the rule table of various number
of rule with various wildcard.

- 714 -

Packet classification is an essential function of
Internet security, virtual private networks, QoS and
several network services. There are numerous various
investigations have addressed this problem. This paper
attempts to improve the original bitmap intersection
algorithm, which has memory explosion problem for
large rule table. This study introduces the notion of bit
compression to significantly decrease the storage
requirement, creating what we called the CBV. Bit
compression is based on the fact that ‘1’ bits are sparse
enabling redundant ‘0’ bits to be removed. By region
segmentation, the bit compression algorithm segments
the range of dimension into CRs and then associates each
CR with an index list. Merging rule sets reducing the
number of CRs further. For rule table with wildcared
rules, the bit compression propose a novel idea, “Don’t
Care Vector” to save plenty storage space. The
experiments for measuring maximum overlap led us to
believe that plenty of redundant ‘0’ bits exist, such that
removing ‘0’ bits can significantly improve memory
storage.

Compared with bitmap intersection, the storage
complexity is reduced from O (2dN) of bitmap
intersection to Ө (dN·logN). In our experiment, our bit
compression scheme only needs less than 380 Kbytes to
store the 2-dimensional rule table with 10K rules, while
bitmap intersection needs 48 Mbytes. Furthermore,
comparing with memory access speed, our algorithm
accesses average 96% less bits than bitmap intersection.
Additionally, by exploiting the memory hierarchy to

store the DCV and Fast Boolean Expansion, our bit
compression scheme requires much less memory access
time than bitmap intersection. Even though extra
processing time for decompression is required for bit
compression. The bit compression scheme with Fast
Boolean Expansion still outperforms bitmap intersection
scheme on the classification speed.

REFERENCES
[1] M.H. Overmars and A.F. van der Stappen, “Range searching

and point location among fat objects,” Journal of Algorithms,
vol.21, no.3, pages 629-656, November 1996.

[2] P. Gupta and N. McKeown, “Packet Classification on Multiple
Fields,” Proc. of ACM Sigcomm, pages 147-160, September
1999.

[3] T.V. Lakshman and D. Stiliadis, “High-Speed Policy-based
Packet Forwarding Using Efficient Multi-dimensional Range
Matching,” Proc. of ACM Sigcomm, pages 191-202, September
1998.

[4] F. Baboescu, G. Varghese, “Scalable Packet Classification,”
Proc. of ACM Sigcomm, pages 199-210, August2001.

[5] G. Zhang, H.J. Chao, J. Joung, “Fast Packet Classification
Using Field-level Trie,” Proc. of IEEE Globecom, vol. 6, 1-5,
Pages 3201-3205 December 2003.

[6] “IXP2400 Network Processor: Datasheet”, Part No. 301164-011
Fabruary 2004.

[7] “Intel IXP2XXX Product Line of Network Processors :
Development Tools User’s Guide”, Part No. 278733-018,
November 2004.

[8] C. R. Hsu, C. Chen, C. Y. Lin, “Fast Packet Classification Using
Bit Compression,” Proc. of IEEE Globecom, vol. 2, pages 739-
743, November/December. 2005.

- 715 -

