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ABSTRACT 
Let G(V, E, W) be a network with n-node-set V and 

m-link-set E, where each link e is associated with a 
positive distance W(e). The traditional p-Center problem 
is to locate some type of facilities at p nodes to 
minimize the maximum distance between any node and 
its nearest facility. This paper proposes an additional 
practical constraint. We restrict that the subnetwork 
induced by the p facility nodes must be connected. The 
resulting problem is called the Connected p-Center 
problem (the CpC problem). This paper designs an 
O(pn)-time algorithm for the CpC problem on 3-cactus 
networks using a very elegant approach. Then, we 
extend the algorithm to 3-cactus networks with 
forbidden nodes, i.e. some nodes in V cannot be selected 
as centers, and the complexity is still O(pn). 
Keywords: connected p-center, induced subnetwork, 
cactus network, k-cactus network, network with 
forbidden vertices 
 
 
1. INTRODUCTION 

 
Client/server architecture has become a basis for 

almost all networks and distributed systems. Consider 
the following practical and interesting situation in many 
real client/server network environments and distributed 
systems. There are resources, e.g., servers, programs, 
routers, data objects, etc., to be established at some 
nodes to provide services requested by the clients over a 
computer network. If there is no facility at a node u, the 
clients at u need to route to a nearest facility node to 
meet its requirement. This type of application 
corresponds to the fundamental discrete location 
problem, called the p-Center problem. 

Let G(V, E, W) be a network with n-node-set V and 
m-link-set E, where each link e is associated with a 
positive distance W(e). For any Q ⊆ V, the distance 
between Q and any node v ∉ Q, is defined as d(v, Q) 
= {d(v, u)}, where d(x, y) denotes the distance 
(length) of the shortest path between any pair of nodes x 
and y. Meanwhile, we define δ(Q) = {d(v, 
Q)}. The p-Center problem can be defined formally as 
follows [7]. 

Qu∈min

QVv −∈max

 
The p-Center problem: Given a network G(V, E, W) 
and a positive integer p, identify a subset H = 
{ , …, } of V, called a p-center of G, such that δ(H) 
is minimized. 

1h ph

 
Fig. 1 shows an input network of the p-Center 

problem. In the case p = 2, it is easy to verify that H = 
{ , } is a 2-center of this network such that δ(H) = 
8 is minimized. 
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Figure 1. A network with distances on links. 

 
2. MOTIVATIONS AND RELATED 
WORKS 
 

The p-Center problem has very wide-area 
applications to many real-world systems and 
environments. Its application areas include finding the 
best locations of industrial plants, warehouses, 
distribution centers, and public service facilities in 
transportation networks, as well as locating various 
service facilities in telecommunication and computer 
networks. Indeed, extensive research effort has been 
done on this problem [1, 5, 7, 13]. The problem on 
general networks (graphs) is NP-Hard [9, 10]. In [18], 
the author provided an O(n)-time algorithm for the 
1-Center problem on interval graphs. The author in [6] 
extended the result of [18] for the problem under the 
assumption that the endpoints of input intervals are 
sorted and the time-complexity is O(n). Lan Y-F et al. 
proposed a linear-time algorithm for finding centers on 
weighted cactus graphs [16]. Frederickson solved the 
p-center problem on trees in linear-time (without 
necessarily restricting the location of the facilities to the 
vertices of the tree) using parametric search [8]. 
Bespamyatnikh et al. gave an O(pn)-time algorithm for 
the problem on circular-arc graphs [4]. Hsu et al. 
presented a general p-facility location problem on the 
real line with unimodal distance functions and an 
O(p )-time algorithm was proposed [11]. Kariv and 
Hakimi addressed the p-center problem on general 
graphs [13]. In [20], Tamir proved that the p-center 
problems on weighted and unweighted networks can be 
solved in O( )-time and 

O( )-time, respectively. In addition, 
some research has been done on approximating the 

2n

pn pm n2log
1−pn pm n3log
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p-center problem [3, 12]. 
This paper proposes a very practical additional 

constraint: the subnetwork induced by any p-center 
must be connected. This issue is very important and 
practical to real networks. Suppose that Fig. 1 represents 
some regional backbone network of Internet and each 
vertex denotes a web server. Now, we want to assign 
three servers as cache servers. Assume that { , , 

} are selected as cache servers. Consider the situation 

that  receives a request from . If the current load 

of  is very heavy, then  must determine a route 

such that it can pass the request to  or  for 
further processing to reduce its load. The dynamic 
routing overhead occurs because  is not directly 

connected to either  or . Therefore, we prefer to 
allocate the cache servers so that their induced 
subnetwork is connected. This can reduce dynamic 
routing overhead for improving load balance among 
these cache servers. We call a p-center that induces a 
connected subnetwork as a connected p-center hereafter. 
From this point of view, it is reasonable and natural to 
assume that p ≥ 2 and n ≥ 2 in the rest of this paper. 

1v 5v

6v

1v 2v

1v 1v

5v 6v
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The Connected p-Center Problem (The CpC problem): 
Given a network G(V, E, W) and a positive integer p ≥ 2, 
identify a connected p-center Q = { , …, } such 

that δ(Q) is minimized. We denote δ(G) = δ(Q) and Q is 
called an optimal solution of the CpC problem on G 
hereafter. 

1q pq

 
Let us examine the network shown in Fig. 1 again 

and also consider the case p = 2. Verifying that Q = { , 

} is a connected 2-center such that δ(Q) = 9 is 
minimized is simple and we say that δ(G) = 9. 

3v

4v

The rest of this paper is organized as follows. 
Section 3 will design an O(pn)-time algorithm for the 
CpC problem on 3-cactus networks using a very elegant 
approach. Then, in Section 4, we extend the algorithm 
to 3-cactus networks with forbidden nodes, i.e. some 
nodes in V cannot be selected as centers, and the 
complexity is still O(pn). Finally, the conclusion will be 
drawn in Section 5. 
 
3 AN O(pn)-TIME ALGORITHM FOR 
THE CpC PROBLEM ON 3-CACTUS 
NETWORKS 

 
A network is a cactus network if every link belongs 

to at most one cycle. Alternatively, a cactus network is 
connected network in which two cycles have at most 
one vertex in common [22]. A cactus network C can be 
constructed from a tree network T via replacing some 
links of T by cycles of arbitrary length greater than or 
equal to 3. The motivation that we consider the CpC 

problem on cactus networks can be described as follows. 
Firstly, cactus networks are often used to model 
real-world systems or environments when a tree 
network is inappropriate or is not enough. Typical 
examples arise in telecommunications when considering 
feeder networks for rural, suburban, and light urban 
regions [14, 15]. Moreover, the ring and bus are two 
very popular and essential structures used in local area 
networks. The combination of several local area 
networks forms a cactus network naturally [15]. 
Secondly, some literature studied the p-center and its 
related problems on cactus networks [2, 14, 15, 19, 22]. 
But, no research result deals with the CpC problem on 
cactus networks so far. In this section, we will propose 
an original study of the CpC problem on cactus 
networks. For any integer k ≥ 3, a k-cactus network is a 
cactus network in which every cycle consists of at most 
k nodes. The section will solve the CpC problem on 
3-cactus networks. 

To obtain an optimal solution of the CpC problem 
on a 3-cactus network C, we randomly choose a node r 
as the root. Then, we partition all nodes v of C into 
different levels, denoted as L(v), with the level of r is 
equal to 1, i.e., L(r) = 1, and the network will be 
denoted as C(r) as shown in Fig. 2. After this 
preprocessing, we will deal with the CpC problem on 
C(r) in the rest of this section. 
 
Definition 1. For each node u, Children(u) = {v | L(v) = 
L(u) + 1 and (u, v) ∈ E}. If Children(u) is an empty set, 
then u is called a leaf node. Otherwise, u is called a 
non-leaf node. 
 
Definition 2. For each non-root node u, Parent(u) is the 
node v such that (u, v) ∈ E with L(v) = L(u) - 1. 
 
Definition 3. For each pair of nodes u and v with (u, v) 
∈ E and Parent(u) = Parent(v), denote u = Brother(v) 
and v = Brother(u). The pair u and v are called a B-pair. 
In Fig. 2,  and  are B-pairs, i.e., Brother( ) = 

 and Brother( ) = , for all 1 ≤ j ≤ β. 
jb jf jb

jf jf jb
 
Definition 4. For each non-root node u, the following 
definitions are made. 
(1) Let P: u =  →  → … →  = r be the 

path from u to r in which  = Parent( ), 1 ≤ j 

< β. Then, , …,  are called the ancestors of 

u and denoted as Ancestors(u) = { , …, }. 

1v 2v ρv

1+jv jv

2v ρv

2v ρv
(2) C(u) denotes the subnetwork rooted at node u as 

shown in Fig. 2. 
 
Definition 5. For each B-pair u and v, C(u, v) denotes 
the subnetwork formed by the union of the link (u, v), 
C(u), and C(v). See Fig. 2. 
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Figure 2. A 3-cactus network withL(r) = 1. 
 

In the rest of this paper, we will use C(u) to 
represent the subnetwork rooted at any node u and the 
node-set of C(r) alternatively if no confusion occurs. 
The same representation is also applied to C(u, v) for 
any B-pair u and v. 
 
Lemma 1. Suppose that H is any connected p-center of 
C(r). Then, one of the following conditions holds. 
1. There exists u such that H ⊆ C(u) and u ∈ H. 
2. There exists a B-pair u and v such that H ⊆ C(u, v) 

and u, v ∈ H. 
Proof: Let M = {y | y ∈ H and L(y) is minimized}. By 
the definition of levels of all nodes, we must have M  
is equal to either 1 or 2. The proof can be completed just 
by examining the set M.   
 

Let  be an optimal solution of the CpC 
problem on C(u) with u ∈ Q, for each C(u). Meanwhile, 

 denotes any optimal solution of the CpC 
problem on C(u, v) such that u, v ∈ Q, for each C(u, v). 

)(uQ

),( vuQ

 
Lemma 2. Let Ω = {  | u ∈ V} and Ψ = {  | 
u and v is a B-pair of C(r)}. If Q ∈ Ω ∪ Ψ and δ(Q) ≤ 
δ(H), for all H ∈ Ω ∪ Ψ, then Q is an optimal solution 
of the CpC problem on C(r). 

)(uQ ),( vuQ

 
Let ∆( ) = max{d(y, ) | y ∈ C(u) – } 

and θ( ) = max{d(y, ) | y ∈ V – C(u)}, for 

each . Since u ∈ , we have θ( ) = 
max{d(y, u) | y ∈ V – C(u)}. 

)(uQ )(uQ )(uQ
)(uQ )(uQ

)(uQ )(uQ )(uQ

 
δ( ) = max{∆( ), θ( )} --<1> )(uQ )(uQ )(uQ
 

The following formula for each  can be 

easily proved by the similar way, where ∆( ) = 

max{d(y, ) | y ∈ C(u, v) – } and θ( ) 
= max{d(y, {u, v}) | y ∈ V – C(u, v)}. 

),( vuQ
),( vuQ

),( vuQ ),( vuQ ),( vuQ

 
δ( ) = max{∆( ), θ( )} --<2> ),( vuQ ),( vuQ ),( vuQ

 
Definition 6. For each node u of C(r), if u is a leaf node, 
then define MLen(u) = 0. Otherwise, let Children(u) = 
{ , …, , , , …, , }, where  and 

 are B-pairs, 1 ≤ j ≤ q. The following values are 
associated with u. 

1x kx 1y 1z qy qz jy

jz

1. MLen(u) = max{ {MLen( ) + d( , u)},  

{MLen( ) + d( , u)},  

{MLen( ) + d( , u)}} 

ki≤≤1max ix ix

kj≤≤1max jy jy

kj≤≤1max jz jz

2. MLen(u, tx ) = max{ {MLen( ) + 

d( , u)}, {MLen( ) + d( , u)}, 

{MLen( ) + d( , u)}}, 1 ≤ t ≤ k. 

kti ≤≠≤1max ix

ix kj≤≤1max jy jy

kj≤≤1max jz jz

3. MLen(u, ty ) and  MLen(u, tz ), for all 1 ≤ t ≤ q, 
can be defined in the same way. 

4. MLen(u, ty , tz ) = max{ {MLen( ) 

+ d( , u)}, {MLen( ) + d( , u)}, 

{MLen( ) + d( , u)}}, 1 ≤ t ≤ k. 

ki≤≤1max ix

ix ktj ≤≠≤1max jy jy

ktj ≤≠≤1max jz jz
 

The following lemma can be proved by simple 
modification of the technique for proving Lemma 2 of 
[21]. We omit the details here. 
  
Lemma 3. For each node u with Children(u) = { , …, 

, , , …, , }, if MLen( ),1 ≤ i ≤ k, 

and MLen( ) and MLen( ), 1 ≤ j ≤ q, have been 

computed, then MLen(u), MLen(u, 

1x

kx 1y 1z qy qz ix

jy jz

tx ), 1 ≤ t ≤ k; 

MLen(u, ty ) and MLen(u, tz ), 1 ≤ t ≤ q; and 

MLen(u, ty , tz ), 1 ≤ t ≤ q, can be obtained in O(k + 
q)-time. 
 

It is trivial to see that θ( ) = 0. The correctness 
of the following formulas and Lemma 4 can be easily 
verified. 

)(rQ

 
θ( ) = d(r, u) + MLen(r, )(uQ u ), L(u) = 2 and u 
has no brother. --<3> 
θ( ) = d(Parent(u), u) + max{θ( ), 

MLen(Parent(u), 

)(uQ ))(Parent( uQ
u )}, L(u) ≥ 3 and u has no 

brother. --<4> 
 
θ( ) = max{d(r, u) + MLen(r, )(uQ u ), 
MLen(Brother(u)) + d(Brother(u), u)}, L(u) = 2 
and u has a brother. --<5> 
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θ( ) = max{d(Parent(u), u) + 

max{θ( ), MLen(Parent(u), 

)(uQ
))(Parent( uQ u )}, 

MLen(Brother(u)) + d(Brother(u), u)}, L(u) ≥ 3 
and u has a brother. --<6> 
 
θ( ) = d(r, {u, v}) + MLen(r, ),( vuQ u , v ), L(u) 
= L(v) = 2 --<7> 
θ( ) ),( vuQ
= d(Parent(u), {u, v}) + max{θ( ), 

MLen(Parent(u), 

))(Parent( uQ
u , v )}, L(u) ≥ 3. --<8> 

 
Lemma 4. θ( ), for all nodes u, and θ( ), for 
all B-pairs u and v, can be computed in O(n)-time. 

)(uQ ),( vuQ

 
Now, consider each node x with the brother node 

Brother(x). Define π(x) = {d(y, {Parent(x), 

Brother(x)})}. Physically, π(x) is the distance of the 
longest shortest path between any vertex y in C(x) and 
one of the two vertices in {Parent(x), Brother(x)}. It is 
easy to verify that π(x) = MLen(x) + min{W(x, 
Parent(x)), W(x, Brother(x))}. 

)(max xCy∈

For each non-root node u, µ(u) is computed by the 
following rules. 
1. µ(u) = d(u, Parent(u)), if u is a leaf node and u has 

no brother. 
2. µ(u) = {µ(y)} + W(u, Parent(u)), 

if u is non-leaf and u has no brother. 
)(Childrenmax uy∈

3. µ(u) = MLen(u) + d(u, Parent(u)) and µ(Brother(u)) 
= π(Brother(u)), if u has a brother and π(u) ≥ 
π(Brother(u)). 

4. µ(u) = π(u) and µ(Brother(u)) = 
MLen(Brother(u)) + d(Brother(u), 
Parent(Brother(u))), if u has a brother and π(u) < 
π(Brother(u)). 

Finally, the value µ(r) = {µ(y)}. )(Childrenmax uy∈

Lemma 5 directly holds from the above 
computational results. 
 
Lemma 5. For each node u, µ(u) ≥ µ(z), for all z ∈ C(u). 
Meanwhile, for each non-root node x of C(r), µ(y) > 
µ(x), for all y ∈ Ancestors(x). 
 
Lemma 6. For any node u, let H = { , …, } be a 

set of vertices in C(u) such that , …, 
1h αh
)( 1hµ )( αµ h  

are the first α largest numbers among {µ(v) | v ∈ C(u)}. 
Then, H forms a connected subnetwork of C(u). 
Proof: Lemma 5 implies that  = u. Assume that the 
H does not induce a connected subnetwork of C(u). Let 
j, 2 ≤ j ≤ α, be the smallest number such that 

1h

*H  = 
{ , …, } induces a connected subnetwork but 

 is not adjacent to any vertex in 

1h jh

1+jh *H . Since we 
only consider connected networks, it implies that 
Parent( ) ∉ H and Brother( ) ∉ H. But Lemma 

5 states that µ(Parent( )) > µ( ) and also implies 

that the first α largest numbers among {µ(v) | v ∈ C(u)} 
must include µ(Parent( )), i.e., Parent( ) ∈ H. A 
contradiction occurs.   

1+jh 1+jh

1+jh 1+jh

1+jh 1+jh

 
Lemma 7. For any node u, let Q = { , …, } be a 

set of vertices in C(u) such that , …, 
1q pq

)( 1qµ )( pqµ  

are the first p largest numbers among {µ(v) | v ∈ C(u)}. 
Then, Q is an optimal connected p-center of C(u) with u 
∈ Q, i.e., Q can be an instance of  and we can 
derive the following formula, where V(C(u)) denotes the 
node-set of C(u). 

)(uQ

 
∆( ) = )(uQ

⎪
⎩

⎪
⎨

⎧

∈µ+λλ
=
<∞

})(|)({ amongnumber largest  )1(  theis ,
))((,0
))((,

th uCvvp
puCV
puCV

--<7> 
 
Lemma 8. For any B-pair u and v, let Q = {u, v, , …, 

} be a set of vertices in C(u, v) such that 
1q

2−pq )( 1qµ , 

…, )( 2−µ pq  are the first (p – 2) largest numbers 

among {µ(v) | v ∈ C(u) – {u, v}}. Then, Q is an optimal 
connected p-center of C(u, v) , i.e., Q can be an instance 
of  and we can derive the following formula, 
where C(u, v) denotes the node-set of C(u, v). 

),( vuQ

 
∆( )= ),( vuQ

⎪
⎩

⎪
⎨

⎧

−∈µ−λλ
=
<∞

}},{),(|)({ amongnumber largest  )1(  theis ,
)),((,0
)),((,

th vuvuCvvp
pvuCV
pvuCV

--<8> 
 
Lemma 9. Suppose that u is any non-leaf node. Let 

)(vH  = 
⎩
⎨
⎧

<
≥

pvCVvCV
pvCVQ v

))(()),((
))((,)(

, for each v ∈ 

Children(u). Then,  = { , …, } be a set of 

vertices in C(u) such that 

)(uQ 1q pq
)( 1qµ , …,  are the 

first p largest numbers among {µ(y) | y ∈ {u} ∪ 
{

)( pqµ

)(Children uv∈U )(vH }}. 
 
Lemma 10. Suppose that u and v is any B-pair. Let 
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)(uH  = 
⎩
⎨
⎧

<−
≥−

puCVuuCV
puCVuQ u

))((},{))((
))((},{)(

 and 

)(vH  = 
⎩
⎨
⎧

<−
≥−

pvCVvvCV
pvCVvQ v

))((},{))((
))((},{)(

. Then, 

 = {u, v, , …, }, in which { , …, 

} is a set of vertices in C(u, v) such that 

),( vuQ 1q 2−pq 1q

2−pq )( 1qµ , 

…,  are the first (p – 2) largest numbers 

among 

)( 2−µ pq
)(uH  ∪  )(vH . 

 
Lemma 11. ∆( ), for all nodes u, and ∆( ), 
for all B-pairs u and v, can be computed in O(pn)-time. 

)(uQ ),( vuQ

Proof: We can achieve all computations using 
Breadth-First-Search technique to scan each node u and 
each B-pair u and v from leaf nodes to r. Lemma 9 and 
Lemma 10 just imply that the major task is to find the 

 largest number among p * thp )(Children u  
numbers, for each node u. It is well-known that finding 
the  largest number among n numbers can be done 
in O(n)-time, for any given k [17]. Therefore, the total 
time-complexity can be easily verified to be O(pn).   

thk

 
Theorem 1. The CpC problem on 3-cactuc networks 
can be solved in O(pn)-time. 
Proof: This theorem follows directly from Lemma 2, 
Lemma 4, and Lemma 11.    
 
4. EXTENSION TO 3-CACTUS 
NETWORKS WITH FORBIDDEN 
NODES 
 

In real-world systems such as computer and 
telecommunication networks, some nodes may not be 
suitable to be selected as center nodes due to function 
failure or some practical constraints, such as capacity, 
processing ability, etc. We use F to represent the set of 
such nodes and called them forbidden nodes. The 
resulting problem can be now defined as follows: 
 
The Forbidden Connected p-Center Problem (The 
FCpC problem): Given a network G(V, E, W), a subset 
F of V, and a positive integer constant p ≥ 2, identify a 
connected p-center Q = { , …, } of G such that 

δ(Q) is minimized under the restriction that Q ∩ F = ∅. 
1q pq

 
The section will extend the results of the previous 

section to the FCpC problem and the time-complexity 
will remain O(pn). In the rest of this section, if we call 
H a connected p-center, then it means that H ∩ F = ∅. 
 
Definition 7. For each node u of the cactus C(r), if u ∈ 
F, then define Φ(u) = 0. Otherwise, define Φ(u) = 

)(uΠ , where Π(u) = {y | y ∈ C(u) – F}. 
 

It is easy to see that Φ(u), for each non-forbidden 
node u, i.e., u ∉ F, can be computed using the following 
rules. 
1. Φ(u) = 1, if u is a leaf node. 
2. Φ(u) = ∑ −∈

Φ
))(Children(

)(
Fuy

y  + 1, if u is not a 

leaf node. 
After that, another value η(u) for each node u are 

computed as follows: 
1. η(u) = Φ(u), if u ∈ F or u has no brother. 
2. η(u) = Φ(u) + Φ(Brother(u)), if u belongs to a 

B-pair. 
 
Lemma 12. After computing η(u), for all nodes u, if η(u) 
< p, then u can not belong to any connected p-center H. 
 

Lemma 12 implies that all nodes u with η(u) < p can 
be viewed as additional forbidden vertices. Therefore, 
we can assume that η(u) ≥ p hereafter. As stated in 
previous section, we also randomly choose a node r ∉ F 
as the root. 
 
Lemma 13. Suppose that H is any connected p-center of 
C(r). Then, one of the following conditions holds. 
1. There exists u ∉ F such that H ⊆ C(u) and u ∈ H. 
2. There exists a B-pair u and v, u, v ∉ F, such that H 

⊆ C(u, v) and u, v ∈ H. 
 
Lemma 14. Let Ω = {  | u ∉ F} and Ψ = {  
| u and v is a B-pair of C(r) and u, v ∉ F}. If Q ∈ Ω ∪ 
Ψ and δ(Q) ≤ δ(H), for all H ∈ Ω ∪ Ψ, then Q is an 
optimal solution of the FCpC problem on C(r). 

)(uQ ),( vuQ

 
The remaining task can be achieved using the 

similar techniques in Section 2 and the following 
theorem can then be ascertained. 
 
Theorem 2. The FCpC problem on 3-cactus networks 
can be solved in O(pn)-time. 
 
5. CONCLUSIONS 

 
This paper addressed the Connected p-Center 

problem (the CpC problem) on networks. This problem 
can be viewed as a more practical variant of the 
traditional p-Center problem. We proposed an 
O(pn)-time algorithm for the CpC problem on 3-cactus 
networks using dynamic programming strategy. Then, 
the algorithmic result was extended to the situation that 
the vertices in F of the input 3-cactus network are 
forbidden. The time-complexity is still O(pn). 

In the future, the first practical and meaningful issue 
is to extend our algorithms to k-cactus networks, k ≥ 4, 
and cactus networks. Meanwhile, solving the CpC and 
FCpC problems on other classes of networks, such as 
planar networks and interval networks, is also a very 
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typical research topic. Meanwhile, identifying other 
variants of the traditional p-Center problem is also a 
very important task. For example, requiring that the 
p-centers must be “total”, i.e., the subnetwork induced 
by the p-centers has no isolated nodes, is another 
practical variant with applications to real networks. 
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