
The Connected p-Center Problem on 3-Cactus Networks with Forbidden Nodes

William Chung-Kung Yen and Chien-Tsai Chen
Department of Information Management, Shih Hsin University, Taipei, Taiwan

Email: {ckyen001@ms7.hinet.net, hbk_156@hotmail.com}

ABSTRACT
Let G(V, E, W) be a network with n-node-set V and

m-link-set E, where each link e is associated with a
positive distance W(e). The traditional p-Center problem
is to locate some type of facilities at p nodes to
minimize the maximum distance between any node and
its nearest facility. This paper proposes an additional
practical constraint. We restrict that the subnetwork
induced by the p facility nodes must be connected. The
resulting problem is called the Connected p-Center
problem (the CpC problem). This paper designs an
O(pn)-time algorithm for the CpC problem on 3-cactus
networks using a very elegant approach. Then, we
extend the algorithm to 3-cactus networks with
forbidden nodes, i.e. some nodes in V cannot be selected
as centers, and the complexity is still O(pn).
Keywords: connected p-center, induced subnetwork,
cactus network, k-cactus network, network with
forbidden vertices

1. INTRODUCTION

Client/server architecture has become a basis for

almost all networks and distributed systems. Consider
the following practical and interesting situation in many
real client/server network environments and distributed
systems. There are resources, e.g., servers, programs,
routers, data objects, etc., to be established at some
nodes to provide services requested by the clients over a
computer network. If there is no facility at a node u, the
clients at u need to route to a nearest facility node to
meet its requirement. This type of application
corresponds to the fundamental discrete location
problem, called the p-Center problem.

Let G(V, E, W) be a network with n-node-set V and
m-link-set E, where each link e is associated with a
positive distance W(e). For any Q ⊆ V, the distance
between Q and any node v ∉ Q, is defined as d(v, Q)
= {d(v, u)}, where d(x, y) denotes the distance
(length) of the shortest path between any pair of nodes x
and y. Meanwhile, we define δ(Q) = {d(v,
Q)}. The p-Center problem can be defined formally as
follows [7].

Qu∈min

QVv −∈max

The p-Center problem: Given a network G(V, E, W)
and a positive integer p, identify a subset H =
{ , …, } of V, called a p-center of G, such that δ(H)
is minimized.

1h ph

Fig. 1 shows an input network of the p-Center

problem. In the case p = 2, it is easy to verify that H =
{ , } is a 2-center of this network such that δ(H) =
8 is minimized.

3v 6v

v2

v1

v4

v5

v6

v7

8

v3

3
5

4

4 6

3 6
4

9

Figure 1. A network with distances on links.

2. MOTIVATIONS AND RELATED
WORKS

The p-Center problem has very wide-area
applications to many real-world systems and
environments. Its application areas include finding the
best locations of industrial plants, warehouses,
distribution centers, and public service facilities in
transportation networks, as well as locating various
service facilities in telecommunication and computer
networks. Indeed, extensive research effort has been
done on this problem [1, 5, 7, 13]. The problem on
general networks (graphs) is NP-Hard [9, 10]. In [18],
the author provided an O(n)-time algorithm for the
1-Center problem on interval graphs. The author in [6]
extended the result of [18] for the problem under the
assumption that the endpoints of input intervals are
sorted and the time-complexity is O(n). Lan Y-F et al.
proposed a linear-time algorithm for finding centers on
weighted cactus graphs [16]. Frederickson solved the
p-center problem on trees in linear-time (without
necessarily restricting the location of the facilities to the
vertices of the tree) using parametric search [8].
Bespamyatnikh et al. gave an O(pn)-time algorithm for
the problem on circular-arc graphs [4]. Hsu et al.
presented a general p-facility location problem on the
real line with unimodal distance functions and an
O(p)-time algorithm was proposed [11]. Kariv and
Hakimi addressed the p-center problem on general
graphs [13]. In [20], Tamir proved that the p-center
problems on weighted and unweighted networks can be
solved in O()-time and

O()-time, respectively. In addition,
some research has been done on approximating the

2n

pn pm n2log
1−pn pm n3log

- 561 -

mailto:ckyen001@ms7.hinet.net
mailto:hbk_156@hotmail.com

p-center problem [3, 12].
This paper proposes a very practical additional

constraint: the subnetwork induced by any p-center
must be connected. This issue is very important and
practical to real networks. Suppose that Fig. 1 represents
some regional backbone network of Internet and each
vertex denotes a web server. Now, we want to assign
three servers as cache servers. Assume that { , ,

} are selected as cache servers. Consider the situation

that receives a request from . If the current load

of is very heavy, then must determine a route

such that it can pass the request to or for
further processing to reduce its load. The dynamic
routing overhead occurs because is not directly

connected to either or . Therefore, we prefer to
allocate the cache servers so that their induced
subnetwork is connected. This can reduce dynamic
routing overhead for improving load balance among
these cache servers. We call a p-center that induces a
connected subnetwork as a connected p-center hereafter.
From this point of view, it is reasonable and natural to
assume that p ≥ 2 and n ≥ 2 in the rest of this paper.

1v 5v

6v

1v 2v

1v 1v

5v 6v

1v

5v 6v

The Connected p-Center Problem (The CpC problem):
Given a network G(V, E, W) and a positive integer p ≥ 2,
identify a connected p-center Q = { , …, } such

that δ(Q) is minimized. We denote δ(G) = δ(Q) and Q is
called an optimal solution of the CpC problem on G
hereafter.

1q pq

Let us examine the network shown in Fig. 1 again

and also consider the case p = 2. Verifying that Q = { ,

} is a connected 2-center such that δ(Q) = 9 is
minimized is simple and we say that δ(G) = 9.

3v

4v

The rest of this paper is organized as follows.
Section 3 will design an O(pn)-time algorithm for the
CpC problem on 3-cactus networks using a very elegant
approach. Then, in Section 4, we extend the algorithm
to 3-cactus networks with forbidden nodes, i.e. some
nodes in V cannot be selected as centers, and the
complexity is still O(pn). Finally, the conclusion will be
drawn in Section 5.

3 AN O(pn)-TIME ALGORITHM FOR
THE CpC PROBLEM ON 3-CACTUS
NETWORKS

A network is a cactus network if every link belongs

to at most one cycle. Alternatively, a cactus network is
connected network in which two cycles have at most
one vertex in common [22]. A cactus network C can be
constructed from a tree network T via replacing some
links of T by cycles of arbitrary length greater than or
equal to 3. The motivation that we consider the CpC

problem on cactus networks can be described as follows.
Firstly, cactus networks are often used to model
real-world systems or environments when a tree
network is inappropriate or is not enough. Typical
examples arise in telecommunications when considering
feeder networks for rural, suburban, and light urban
regions [14, 15]. Moreover, the ring and bus are two
very popular and essential structures used in local area
networks. The combination of several local area
networks forms a cactus network naturally [15].
Secondly, some literature studied the p-center and its
related problems on cactus networks [2, 14, 15, 19, 22].
But, no research result deals with the CpC problem on
cactus networks so far. In this section, we will propose
an original study of the CpC problem on cactus
networks. For any integer k ≥ 3, a k-cactus network is a
cactus network in which every cycle consists of at most
k nodes. The section will solve the CpC problem on
3-cactus networks.

To obtain an optimal solution of the CpC problem
on a 3-cactus network C, we randomly choose a node r
as the root. Then, we partition all nodes v of C into
different levels, denoted as L(v), with the level of r is
equal to 1, i.e., L(r) = 1, and the network will be
denoted as C(r) as shown in Fig. 2. After this
preprocessing, we will deal with the CpC problem on
C(r) in the rest of this section.

Definition 1. For each node u, Children(u) = {v | L(v) =
L(u) + 1 and (u, v) ∈ E}. If Children(u) is an empty set,
then u is called a leaf node. Otherwise, u is called a
non-leaf node.

Definition 2. For each non-root node u, Parent(u) is the
node v such that (u, v) ∈ E with L(v) = L(u) - 1.

Definition 3. For each pair of nodes u and v with (u, v)
∈ E and Parent(u) = Parent(v), denote u = Brother(v)
and v = Brother(u). The pair u and v are called a B-pair.
In Fig. 2, and are B-pairs, i.e., Brother() =

 and Brother() = , for all 1 ≤ j ≤ β.
jb jf jb

jf jf jb

Definition 4. For each non-root node u, the following
definitions are made.
(1) Let P: u = → → … → = r be the

path from u to r in which = Parent(), 1 ≤ j

< β. Then, , …, are called the ancestors of

u and denoted as Ancestors(u) = { , …, }.

1v 2v ρv

1+jv jv

2v ρv

2v ρv
(2) C(u) denotes the subnetwork rooted at node u as

shown in Fig. 2.

Definition 5. For each B-pair u and v, C(u, v) denotes
the subnetwork formed by the union of the link (u, v),
C(u), and C(v). See Fig. 2.

- 562 -

 Level

...
αa

1b
1f βfβb ...

1a

)(αaC)(1bC)(1fC

),(11 fbC

)(βfC
)(1aC

3

r
1

2

)(βbC

Figure 2. A 3-cactus network withL(r) = 1.

In the rest of this paper, we will use C(u) to
represent the subnetwork rooted at any node u and the
node-set of C(r) alternatively if no confusion occurs.
The same representation is also applied to C(u, v) for
any B-pair u and v.

Lemma 1. Suppose that H is any connected p-center of
C(r). Then, one of the following conditions holds.
1. There exists u such that H ⊆ C(u) and u ∈ H.
2. There exists a B-pair u and v such that H ⊆ C(u, v)

and u, v ∈ H.
Proof: Let M = {y | y ∈ H and L(y) is minimized}. By
the definition of levels of all nodes, we must have M
is equal to either 1 or 2. The proof can be completed just
by examining the set M.

Let be an optimal solution of the CpC
problem on C(u) with u ∈ Q, for each C(u). Meanwhile,

 denotes any optimal solution of the CpC
problem on C(u, v) such that u, v ∈ Q, for each C(u, v).

)(uQ

),(vuQ

Lemma 2. Let Ω = { | u ∈ V} and Ψ = { |
u and v is a B-pair of C(r)}. If Q ∈ Ω ∪ Ψ and δ(Q) ≤
δ(H), for all H ∈ Ω ∪ Ψ, then Q is an optimal solution
of the CpC problem on C(r).

)(uQ),(vuQ

Let ∆() = max{d(y,) | y ∈ C(u) – }

and θ() = max{d(y,) | y ∈ V – C(u)}, for

each . Since u ∈ , we have θ() =
max{d(y, u) | y ∈ V – C(u)}.

)(uQ)(uQ)(uQ
)(uQ)(uQ

)(uQ)(uQ)(uQ

δ() = max{∆(), θ()} --<1>)(uQ)(uQ)(uQ

The following formula for each can be

easily proved by the similar way, where ∆() =

max{d(y,) | y ∈ C(u, v) – } and θ()
= max{d(y, {u, v}) | y ∈ V – C(u, v)}.

),(vuQ
),(vuQ

),(vuQ),(vuQ),(vuQ

δ() = max{∆(), θ()} --<2>),(vuQ),(vuQ),(vuQ

Definition 6. For each node u of C(r), if u is a leaf node,
then define MLen(u) = 0. Otherwise, let Children(u) =
{ , …, , , , …, , }, where and

 are B-pairs, 1 ≤ j ≤ q. The following values are
associated with u.

1x kx 1y 1z qy qz jy

jz

1. MLen(u) = max{ {MLen() + d(, u)},

{MLen() + d(, u)},

{MLen() + d(, u)}}

ki≤≤1max ix ix

kj≤≤1max jy jy

kj≤≤1max jz jz

2. MLen(u, tx) = max{ {MLen() +

d(, u)}, {MLen() + d(, u)},

{MLen() + d(, u)}}, 1 ≤ t ≤ k.

kti ≤≠≤1max ix

ix kj≤≤1max jy jy

kj≤≤1max jz jz

3. MLen(u, ty) and MLen(u, tz), for all 1 ≤ t ≤ q,
can be defined in the same way.

4. MLen(u, ty , tz) = max{ {MLen()

+ d(, u)}, {MLen() + d(, u)},

{MLen() + d(, u)}}, 1 ≤ t ≤ k.

ki≤≤1max ix

ix ktj ≤≠≤1max jy jy

ktj ≤≠≤1max jz jz

The following lemma can be proved by simple
modification of the technique for proving Lemma 2 of
[21]. We omit the details here.

Lemma 3. For each node u with Children(u) = { , …,

, , , …, , }, if MLen(),1 ≤ i ≤ k,

and MLen() and MLen(), 1 ≤ j ≤ q, have been

computed, then MLen(u), MLen(u,

1x

kx 1y 1z qy qz ix

jy jz

tx), 1 ≤ t ≤ k;

MLen(u, ty) and MLen(u, tz), 1 ≤ t ≤ q; and

MLen(u, ty , tz), 1 ≤ t ≤ q, can be obtained in O(k +
q)-time.

It is trivial to see that θ() = 0. The correctness
of the following formulas and Lemma 4 can be easily
verified.

)(rQ

θ() = d(r, u) + MLen(r,)(uQ u), L(u) = 2 and u
has no brother. --<3>
θ() = d(Parent(u), u) + max{θ(),

MLen(Parent(u),

)(uQ))(Parent(uQ
u)}, L(u) ≥ 3 and u has no

brother. --<4>

θ() = max{d(r, u) + MLen(r,)(uQ u),
MLen(Brother(u)) + d(Brother(u), u)}, L(u) = 2
and u has a brother. --<5>

- 563 -

θ() = max{d(Parent(u), u) +

max{θ(), MLen(Parent(u),

)(uQ
))(Parent(uQ u)},

MLen(Brother(u)) + d(Brother(u), u)}, L(u) ≥ 3
and u has a brother. --<6>

θ() = d(r, {u, v}) + MLen(r,),(vuQ u , v), L(u)
= L(v) = 2 --<7>
θ()),(vuQ
= d(Parent(u), {u, v}) + max{θ(),

MLen(Parent(u),

))(Parent(uQ
u , v)}, L(u) ≥ 3. --<8>

Lemma 4. θ(), for all nodes u, and θ(), for
all B-pairs u and v, can be computed in O(n)-time.

)(uQ),(vuQ

Now, consider each node x with the brother node

Brother(x). Define π(x) = {d(y, {Parent(x),

Brother(x)})}. Physically, π(x) is the distance of the
longest shortest path between any vertex y in C(x) and
one of the two vertices in {Parent(x), Brother(x)}. It is
easy to verify that π(x) = MLen(x) + min{W(x,
Parent(x)), W(x, Brother(x))}.

)(max xCy∈

For each non-root node u, µ(u) is computed by the
following rules.
1. µ(u) = d(u, Parent(u)), if u is a leaf node and u has

no brother.
2. µ(u) = {µ(y)} + W(u, Parent(u)),

if u is non-leaf and u has no brother.
)(Childrenmax uy∈

3. µ(u) = MLen(u) + d(u, Parent(u)) and µ(Brother(u))
= π(Brother(u)), if u has a brother and π(u) ≥
π(Brother(u)).

4. µ(u) = π(u) and µ(Brother(u)) =
MLen(Brother(u)) + d(Brother(u),
Parent(Brother(u))), if u has a brother and π(u) <
π(Brother(u)).

Finally, the value µ(r) = {µ(y)}.)(Childrenmax uy∈

Lemma 5 directly holds from the above
computational results.

Lemma 5. For each node u, µ(u) ≥ µ(z), for all z ∈ C(u).
Meanwhile, for each non-root node x of C(r), µ(y) >
µ(x), for all y ∈ Ancestors(x).

Lemma 6. For any node u, let H = { , …, } be a

set of vertices in C(u) such that , …,
1h αh
)(1hµ)(αµ h

are the first α largest numbers among {µ(v) | v ∈ C(u)}.
Then, H forms a connected subnetwork of C(u).
Proof: Lemma 5 implies that = u. Assume that the
H does not induce a connected subnetwork of C(u). Let
j, 2 ≤ j ≤ α, be the smallest number such that

1h

*H =
{ , …, } induces a connected subnetwork but

 is not adjacent to any vertex in

1h jh

1+jh *H . Since we
only consider connected networks, it implies that
Parent() ∉ H and Brother() ∉ H. But Lemma

5 states that µ(Parent()) > µ() and also implies

that the first α largest numbers among {µ(v) | v ∈ C(u)}
must include µ(Parent()), i.e., Parent() ∈ H. A
contradiction occurs.

1+jh 1+jh

1+jh 1+jh

1+jh 1+jh

Lemma 7. For any node u, let Q = { , …, } be a

set of vertices in C(u) such that , …,
1q pq

)(1qµ)(pqµ

are the first p largest numbers among {µ(v) | v ∈ C(u)}.
Then, Q is an optimal connected p-center of C(u) with u
∈ Q, i.e., Q can be an instance of and we can
derive the following formula, where V(C(u)) denotes the
node-set of C(u).

)(uQ

∆() =)(uQ

⎪
⎩

⎪
⎨

⎧

∈µ+λλ
=
<∞

})(|)({ amongnumber largest)1(theis ,
))((,0
))((,

th uCvvp
puCV
puCV

--<7>

Lemma 8. For any B-pair u and v, let Q = {u, v, , …,

} be a set of vertices in C(u, v) such that
1q

2−pq)(1qµ ,

…,)(2−µ pq are the first (p – 2) largest numbers

among {µ(v) | v ∈ C(u) – {u, v}}. Then, Q is an optimal
connected p-center of C(u, v) , i.e., Q can be an instance
of and we can derive the following formula,
where C(u, v) denotes the node-set of C(u, v).

),(vuQ

∆()=),(vuQ

⎪
⎩

⎪
⎨

⎧

−∈µ−λλ
=
<∞

}},{),(|)({ amongnumber largest)1(theis ,
)),((,0
)),((,

th vuvuCvvp
pvuCV
pvuCV

--<8>

Lemma 9. Suppose that u is any non-leaf node. Let

)(vH =
⎩
⎨
⎧

<
≥

pvCVvCV
pvCVQ v

))(()),((
))((,)(

, for each v ∈

Children(u). Then, = { , …, } be a set of

vertices in C(u) such that

)(uQ 1q pq
)(1qµ , …, are the

first p largest numbers among {µ(y) | y ∈ {u} ∪
{

)(pqµ

)(Children uv∈U)(vH }}.

Lemma 10. Suppose that u and v is any B-pair. Let

- 564 -

)(uH =
⎩
⎨
⎧

<−
≥−

puCVuuCV
puCVuQ u

))((},{))((
))((},{)(

 and

)(vH =
⎩
⎨
⎧

<−
≥−

pvCVvvCV
pvCVvQ v

))((},{))((
))((},{)(

. Then,

 = {u, v, , …, }, in which { , …,

} is a set of vertices in C(u, v) such that

),(vuQ 1q 2−pq 1q

2−pq)(1qµ ,

…, are the first (p – 2) largest numbers

among

)(2−µ pq
)(uH ∪)(vH .

Lemma 11. ∆(), for all nodes u, and ∆(),
for all B-pairs u and v, can be computed in O(pn)-time.

)(uQ),(vuQ

Proof: We can achieve all computations using
Breadth-First-Search technique to scan each node u and
each B-pair u and v from leaf nodes to r. Lemma 9 and
Lemma 10 just imply that the major task is to find the

 largest number among p * thp)(Children u
numbers, for each node u. It is well-known that finding
the largest number among n numbers can be done
in O(n)-time, for any given k [17]. Therefore, the total
time-complexity can be easily verified to be O(pn).

thk

Theorem 1. The CpC problem on 3-cactuc networks
can be solved in O(pn)-time.
Proof: This theorem follows directly from Lemma 2,
Lemma 4, and Lemma 11.

4. EXTENSION TO 3-CACTUS
NETWORKS WITH FORBIDDEN
NODES

In real-world systems such as computer and
telecommunication networks, some nodes may not be
suitable to be selected as center nodes due to function
failure or some practical constraints, such as capacity,
processing ability, etc. We use F to represent the set of
such nodes and called them forbidden nodes. The
resulting problem can be now defined as follows:

The Forbidden Connected p-Center Problem (The
FCpC problem): Given a network G(V, E, W), a subset
F of V, and a positive integer constant p ≥ 2, identify a
connected p-center Q = { , …, } of G such that

δ(Q) is minimized under the restriction that Q ∩ F = ∅.
1q pq

The section will extend the results of the previous

section to the FCpC problem and the time-complexity
will remain O(pn). In the rest of this section, if we call
H a connected p-center, then it means that H ∩ F = ∅.

Definition 7. For each node u of the cactus C(r), if u ∈
F, then define Φ(u) = 0. Otherwise, define Φ(u) =

)(uΠ , where Π(u) = {y | y ∈ C(u) – F}.

It is easy to see that Φ(u), for each non-forbidden
node u, i.e., u ∉ F, can be computed using the following
rules.
1. Φ(u) = 1, if u is a leaf node.
2. Φ(u) = ∑ −∈

Φ
))(Children(

)(
Fuy

y + 1, if u is not a

leaf node.
After that, another value η(u) for each node u are

computed as follows:
1. η(u) = Φ(u), if u ∈ F or u has no brother.
2. η(u) = Φ(u) + Φ(Brother(u)), if u belongs to a

B-pair.

Lemma 12. After computing η(u), for all nodes u, if η(u)
< p, then u can not belong to any connected p-center H.

Lemma 12 implies that all nodes u with η(u) < p can
be viewed as additional forbidden vertices. Therefore,
we can assume that η(u) ≥ p hereafter. As stated in
previous section, we also randomly choose a node r ∉ F
as the root.

Lemma 13. Suppose that H is any connected p-center of
C(r). Then, one of the following conditions holds.
1. There exists u ∉ F such that H ⊆ C(u) and u ∈ H.
2. There exists a B-pair u and v, u, v ∉ F, such that H

⊆ C(u, v) and u, v ∈ H.

Lemma 14. Let Ω = { | u ∉ F} and Ψ = {
| u and v is a B-pair of C(r) and u, v ∉ F}. If Q ∈ Ω ∪
Ψ and δ(Q) ≤ δ(H), for all H ∈ Ω ∪ Ψ, then Q is an
optimal solution of the FCpC problem on C(r).

)(uQ),(vuQ

The remaining task can be achieved using the

similar techniques in Section 2 and the following
theorem can then be ascertained.

Theorem 2. The FCpC problem on 3-cactus networks
can be solved in O(pn)-time.

5. CONCLUSIONS

This paper addressed the Connected p-Center

problem (the CpC problem) on networks. This problem
can be viewed as a more practical variant of the
traditional p-Center problem. We proposed an
O(pn)-time algorithm for the CpC problem on 3-cactus
networks using dynamic programming strategy. Then,
the algorithmic result was extended to the situation that
the vertices in F of the input 3-cactus network are
forbidden. The time-complexity is still O(pn).

In the future, the first practical and meaningful issue
is to extend our algorithms to k-cactus networks, k ≥ 4,
and cactus networks. Meanwhile, solving the CpC and
FCpC problems on other classes of networks, such as
planar networks and interval networks, is also a very

- 565 -

typical research topic. Meanwhile, identifying other
variants of the traditional p-Center problem is also a
very important task. For example, requiring that the
p-centers must be “total”, i.e., the subnetwork induced
by the p-centers has no isolated nodes, is another
practical variant with applications to real networks.

ACKNOWLEDGEMENT

This research was supported by National Science
Council, Taiwan, under the contract number NSC
94-2213-E-128-005.

REFERENCES

1. Abdelaziz F. (2006), 1-center problem on the

plane with uniformly distributed demand points,
Operations Research Letters, Vol. 34, Iss. 3,
264-268.

2. Averbakh I. and Berman O. (1995), Sales-delivery
man problems on treelike networks, Networks, Vol.
25, 45-58.

3. Bar-Ilan J, Peleg D (1991), Approximation
algorithms for selecting network centers. in
Proceedings of workshop on algorithms and data
structures, 343–354.

4. Bespamyatnikh S, Bhattacharya B, Keil M,
Kirkpatrick D, Segal M. (2002), Efficient
algorithms for centers and medians in interval and
circular-arc graphs, Networks, Vol. 39, 144–152.

5. Burkard R. E. and Dollani Helidon (2003), Center
problems with pos/neg weights on trees, European
Journal of Operational Research, Vol. 145, Iss. 3,
483-495

6. Chenga T. C. E., Kang L., and Ng C. T. (to
appear), An improved algorithm for the p-center
problem on interval graphs with unit lengths,
Computers & Operation Research.

7. Daskin M. S. (1995), Networks and Discrete
Location, Models, Algorithms, and Applications,
John Wiley & Sons, Inc., New York.

8. Frederickson G. (1991), Parametric search and
locating supply centers in trees, in Proceedings of
workshop on algorithms and data structures,
299–319.

9. Garey M. R. and Johnson D. S. (1978),
Computers and Intractability: A Guide to the
Theory of NP-Completeness, Bell Laboratories,
Murray Hill, Freeman & Co., N. J.

10. Golumbic M. C. (1980), Algorithmic Graph
Theory and Perfect Graphs, Academic Press, Inc.,
New York.

11. Hsu V. N., Lowe T. J., Tamir A. (1997), Structured
p-facility location problems on the line solvable in
polynomial time, Operations Research Letters,
Vol. 21, 159–164.

12. Hochbaum D, Shmoys D. B. (1986), A unified
approach to approximation algorithms for
bottleneck problems, Journal of the ACM, Vol. 33,
533–550.

13. Kariv O, Hakimi S. L. (1979), An algorithmic

approach to network location problems I: the
p-centers, SIAM Journal of Applied Mathematics,
Vol. 37, 514–538.

14. Koontz W. L. G. (1980), Economic evaluation of
loop feeder relief alternatives, The Bell System
Technical Journal, Vol. 59, 277-281.

15. Lan Y-F, Wang Y-L (2000), An optimal algorithm
for solving the 1-median problem on weighted
4-cactus graphs, European Journal of Operational
Research, Vol. 122, 602-610.

16. Lan Y-F, Wang Y-L, Suzuki H. (1999), A
linear-time algorithm for solving the center
problem on weighted cactus graphs, Information
Processing Letters, Vol. 71, 205-212.

17. Lee R. C. T., Chang R. C., Tseng S. S., and Tsai Y.
T. (2002), Introduction to the Design and Analysis
of Algorithms, Flag Publishing Company, Taipei,
Taiwan.

18. Olariu S. (1990), A simple linear-time algorithm
for computing the center of an interval graph,
International Journal of Computer Mathematics,
Vol. 24, 121–128.

19. Hedetniemi S. T., Laskar R., and Pfaff J. (1986), A
linear-time algorithm for finding a minimum
dominating set in a cactus, Discrete Applied
Mathematics, Vol. 13, 287-292.

20. Tamir A. (1988), Improved complexity bounds for
center location problems on networks by using
dynamic data structures, SIAM Journal of Discrete
Mathematics, Vol. 1, 377–396.

21. Yen W. C-K (2002), Bottleneck domination and
bottleneck independent domination on graphs,
Journal of Information Science and Engineering,
Vol. 18, 311-331.

22. Zmazek B. and erovnik J. (2004), The
obnoxious center problem on weighted cactus
graphs, Discrete Applied Mathematics, Vol. 136,
377-386.

- 566 -

