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 Abstract⎯In order to support Internet security, virtual 
private networks, Quality of Service (QoS), etc., Internet 
routers need to classify incoming packets quickly into flows. 
Packet classification uses information contained in the 
packet header and a predefined rule table in the routers. In 
general, packet classification on multiple fields is a difficult 
problem. Hence, researchers have proposed a variety of 
algorithms. This paper presents a novel packet 
classification algorithm, called bit compression algorithm. 
Like the previously best known algorithm, bitmap 
intersection, bit compression is based on the multiple 
dimensional range lookup approach. Since bit vectors of the 
bitmap intersection contain lots of ‘0’ bits, the bit vectors 
could be compressed. We compress the bit vectors by 
preserving only useful information but removing the 
redundant bits of the bit vectors. An additional index table 
would be created to keep tract of the rule number 
associated with the remaining bits. Additionally, the 
wildcard rules also enable more extensive improvement in 
storage requirement. A novel Fast Boolean Expansion 
enable our scheme obtain much better classification speed 
even under large number of wildcard rules. Comparing 
with the bitmap intersection algorithm, the bit compression 
algorithm reduces the storage complexity in the average 
case from Ө(dN2) of bitmap intersection to Ө(dN·logN), 
where d denotes the number of dimensions and N 
represents the number of rules. With less memory 
requirement, the proposed scheme not only cut the cost of 
packet classification engine down, but also increases 
classification performance by accessing less memory which 
is the performance bottleneck in the packet classification 
engine implementation using a network processor. 

I. INTRODUCTION 

The accelerated growth of Internet applications has 
increased the importance of the development of new 
network services, such as security, virtual private 
network (VPN), quality of service (QoS), accounting, 
and so on. All of these mechanisms generally require the 
router to be able to categorize packets into different 
classes called flows. The categorization function is 
termed packet classification. 

An Internet router categorizes incoming packets into 
flows utilizing information contained in the packet 
header and a predefined rule table in the router. A rule 
table maintains a set of rules specified based on the 
packet header fields, such as the network source address, 
network destination address, source port, destination port, 
protocol type and possibly other fields. The rule field can  
be a prefix (e.g. a network source/destination address), a 
range (e.g. a source/destination port) or an exact number 
(e.g. a protocol type). 

When a packet arrives, the packet header is extracted 
first and then compared with the corresponding fields of 
rule in the rule table. A rule matching in all 
corresponding fields is considered a matched rule. The 
packet header is compared with every rule in rule table, 
and the matched rule with the highest priority yields the 
best-matching rule. Finally, the router performs an 
appropriate action associating with the best-matching 
rule. 

The general packet classification problem can be 
viewed as a point location problem in multidimensional 
space [1][2]. Rules have a natural geometric 
interpretation in d dimensions. Each rule Ri can be 
considered a “hyper-rectangle” in d dimensions, obtained 
by the cross product of Fj,i along each field. The set of 
rules R thus can be considered a set of hyper-rectangles, 
and a packet header represents a point in d dimensions. 

A good packet classification algorithm must classify 
packets quickly with minimal memory storage 
requirements. This study proposes a novel bit 
compression packet classification algorithm. This 
algorithm succeeds in reducing the memory storage 
requirements in the bitmap intersection algorithm [3], 
proposed by Lakshman and Stiliadis. As shown in Fig. 1, 
the bitmap intersection algorithm converts the packet 
classification problem into a multidimensional range 
lookup problem and constructs bit vectors for each 
dimension. Since the bit vectors contain lots of ‘0’ bits, 
the bit vectors could be compressed. We compress the bit 
vectors by preserving only useful information but 
removing the redundant bits of the bit vectors. An 
additional index table would be created to keep tract of 
the rule number associated with the remaining bits. 
Additionally, the wildcard rules also enable more 
extensive improvement. The bit compression algorithm 
reduces the storage complexity in average from O( 2dN ) 
of bitmap intersection to Ө (dN·logN), where d denotes 
the number of dimensions and N represents the number 
of rules, without sacrificing the classification 
performance. Although the authors of bitmap intersection 
proposed a scheme, called incremental read, which can 
reduce the storage complexity from O(dN2) to 
Ө(dN·logN), however it requires more memory access 
than its original scheme. The incremental read takes an 
advantage form the fact that any two adjacent bit vectors 
different by only one bit. Therefore, instead of store the 
entire bit vectors for each interval, it store the position of 
single bit which different between theses two bit vectors. 
However, when a complete bit vector of an interval 
needs to be reconstructed the increment read will access 

- 709 -



1

2

3

4

5

6

7

8

9

10

0
0
0
0
0

0
0

1
0
0

0
0
0
0
0

0
1

1
0
1

0
0
0
0
0

0
0

1
0
1

0
0
1
0
0

1
0

1
1
0

1
0
1
0
0

1
0

1
1
0

1
1
0
0
0

0
0

1
1
0

0
0
0
0
0

0
0

1
0
0

0
0
0
1
0

0
0

0
0
0

0
0
0
1
1

0
0

0
0
0

X

Y

1
2
3
4
5
6
7
8
9
10

CR1 CR2 CR3 CR4X1 X2 X3 X4 X5 X9X8X7X6

 
Fig. 1: The bitmap in dimension X of a 2-dimensional 
rule table with 10 rules. 
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Fig. 2: Space saving by removing redundant ‘0’ bits. 

not only multiple bit positions but also a complete bit 
vector as a final reference. Another famous scheme is 
aggregated bit vector algorithm (ABV) [4]. Even though 
ABV has much less memory access close to bit 
compression algorithm, it demands larger memory 
storage than bit compression algorithm. The ABV 
attempts to reduce number of memory access by adding 
smaller bit vectors called ABVs, which partially captures 
information from the complete bit vectors. An ABV is 
created along with a original bitmap vector to speed up 
packet classification performance by accessing only 
corresponding chunk of bits in the regular bit vector 
identified by the ABV.  

The rest of this paper is organized as follows. The bit 
compression algorithm is described in Section 2. Section 
3 summarizes the performance results. Conclusions are 
finally made in Section 4. 

II. BIT COMPRESSION ALGORITHM 

A. Motivation 
 As mentioned in the previous section, bitmap 

intersection is a hardware oriented scheme with rapid 
classification speed, but suffers from the crucial 
drawback that the storage requirements increase 
exponentially with the number of rules. The space 
complexity of bitmap intersection is O( 2dN ), where d 
denotes the number of dimensions and N represents the 
number of rules. Even though the ABV algorithm 
improves the search speed, but requires even more 
memory space than bitmap intersection algorithm. For a 
hardware solution of packet classification, memory 
storage is an important performance metric. Decreasing 
the required storage will reduce costs correspondingly. 
The question thus arises whether any method exists way 
of solving the extreme memory storage of a large rule 
table. Observing the bit vectors produced by each 
dimension, as mentioned in [4], the set bits (“1” bits) are 
very sparse in the bit vectors of each dimension, there are 
considerable clear bits (“0” bits). The authors of [4] used 
this property to reduce memory access time, but this 
property can also be applied to reduce memory storage 
requirements. For the example of Fig. 2, an 
approximately 60% space saving can be achieved by 
removing redundant ‘0’ bits. The shaded parts of Fig. 2 
illustrate the removable ‘0’ bits. 

Therefore, our challenge is how to represent 
compressed format of bit vector. We try to segment each 
dimension into several sub-ranges. We call the sub-range 
“Compressed Region” (CR), where a CR denotes the 
range of a series of consecutive intervals. In each CR, 
only an extreme small number of rules are overlapped, 
while the corresponding bits of the non-overlapped rules 
in this CR are all 0 bits. If a packet falls into a CR, 
denoted by CRm, only the overlapped rules need to be 
taken into consideration, while the non-overlapped rules 
do not. The corresponding bits of the non-overlapped 
rules in CRm are all 0 bits. Neglecting the non-overlapped 
rules means these 0 bits corresponding to the non-
overlapped rules of the bit vectors in CRm can be 
removed. This study calls the bit vector after removing 
redundant 0 bits CBV (Compressed Bit Vector). 

For example, consider the two-dimensional rule table 
like Fig. 1. By dividing dimension X into four CRs, CR1, 
CR2, CR3 and CR4. Only R1, R3 and R4 are overlapped 
with CR1. Therefore, if a packet falls into CR1, only R1, 
R3 and R4 have to be considered. Consequently, 
maintaining the first, third and forth bits of the bit 
vectors while removing the ‘0’ bits of the non-
overlapped rules in CR1 are sufficient to looking for 
matching rules. 

However, recall that in the bit map intersection the bit 
order of a bit vector indicates to the rule order (i th bits in 
a bit vector corresponds to i th rule in rule table). ‘0’ bits 
are removed from a bit vector in such a way that it is no 
longer known which remaining bits represent what rules. 
To solve this problem, this study claims an “index list” 
with each CR, which stores the rule number associated 
with the remaining bits. Collections of the “index list” 
form an “index table”. For example in Fig. 1, after 
removing the redundant 0 bits, the bit vectors in CR1 
remain three bits. In order to keep track of the rule 
number of the three remaining bits, an index list [1, 3, 4] 
is appended in CR1. Each CR associates an index list, 
and the index table comprising four index lists shows in 
Fig. 3. 

After removing redundant 0 bits, we build the CBVs 
and index list for each CR. Because the length (number 
of bits) of CBV is related to the number of overlapped 
rules in the corresponding CR, the length of the CBVs is 
different for each CR, For example as Fig. 3, the length 
of CBVs in CR1 should be three bits, while the length of 
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Fig. 4: The bitmap in dimension X of a 2-dimensional rule 
table which has two wildcarded rules R11 and R12 in 
dimension X. rule table with 10 rules. 

CBVs in CR2 should be five bits. However, the bitmap 
intersection is a hardware-oriented algorithm, and our 
improvement scheme is also hardware-oriented. For 
convenience of memory access, the length of bit vectors 
should be fixed, and thus CBVs maintaining fixed length 
are also desired. Therefore, the length of all CBV should 
be based on the longest (maximum bits) CBV, and fill up 
‘0’ bits to the end of the CBVs which are shorter than the 
longest CBV. Notably, a similar idea is applied to the 
index lists, where the index lists should have the same 
number of entries. 

Furthermore, rules are considered to have wildcards. 
This study notes that if rule Ri is wildcard in dimension j, 
the i th bit of each bit vector in dimension j is set, 
therefore forms a series of ‘1’ bits over dimension j. For 
example, Fig. 4 illustrates the rule table with two 
wildcard rules in dimension X, rule R11 and R12. The last 
two bits of each bit vector are set because the ranges of 
R11 and R12 cover all intervals in dimension X. In [4], the 
authors mentioned that in the destination and source 
address fields, approximately half of rules are wildcard. 
Consequently, half of each bit vector in the destination 
field (or source field) is set to ‘1’ owing to wildcards. 
Intrinsically, lots of these ‘1’ bits are redundant. The idea 
is that for each dimension j, regardless of the interval that 
a packet falls in, the packet always matches the rules 
with wildcards in dimension j. Thus there is no need to 
set corresponding ‘1’ bits in every interval for recording 
these wildcard rules, and instead these rules are stored 
just once. Additional bit vectors, here called “Don’t Care 
Vectors” (DCV), are utilized to separate the wildcard and 
non-wildcard rules. A DCV is established for each 
dimension. Removing the redundant ‘1’ bits caused by 
wildcard rules helps further reduce storage space. A 
DCV resembles a bit vector. Note that in a bit vector, bit 
j in the bit vector is set if the projection of the rule region 
corresponding to rule j overlaps with the related interval. 
In the DCV, bit j is set if the corresponding rule j is 
wildcarded, otherwise bit j is clear. For example, the last 
two bits of each bit vector in Fig. 4 could be removed 
and DCV “000000000011” added instead, which 
indicates that the 11th and 12th rules are wildcarded and 
others are not. 

B. Bit Compression Algorithm 
Using the above ideas, this study proposed an 

improved approach of bitmap intersection, called “bit 

compression”. Before describing the proposed bit 
compression scheme, this study presents some 
denotations and definitions. 

For a k-dimensional rule table with N rules, let Ii,j 
denotes the i th non-overlapping interval on dimension j 
and ORNi,j denotes the overlapped rule numbers for each 
interval Ii,j. Furthermore, BVi,j denotes the bit vectors 
associated with the interval Ii,j and CBVi,j represents the 
corresponding compressed bit vector. Finally, DCVj is 
the “Don’t Care Vector” for dimension j and DCVi,j is the 
i th bit in DCVj. 

Definition: For a k-dimensional rule table with N rules, 
“maximum overlap” for dimension j, denoted as MOPj, 
is defined as the maximum ORNi,j for all intervals in 
dimension j. 

The preprocessing part of bit compression algorithm 
is as follows. For each dimension j, 1 ≤ j ≤ k, 
1. Construct DCVj. For n from 1 to N, if RN is 

wildcarded on dimension j then DCVn,j is set, 
otherwise DCVn,j is clear. 

2. Calculate the value of MOPj and segment the entire 
range of dimension j into t CRs, CR1, CR2, …, CRt . 
The rules, where the rule projection overlaps with 
CRi, 1 ≤ i ≤ t, form a rule set RSi, where the entry 
number of each rule set should be smaller than or 
equal to MOPj. (according to the subsequently 
described “region segmentation” algorithm) 

3. For each CR CRi, 1 ≤ i ≤ t, construct a compressed 
bit vector and corresponding index list based on RSi. 
Then gather the index lists to compose an index 
table. Furthermore, use listi to denote the index list 
related to CRi and listx,i to represent the x th entry of 
listi. 

4. For each CR CRi, 1 ≤ i ≤ t, append “index table 
lookup address” (ITLA), which is the binary of (i-1), 
in front of each CBV. For convenient hardware 
processing, the number of bits of ITLA in each CR 
are all the same. 

 
The classification steps of a packet are as follows. For 

each dimension j, 1 ≤ j ≤ k, 
1. Find the interval Ii,j to which the packet belongs and 

obtain the corresponding compressed bit vector 
CBVi,j and ITLA. 

2. Use ITLA to look up the index table to obtain the 
corresponding index list, assume listm. 
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Fig. 3: An example of bit compression algorithm. 
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3. Read the DCVj into the final bit vector. 
Subsequently, read the index list found in step 2 
entry by entry. If the x th bit in CBVi,j is ‘1’, then 
access listx,m and set the corresponding bit in the 
final bit vector. 

4. Take the conjunction of the final bit vector 
associated with each dimension and then determine 
the highest priority rule implied to the packet. 

 
Figure 3 illustrates the bit compression algorithm. 

First, construct the DCV “000000000011” for dimension 
X. As shown in Fig. 1, the dimension X is divided into 4 
CRs. In CR1, the corresponding rule set RS1 is {R1, R3, 
R4}, and thus the CBV in CR1 is constructed by 
considering R1, R3, R4 only and the index list list1 is [1, 3, 
4]. An ITLA “00” then is appended in front of the CBVs 
in CR1. As mentioned previously, additional ‘0’ bits are 
filled up in the CBVs and index table for the 
convenience of hardware implementation. Furthermore, 
similar steps are manipulated for CR2, CR3 and CR4. 

Consider an arriving packet p shown in Fig. 3, which 
falls into interval X4. The ITLA “01” and CBV “11101” 
associated with X4 thus are accessed. The ITLA “01” 
serves as the lookup address in the index table to access 
index list [1, 2, 5, 6, 8]. The bits of “11101” then are 
known to represent R1, R2, R5, R6 and R8 respectively. 
Read DCV “000000000011” and set the first, second, 
fifth and eighth bits to form the final bit vector. The final 
bit vector in dimension X is “110010010011”, the same 
as the bit vector of interval X4 produced by the bitmap 
intersection scheme in Fig. 1. Similar processes are 
operated to form the final bit vector of dimension Y. 
Take the conjunction of the final bit vectors in dimension 
X and Y, and then the matched highest priority rule is 
obtained. 
 

C. Fast Boolean Expansion (FBE)  
One can see that more memory access, compared to 

bitmap intersection, is needed by the algorithm 
introduced in the previous section while processing an 
arriving packet with wildcard rules. For each dimension, 
our scheme needs not only to access CBV and index list, 
but also to access extra wildcard rules knowledge, DCV, 
which size is identical with bit vector of bitmap 
intersection algorithm. In this section, we introduce a 
classification scheme modified from the original bit 
compression scheme in previous section. The intent is to 
minimize the amount of memory access by accessing the 
appropriate parts of DCV instead of accessing the 
complete DCV. 

In bit compression algorithm, DCV is employed to 
keep track of every wildcard. If rules are not considered 
to have wildcards, the lookup performance of bit 
compression outperforms bitmap intersection scheme as 
shown later in simulation. However, from [4], we have 
known that approximately half of rules are wildcard in 
the destination and source address field. The question 
now arises: How to reduce the performance degradation 
caused by accessing DCV. 

To gain some intuition, the two dimension rule table 
is considering. We translate the steps of classification 
scheme into a Boolean expression: 

 
(CBVs+DCVs)．(CBVd+DCVd)                          (1) 

 
, where CBVs+DCVs and CBVd+DCVd means the step 1 
to 3 of bit compression algorithm in section III.B for 
source dimension and destination dimension respectively, 
and the notation “．” means the conjunction of the final 
vector associated with each dimension, i.e. step 4. In (1), 
several interesting observations come to our notice. First, 
full-length DCVj is always accessed whatever the length 
of CBVj will be. Secondly, what we consider is the 
relation between set bits in CBVi and their corresponding 
bit in DCVj, as well as whether any matching existed 
between CBVi and CBVj, where i ≠ j. Finally, it is 
unworthy to conjoin two complete vectors if the 
probability of the ith bit is set in both vectors is rare. This 
inspires us: if we can early combine CBVs and essential 
parts of DCVs appropriately to obtain the intergraded 
matchings, then the only thing what we should do is to 
select the highest priority matching from those 
intergraded matchings. Therefore, basing on this idea, we 
expand the original Boolean expression to a new form: 
 

(CBVs．CBVd) + (CBVs．DCVd) +(DCVs．CBVd)+ 
(DCVs．DCVd)  (2) 

 
In (2), a matching rule for a packet is obtained by 

comparing the priority of the four rules generating from 
the four clauses of (2). Processing (CBVs．CBVd) takes 
few memory accesses since CBVs and CBVd are 
compressed bit vectors. In order to reduce the number of 
memory access, while conjoining (CBVs．DCVd) and 
(DCVs．CBVd), we only extract the essential bits from 
DCV which are corresponding to set bits of CBV instead 
of reading complete DCV. Moreover, it has no need to 
process (DCVs ． DCVd) since we have known the 
conjunction of DCVs and DCVd is the default rule. Based 
on this modification, the bit compression algorithm can 
obtain much better classification speed as shown in 
simulation even under large number of wildcard rules. 

III. PERFORMANCE RESULTS 

For a d-dimensional rule table with N rules, the query 
time of the proposed bit compression scheme comprises 
the time required for interval lookup, TIL, and the time to 
access ITLAs, CBVs, index lists and DCVs. The time 
complexity is Ө(d·(TIL+(logr+n+n·logN+N)/W)), where 
r denotes the number of index lists, n represents the 
value of maximum overlap and W is the memory 
bandwidth, while the time complexity of bitmap 
intersection algorithm is Ө(d·  (TRL+N/W)). 

The space requirement of the bit compression 
comprises four parts – ITLAs, CBVs, index table and 
DCVs. This study neglects the space complexity of the 
DCV because of having much smaller size than the other 
three parts. In average case, the memory space 
complexity is Ө(d·N·(logr+n+logN)). The storage 
complexity is reduced from Ө(dN2) of bitmap 
intersection to Ө(dN·logN). 

In worst case, for N rules, a maximum of 2N+1 non-
overlapping intervals are created on each dimension; 
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each interval is associated with an N-bit bit vector; 
therefore, the storage consumption is Ө(N2). For bit 
compression the storage consumption is calculated as: 
for each dimension, the ITLA has a log|CR|-bit index for 
each intervals, i.e. (2N+1)·log|CR|; the CBV has a MOP-
bit vector for each intervals, in the worst case, MOP is N, 
so it consumes N·(2N+1) bits; index table consumes 
|CR|·MOP·logN=|CR|·N·logN bits; DCV consumes N 
bits. Therefore, the total space consumption is 
Ө(d((2N+1)·log|CR|+N·(2N+1)+|CR|·N·logN+N)), if we 
take |CR| as a constant, this is equivalent to Ө(dN2). Even 
though the theoretical space consumption is not 
improved, the actual memory requirement can be 
reduced, as is seen in Fig.  5. 

This study considers the complexity of storage 
requirement and classification performance. We compare 
the proposed bit compression scheme with the bitmap 
intersection scheme. This study focuses on the two 
dimensional rule table, IP destination address and IP 
source address. The proposed scheme randomly 
generates two field rules to create a synthesized rule 
table, as previous experiments consider the prefix length 
distribution and β [5], where is a controlling rule 
overlapping probability. The overlapping probability 
increases with increasing of β. This study considers 
β=10-5[8]. 

 . 
We implement the bitmap intersection and bit 

compression algorithm with Microengine C. 
Experiments are conducted on the Intel IXP2XXX 
(Internet Exchange Processor) Developer WorkBench [7]. 
IXP 2400 is a network processor, which consists of a 
core processor, StrongARM, and eight microengines [6]. 
Memory hierarchy in IXP2400 consists of multiple 
memories, and three primary storage devices (Scratchpad 
memory, SRAM and SDRAM) are focused on. 

Figures 5 compare the memory requirements (based 
on log2) for the bitmap intersection and bit compression 
schemes. Notably, since the bitmap intersection and bit 
compression use the same size of memory storage to 
store interval boundary, we omit the memory storage of 
interval boundary in memory requirements. The 
experimental results demonstrate that the proposed 
scheme performs better than bitmap intersection. Under 
β=10-5, with the rule table size of 5K, we need only 164 
Kbytes to store the bit compress algorithm compared 
with 12.5 Mbytes by bitmap intersection. And with the 
rule table size of 10K, 374 Kbytes is needed to store the 
bit compress algorithm compared with 48 Mbytes of 
bitmap intersection. When the rule number doubles, the 
memory consumption of bit compression increases 
(374/164) = 2.28 times, which approximates 
N·logN=2·log2=2. The difference is caused by storing the 
ndex table and related information. The memory 
consumption of bitmap intersection increases   
(48/12.5)=3.84 times, which approximates N2=4. The 
simulation result shows our bit compression algorithm 
significantly decreases memory consumption while rule 
number increases and the proportion presents as we 
expect. The memory storage for bitmap intersection 
scales quadratically each time the number of rules 
doubles, while our bit compression is almost with rule 
numbers. Bit compression algorithm prevents memory 

exploration with large rule tables. The difference 
between theoretical measurement and implementation on 
IXP2400 is that the lengths of CBV, index list and DCV 
are a multiple of 32 bits when stored on IXP2400 for 
convenient memory access, creating a certain amount of 
space wastage. The memory storage with implementation 
on IXP2400 is higher than the theoretical storage 
requirements. 

As noted previously, the space of index table can be 
further reduced by merging the rule sets. Figure 6 
displays the total memory space consumed by the rule 
table of the bit compression scheme with and without 
merging under. As a result, the required space is reduced 
around 25%~40% after merging the rule sets. 

In the bitmap intersection scheme, the rule table is 
expected to store in SRAM. But the memory storage 
increases rapidly such that the required storage exceeds 
the size of SRAM (8MB). For example, under β = 10-5, 
the required storage space for the rule table with rules 
more than 4K exceeds 8MB. Thus the rule table of more 
than 4K rules must be stored in SDRAM. 

In the bit compression scheme, the memory 
exploration is prevented. For 2-dimensional rule table 
with 10K rules, the bit compression scheme still store the 
bit vector and index table using SRAM without SDRAM. 
Moreover, because most memory access cost of the bit 
compression scheme is expended to access the DCVs, we 
take advantage of memory hierarchy to store the DCVs 
in the smallest (4KB) but fastest scratchpad memory 
rather than SRAM. Storing the DCVs in the scratchpad 
memory facilitate decreasing memory access time for our 
bit compression scheme, while the bitmap intersection 
can only use SRAM or SDRAM. Therefore, although the 
times of memory access of bit compression are more 
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Fig. 6. Showing the improvement of memory storage by merging 

rule sets under β=10-5. 
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Fig 7. Showing the transmission rate of bitmap intersection algorithm, 
bit compress algorithm and aggregated bit vector algorithm where the 
rule table of various number of rule with no wildcard. 

than bitmap intersection for the same size rule tables, the 
memory access performance of bit compression is better. 

As mentioned above, the bit compression needs less 
memory access time than bitmap intersection. But 
notably, compared with bitmap intersection, the bit 
compression algorithm requires decompressing the CBV 
to full bit vector. Extra processing time for 
decompression is required, which will degrade the 
classification performance of the bit compression 
algorithm. However, the time for decompression is 
actually much less than memory access time. The 
memory access time dominates the classification 
performance. Therefore, even the bit compression 
scheme requires extra processing time for decompression. 
The bit compression can still outperform bitmap 
intersection as illustrated in Fig. 7. Figure 7 presents the 
packet transmission rates for bitmap intersection, 
aggregated bit vector and bit compression scheme with 
different size of rule tables without wildcards under β 
=10-5 on IXP 2400. The minimum size packets (46 Bytes) 
were created as arriving data. In the bitmap intersection 
scheme, the rule tables are stored in SDRAM. In the bit 
compression scheme, the rule table is stored in SRAM 
only. Because the memory access time for reading a 
CBV and index list is less than reading a full bit vector. 
Although extra processing time for decompression is 
required for bit compression scheme. Our bit 
compression scheme outperforms bitmap intersection 
scheme. Moreover, since the length of CBVs and index 
lists almost remain a fixed value (according to maximum 
overlap), the transmission rate of our bit compression 
scheme remain constant. In contrast, the transmission 
rate of bitmap intersection however decreases linearly 
with number of rules. 

Figure 8 demonstrate the performance of bitmap 
intersection algorithm, aggregated bit vector algorithm 
and proposed bit compression algorithm with and 
without Fast Boolean Expansion in different amount of 
rules with a various percent of wildcard. When rules are 
not considered to have wildcards, the results shown in 
Figure 7 demonstrate that proposed bit compression 
algorithm outperforms bitmap intersection algorithms 
and is slide better than aggregated bit vector for the 
amount of rules 1000 to 10000. As previous mentioned 
DCV is used to reserve the wildcard information if rule 
database is considered to have wildcards. Therefore, in 

practice, we can even omit DCV and no need to access it 
if rule database do not comprise wildcards. 

 
However, the result is contrary if the rule database is 

considered to have wildcards. Figure 8(a) and 8(b) with 
20%, 50% wildcards respectively indicate the 
performance comparison between the three algorithms. 
As figure 8(a) and 8(b) indicate, expectably, bit 
compression algorithm has the poorest behavior 
compared to bitmap intersection algorithm and 
aggregated bit vector algorithm. In order to improve the 
performance, we employ the conception of Fast Boolean 
Expansion which is proposed in previous section. The 
results are also presented in figure 8(a) and 8(b). 

As figure 8(a) and 8(b) indicates, bit compression 
algorithm with Fast Boolean Expansion has a better 
behavior than bit compression algorithm without Fast 
Boolean Expansion and bitmap intersection algorithm. It 
also outperforms aggregated bit vector algorithm slightly. 
This figure proves that proposed Fast Boolean Expansion 
indeed decreases the amount of memory access. For a 
10000 rules with 50% wildcards example, bit 
compression algorithm with FBE takes at most 38 
memory accesses since we had mentioned in previous 
section that there are at most 9 rule overlaps in each bit 
vector. But bitmap intersection algorithm takes 626 
memory accesses and aggregated bit vector algorithm 
only need 30 memory accesses. Although aggregated bit 
vector algorithm has less memory access than proposed 
bit compression algorithm, the storage aggregated bit 
vector algorithm requires is huger than which proposed 
bit compression algorithm requires. 

IV. CONCLUSION 
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Fig. 8. Showing the transmission rate of bitmap intersection algorithm, 
bitmap intersection algorithm (FBE), bit compress algorithm and 
aggregated bit vector algorithm where the rule table of various number 
of rule with various wildcard. 
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Packet classification is an essential function of 
Internet security, virtual private networks, QoS and 
several network services. There are numerous various 
investigations have addressed this problem. This paper 
attempts to improve the original bitmap intersection 
algorithm, which has memory explosion problem for 
large rule table. This study introduces the notion of bit 
compression to significantly decrease the storage 
requirement, creating what we called the CBV. Bit 
compression is based on the fact that ‘1’ bits are sparse 
enabling redundant ‘0’ bits to be removed. By region 
segmentation, the bit compression algorithm segments 
the range of dimension into CRs and then associates each 
CR with an index list. Merging rule sets reducing the 
number of CRs further. For rule table with wildcared 
rules, the bit compression propose a novel idea, “Don’t 
Care Vector” to save plenty storage space. The 
experiments for measuring maximum overlap led us to 
believe that plenty of redundant ‘0’ bits exist, such that 
removing ‘0’ bits can significantly improve memory 
storage.  

Compared with bitmap intersection, the storage 
complexity is reduced from O ( 2dN ) of bitmap 
intersection to Ө (dN·logN). In our experiment, our bit 
compression scheme only needs less than 380 Kbytes to 
store the 2-dimensional rule table with 10K rules, while 
bitmap intersection needs 48 Mbytes. Furthermore, 
comparing with memory access speed, our algorithm 
accesses average 96% less bits than bitmap intersection. 
Additionally, by exploiting the memory hierarchy to 

store the DCV and Fast Boolean Expansion, our bit 
compression scheme requires much less memory access 
time than bitmap intersection. Even though extra 
processing time for decompression is required for bit 
compression. The bit compression scheme with Fast 
Boolean Expansion still outperforms bitmap intersection 
scheme on the classification speed. 
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