
Exploring the kNN Search on Broadcast Multi-dimensional Index Trees*

Shu-Yu Fu and Chuan-Ming Liu
Computer Science and Information Engineering

National Taipei University of Technology
Taipei 106, TAIWAN

Tel: +886-2-27712171 ext 4251
{bobby, cmliu}@mcse.csie.ntut.edu.tw

ABSTRACT

Data broadcasting provides an effective way to
disseminate information in the wireless mobile
environment using a broadcast channel. How to provide
the service of the k nearest neighbors (kNN) search
using data broadcasting is studied in this paper. Given
a data set D and a query point p, the kNN search finds k
data points in D closest to p. By assuming that the data
is indexed by an R-tree, we propose an efficient protocol
for kNN search on the broadcast R-tree in terms of the
tuning time which is the amount of time spent listening
to the broadcast, latency which is time elapsed between
issuing and termination of the query, and memory usage
on the clients. We last validate the proposed protocol by
extensive experiments.

1: INTRODUCTIONS

Emerging technologies on the mobile
communications and positioning systems enable a
wireless environment where mobile clients can
ubiquitously access the information-centric services,
such as the electronic news service, traffic information,
stock-price information, etc. In such an environment,
data broadcasting provides an effective way to
disseminate information to mobile clients in the wireless
environments where the server disseminates information
via the broadcast channel and each mobile client can
independently retrieve the relevant data of individual
interest [1][6][7][8][9][10][11][13].*

Besides the asymmetric bandwidth, the energy is a
scarce resource for mobile clients; therefore, raises an
important issue when designing the mechanisms to
provide the services. Two cost measures therefore are
usually considered in a data broadcasting environment.
The latency (i.e., the time elapsed between issuing and
termination of the query) indicates the Quality of
Service (QoS) provided by the system and the tuning
time (i.e., the amount of time spent on listening to the
channel) represents the power consumption of mobile
clients. These two measures are the same when only the
data are broadcasted. On the other hand, broadcasting

* Work supported by the National Science Council under the grant
numbers NSC-94-2213-E-027-043

data with an index provides an efficient approach to
disseminate information in terms of energy consumption
[6][7][8][11][12][13] and distinguished these two
measures. The index allows a mobile client to tune into
a broadcast only when data of interest and relevance are
available; therefore, minimizes the power consumption.
In our work, we further consider the amount memory
used when a client executes a query since the size of
memory is also usually limited.

In this paper, we use R-trees [5] and its variations
[2][3] as index trees and discuss the k nearest neighbors
(kNN) search on a broadcast R-tree. The kNN search
finds the k objects closest to a query point p. Having the
kNN search service, a mobile client can have the queries
like ”please give me 10 nearest hotels” or ”please find 5
gas stations nearby”. In order to minimize the latency,
tuning time, and memory used at the client
simultaneously, we investigate how a server schedules
the broadcast for an index tree and what the query
processing is at the client side. Scheduling the index tree
for broadcast involves determining the order by which
the index nodes are sent out and adding additional data
entries to the index nodes.

The organization for the rest of this paper is as
follows. After giving the preliminaries in Section 2, we
present and discuss the broadcast schedules in Section 3.
The corresponding algorithm for executing kNN search
on a broadcast index tree is proposed in Section 4. The
experiment work is discussed in Section 5. Section 6
concludes this paper.

2: PRELIMINARIES

The research about R-trees for multi-dimensional
data has been extensively explored in recent decades.
The index node of an R-tree uses the minimum bounding
rectangle (MBR) as its index which surrounds the MBRs
of its children and contains the information of the
children, including the MBRs of children. The leaf nodes
only contain the MBRs of data objects. Figure 1 shows
an R-tree and the corresponding MBRs of the node in the
R-tree.

- 555 -

Suppose a query point p is given. We now give three

types of distance for node v in an R-tree which are
usually used in the process of the kNN search on an
R-tree.

 mindist(v) is the minimum distance from p to v’s
MBR; and

 minmaxdist(v) is the minimum distance of the
maximum distances from p to each face of v’s
MBR.

 maxdist(v) is the maximum distance from p to v’s
MBR.

The conventional kNN search algorithm on R-trees
proposed in [14] uses mindist and minmaxdist to prune
the nodes which are impossible to be in the kNN of p.
The authors defined kthdist to be the minmaxdist of the
current kth nearest neighbor during the processing and
initially ∞. A node v can be skipped if kthdist <
mindist(v).

In wireless broadcast environments, the
conventional kNN search algorithm mentioned above
can be adopted to a broadcast R-tree but leads to a
larger latency due to the serializability of a broadcasted
tree [4]. Based on the conventional kNN search
algorithm, the authors in [4] provided an
energy-efficient kNN searching approach on broadcast
R-trees using all the three types of distance. In order to
reduce the tuning time, the approach used a
conservative way to predict the kthdist and can prune
the index nodes in the earlier stages. Hence, the tuning
time is reduced.

For simplicity, we use one node, including the index
and data (or leaf) node, as a packet in the broadcast. For
any index node v, the packet basically contains v’s
identifier and information of v’s children. The
information for each child v’ of v includes the address of
v’ in the broadcast and the index for v’. The un-shaded
area in Figure 2 shows the basic content of a
broadcasted index node r in Figure 1. The address
allows a client to tune in when the relevant node appears
in the broadcast and is crucial to reducing the tuning
time [6][7][8][11][12][13]. The leaf node in the

broadcast contains only the node’s identifier and the
data content.

Our proposed kNN search algorithm uses mindist,

maxdist, and an additional entry in the index node to
prune the nodes which are definitely irrelevant to the
kNN. We say a client explores node v when the client
tunes into the broadcast to receive and process all the
entries stored with v. Our algorithm maintains two lists:
C-List and R-List. C-List stores the candidate nodes to be
explored later and R-List keeps the nodes which are in
the current result of kNN during the search processing.
All the nodes in C-List and R-List are ordered by maxdist,
respectively. The objective is to minimize the tuning
time and latency as well as the memory usage for a
particular kNN search at mobile clients.

3: DATA BROADCAST SCHEDULES

There are two aspects which should be considered
when designing a data broadcasting protocol in a
wireless environment. One is the broadcast schedule at
the server and the other is the corresponding query
process at the mobile clients. In this section, we discuss
the broadcast schedules at the server. The schedules
based on the breadth-first traversal can achieve a better
tuning time [4] but result in a large memory usage at the
mobile clients. Furthermore, most of the existing
algorithms for different types of queries on broadcasted
R-trees use the broadcast schedules based on the
depth-first traversal [1][4][6][7][8][9][10][11][13]. We
thus consider the broadcast schedules based on the
depth-first traversal. Our work tailors toward one
broadcast R-tree for different kinds of queries.

We consider two broadcast schedules based on the
depth-first traversal and these two broadcasts differs in
the ordering of the children of each node in the R-tree.
The first broadcast schedule, pDFS, organizes the
broadcast simply by the depth-first order. Such a
broadcast schedule for R-trees has been used and
studied in many papers [4][6][7][8][9][10][11][13].
However, such a broadcast schedule does not consider
any factor that might effect the performance in terms of
the tuning time, latency and memory usage. We thus
consider a variation of the pDFS, called wDFS. The
wDFS broadcast schedule will rearrange the R-tree by
the subtree sizes in a non-increasing order and then
place the nodes in the broadcast according to the
depth-first order. Figure 3 shows the broadcasts of the

Figure 1. A kNN (shades) at the query point p
(dashed circle) with k=3 on a 16-node R-tree.

Figure 2. A broadcast index node; the
un-shaded part representing the basic
content; the shaded part indicating the
additional entry used in this paper.

- 556 -

R-tree in Figure 1 generated by the pDFS and wDFS
schedules, respectively.

Recall that a broadcast packet corresponds to a node
in the R-tree. The un-shaded area in Figure 2 indicates
the basic content of a broadcast index node. In order to
effectively prune nodes which are irrelevant to a kNN
search when exploring a node, we add an entry, l-entry,
for each child. The l-entry of a child v’, l(v’), is the
number of leaves in the subtree rooted at v’. Figure 2
shows a broadcast node considered in this paper and the
shaded area presents the l-entry of each child of node r.
The number of leaves rooted at the child node a is four
(i.e. l(a)=4). We will discuss it in more details in the
next section.

4: EXACT kNN SEARCH ALGORITHM

This section introduces our exact kNN search
algorithm, w-disk, on a broadcast R-tree. We will show
that our kNN search algorithm can find the exact kNN
efficiently and analyze the time complexity for exploring
a node in the R-tree. Algorithm w-disk will determine an
imaginary circle C centered at the query point p using
maxdist as the radius. With such a circle and the l-entry
added in the child’s information in the broadcast, the
algorithm can decide which node and its descendants are
irrelevant to the kNN and exclude them for further
exploring to achieve a shorter tuning time and latency.

Suppose algorithm w-disk starts from the beginning
of the broadcast cycle (i.e. the root of the R-tree). For a
kNN search at query point p, we let U denote the union
of C-List and R-List. Amid all the nodes in U, there is at
least one node u having the following property

where l(v) is the number of leaves in the subtree rooted
at v. Among the nodes having the above property, we
refer to the node whose maxdist is minimum as the
Pnode. The Pnode is used to prune the nodes irrelevant
to the kNN. Based on the Pnode u, one can generate a
circle Cu centered at p with radius maxdist(u). Suppose
there are n MBRs inside Cu and the corresponding
nodes are u1, …, un. We denote the total number of
leaves in the subtrees rooted at u1, · · · , un as

where l(ui) is the number of leaves in the subtree rooted
at ui and Su ≥ k.

Initially, the Pnode is a pseudo-node and the radius
of the corresponding circle is ∞. The algorithm starts
with receiving the root and then explores the root.
During the exploration, all the children of the root are
inserted into C-List since all the MBRs of the children
are in the corresponding circle of the Pnode. After the
insertion, a new Pnode is calculated and used to prune
the irrelevant nodes in the current and next explored
node. The next node to be explored is the node closest
to the currently explored node in the broadcast in C-List.

In general, suppose node v is the next node to be
explored, algorithm w-disk works as follows. Assume
that the Pnode determined in the previous explored node
is u and the corresponding circle Cu is centered at p with
radius maxdist(u). Consider that node v is received from
the broadcast channel. There are two cases for node v.
First, when node v is a leaf node, we then insert v into
R-List. If R-List is full, we remove the one having the
maximum maxdist among all the nodes in R-List
including node v. Then, we consider the next node to be
explored from C-List as before and the process
continues.

The other case is that node v is an index node. For
each child v’ of v, the algorithm first uses Cu to decide
whether v’ can be ignored. Should mindist(v) be greater
than maxdist(u), child v’ can be ignored since it is
impossible for the leaves in the subtree rooted at v’ to be
in the kNN; otherwise, insert v’ into C-List. The
algorithm then calls FINDPNODE() to find a new
Pnode u’ among all the nodes in the current C-List and
R-List. It is not difficult to find a new Pnode u’ since
both of the lists are sorted by maxdist in a
non-decreasing order. With the Pnode u’ and its
corresponding circle Cu’ , algorithm deletes all the nodes
in C-List and R-List whose MBRs are outside Cu’ and
keeps all the nodes whose MBRs intersect with Cu’.
Then, the algorithm extracts the next node to be
explored from C-List. Figure 4 shows the high-level
description about exploring a node in algorithm w-disk.

Algorithm w-disk starts from the beginning of the
broadcast cycle (i.e., the root) and uses the above
algorithm to explore a node. The algorithm stops when
C-List is empty (i.e. there is no next node to be
explored). We now use the R-tree in Figure 1 to
illustrate how algorithm w-disk works. Consider a kNN
search at the query point p with k = 3 with a pDFS data
broadcast schedule. Algorithm w-disk first explores the
root r. During the exploration, nodes a and h are placed
into C-List with the order of a, h since maxdist(a) <
maxdist(h) (Step 1.2). Then the algorithm needs to find
a new Pnode from C-List (Step 1.3). Node a is the new
Pnode and the corresponding circle is Ca because
maxdist(a) < maxdist(h) and Sa > k. Having the new
Pnode a, the algorithm examines all the nodes in C-List
to discard the irrelevant nodes (Step 1.4). However, the
MBR of h intersects with Ca and h is thus kept in C-List.
After exploring the root r, the next node to be explored
is node a since node a is broadcast earlier than node h

Figure 3. The broadcasts generated by the
pDFS and wDFS schedules respectively for
the R-tree in Figure 1.

 ∑
=

=
n

i
iu ulS

1

)((2)

 ∑
≤
∈

≥

)(max)(max

)(
udistvdist

Uv
kul (1)

- 557 -

Algorithm kNN-Explore(v)
/* u is the Pnode used in the previous explored node */
(1) if node v is a leaf node then

(1.1) INSERT v into R-List
else /* node v is an index node */
(1.2) for each child v’ of v do

 if mindist(v’) ≤ maxdist(u) then
 INSERT v’ into C-List

(1.3) u’=FINDPNODE();
(1.4) DELETE the nodes of which mindist >

maxdist(u’) from the both lists
(2) let w be the node closest to the currently explored node

in C-List
(3) kNN-Explore(w)
End Algorithm kNN-Explore

Algorithm FINDPNODE()
(1) Scan the nodes in C-List and R-List by maxdist in a

non-decreasing order using the way like the merge
sort until the first node u whose Su ≥ k;

(2) return u

(Step 2) and the algorithm waits for node a in the
broadcast to proceed the search process.

When exploring node a, both of a’s children are
inserted into C-List since the mindist of each child of a
is smaller than maxdist(a). After the insertion, the order
of nodes in C-List is e, b and h. Recall that the nodes in
C-List are ordered by the maxdist in a non-decreasing
order. It is not difficult to find the new Pnode b with the
corresponding circle Cb as follows. The algorithm first
considers node e since maxdist(e) is smallest among all
the nodes in C-List and R-List. However, Se = l(e) = 2 <
k = 3, the algorithm next considers node b for the new
Pnode. Because the MBR of e is in Cb and Cb contains
more than k = 3 leaves, i.e. Sb = l(e) + l(b) = 4 > 3, node
b is the new Pnode and the algorithm then uses Cb to
decide the irrelevant nodes in both C-List and R-List.
The relation among nodes e, b and h and Cb is shown in
Figure 5. The algorithm then extracts node b from
C-List to be the next node to be explored since b is
broadcast before e and h. The process then proceeds in
the same way.

For the rest of this section, we show the correctness
and the time complexity of algorithm w-disk. Due to the
space limitation, we state the theorems without proof.
Theorem 1. Given a kNN search at query point p,
algorithm w-disk can finds the exact k nearest
neighbors.
Theorem 2. For a broadcasted R-tree having height h
and fanout B, it takes O(B · max{k, hB}) time to explore
a node.

5: EXPERIMENTAL RESULTS

In this section, we present our experimental results
and compare our kNN search algorithm w-disk with the
revised conventional approach w-conv and the improved
algorithm w-opt in [4]. The cost measures include the
tuning time, latency and memory usage. When
discussing each measure, we include the optimal cost for
comparison. Besides, we also compare the impact on the
performance resulting from the two broadcast schedules,
pDFS and wDFS, discussed in Section 3.

We use R*-trees [2] as the index tree on point data
in the experiment. The trees have 150,000 leaves and
the node fanout between 12 and 24. The point data are
generated using a uniform distribution within the unit
square and correspond to the leaves. The value of k
varies from 1 to 210. For each value of k, data reported
is the average of 1,000 different kNN searches with
different query points selected uniformly.

5.1: TUNING TIME

The tuning time reflects the power consumption for
the kNN search at the mobile clients. Figure 6(a) shows
the comparison of the tuning time for three algorithms on
the R*-tree with fanout 24 and 150,000 leaves. The tree
has a height of 6 and a total of 159,185 nodes. The kNN
search starts from the beginning of a broadcast cycle.
The broadcast schedule in Figure 6 uses pDFS. The
x-axis reflexes the different value of k.

Recall that w-opt uses a conservative approach to
determine kthdist in an earlier stage; therefore, can
prune the nodes effectively. With l-entry added in the
broadcast node, our algorithm w-disk can decide the
range of the kNN more accurately. Hence, w-disk can
avoid exploring more nodes not in the resulting kNN.
The experimental results indicate that our w-disk
algorithm can explore fewer nodes than the other two
algorithms; therefore, leads to a fewer tuning time. This
trend becomes obvious as the value of k increases. In
general, the difference in the tuning time becomes big as
k increases. Figure 6(a) also shows the optimal tuning
time. However, we conjecture that it is very hard to
achieve.

5.2: ACCESS LATENCY

This section compares the access latency of different
kNN search algorithms on broadcasted R*-trees. As
shown in Figure 6(b), algorithm w-disk achieves the best

Figure 4. Client algorithm for exploring a
node in the kNN search.

Figure 5. The relation among nodes e, h, and
the Pnode b when exploring node a.

- 558 -

latency which is closest to the optimal latency . The other
two algorithms yield almost the same latency.

In w-opt, some redundant nodes are kept for the
result to generate the kthdist. Using the kthdist, the
nodes to be explored later are determined and stored .
The kthdist changes as the algorithm proceeds but the
nodes stored to be further explored are not checked
using the new kthdist; therefore, may result in a longer
latency. Such a case also occurs in w-conv. Since w-disk
examines the C-List and R-List each time when a new
Pnode is determined, w-disk leads to a much shorter
latency.

5.3: MEMORY USAGE

The size of C-List denotes the amount of storage used
during the kNN search processing. Figure 6(c) shows the
comparison of the maximum amount of storage used for
these three algorithms. The results show that w-disk uses
fewest storage space among these three algorithms and
w-opt performs better than w-conv.

Algorithm w-disk uses the Pnode to prune the
irrelevant nodes when exploring a node. Such a Pnode is
derived by considering the number of leaves in its
corresponding circle; therefore, leads to a better
approximation to the resulting kNN. Furthermore, w-disk
uses the previous Pnode to delete the irrelevant children
and the new Pnode to delete the irrelevant nodes in
C-List and R-List. As a result, w-disk needs fewer storage
to execute a kNN search.

5.4: pDFS v.s. wDFS

We now discuss the impacts result from the two
broadcast schedules pDFS and wDFS in Section 3. The
broadcast schedule using wDFS broadcasts the larger
subtrees first in DFS fashion. The experimental results
show that the broadcast schedule using wDFS can
achieve a shorter tuning time than the one using pDFS.
This conclusion holds in all our experiments. Figure 7(a)
presents the comparison of the tuning time using wDFS
and pDFS broadcast schedules respectively.
Broadcasting the node which has a larger subtree size
first allows the mobile clients to have a better

approximation for the kNN in an earlier stage since
more MBRs can be obtained earlier. Such an impact
results in a fewer tuning time no matter which algorithm
is applied. On the contrary, the broadcast schedule using
wDFS leads to a longer latency. This trend is shown in
Figure 7(b). Broadcasting the node which has a larger
subtree size first forces the query process to wait to the
very end for the relevant node with a smaller subtree
size. However, the broadcast schedule using pDFS does
not need to wait for such a case. In general, the
broadcast schedule using pDFS outperforms the one
using wDFS in average in terms of the latency.

6: CONCLUSIONS

In this paper we propose an effective kNN search
protocol on broadcasted R-trees in a wireless broadcast
environment. In the broadcast environments, two
directions are considered when designing the protocols.
One is to consider how the server broadcasts the data.
The other is what the corresponding process is on the
client side. Previous work focused on either side. We
consider the server and client aspects respectively. By
adding an additional entry in the broadcast on the server
side, our kNN algorithm at the client achieves fewer
tuning time and shorter latency with fewer storage. We
also consider two different broadcast schedules based on
DFS. The results of the extensive experiments validate
that our mechanisms achieve the objectives. On the
broadcast R-trees, many types of queries have been
studied. Our work in this paper tailors toward one
broadcast R-tree for different kinds of query

REFERENCES

[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing push

and pull for data broadcasts. In Proceedings of the 1997
ACM SIGMOD International Conference on
Management of Data, pages 183–194, 1997.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B.
Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In Proceedings of
ACM SIGMOD Conference on Management of Data,
pages 322–331, 1990.

1 10 30 50 70 90 110 130 150 170 190 210
7.5

8

8.5

9

9.5

10

10.5

11

11.5

12
x 10

4 pDFS, 150,000 leaves, Degree=24

k

A
cc

es
s

La
te

nc
y

w−conv
w−opt
w−disk
optimal

1 10 30 50 70 90 110 130 150 170 190 210
10

20

30

40

50

60

70

80
pDFS, 150,000 leaves, Degree=24

k

S
iz

e
of

 It
em

qu
eu

e

w−conv
w−opt
w−disk

1 10 30 50 70 90 110 130 150 170 190 210
0

1000

2000

3000

4000

5000

6000

7000
pDFS, 150,000 leaves, Degree=24

k

T
un

in
g

T
im

e

w−conv
w−opt
w−disk
optimal

Figure 4. Performance Comparisons for different values of k using algorithms w-conv, w-opt, and
w-disk on an R*-tree with fanout 234 and 150,000 leaves.

(a) Tuning Time (b) Latency (c) Memory Usage

- 559 -

[3] V. Gaede and O. G¨unther. Multidimentional access
methods. ACM Computing Surveys, 30(2):170–231,
1998.

[4] B. Gedik, A. Singh, and L. Liu. Energy efficient exact
kNN search in wireless broadcast environments. In 12th
ACM International Workshop on Geographic
Information Systems, pages 137–146, 2004.

[5] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of the 1984 ACM
SIGMOD Conference on Management of Data, pages
47–57, 1984.

[6] S. Hambrusch, C.-M. Liu, W. G. Aref, and S. Prabhakar.
Broadcasting indexed multidimensional data. To appear
in Data and Knowledge Engineering.

[7] S. Hambrusch, C.-M. Liu, and S. Prabhakar.
Broadcasting and querying multi-dimensional index trees
in a multichannel environment. To appear in Information
Systems.

[8] S. E. Hambrusch, C.-M. Liu, W. G. Aref, and S.
Prabhakar. Query processing in broadcasted spatial index
trees. In Proceedings of the 7th International Symposium
on Advances in Spatial and Temporal Databases, pages
502–521, 2001.

[9] S. Hameed and N. Vaidya. Efficient algorithms for
scheduling data broadcast. ACM/Baltzer Journal of
Wireless Networks, 5(3):183–193, 1999.

[10] A. Hurson and Y. Jiao. Data broadcasting in a mobile
environment. In Wireless Information Highway, chapter
4, pages 96–154. IRM Press, 2004.

[11] T. Imieli´nski, S. Viswanathan, and B. R. Badrinath.
Data on air: Organization and access. IEEE Transactions
on Knowledge and Data Engineering, 9(3):353–372,
1997.

[12] S. Khanna and S. Zhou. On indexed data broadcast.
Journal Computer and System Sciences, 60:575–591,
2000.

[13] C.-M. Liu. Broadcasting and blocking large data sets
with an index tree. PhD thesis, Purdue University, West
Lafayette, IN, 2002.

[14] N. Roussopoulos, S. Kelley, and F.Vincent. Nearest
neighbor queries. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, pages 71–79, 1995.

1 10 30 50 70 90 110 130 150 170 190 210
8.4

8.6

8.8

9

9.2

9.4

9.6
x 10

4 w−disk, 150,000 leaves, Degree=24

k

A
cc

es
s

La
te

nc
y

pDFS
wDFS

1 10 30 50 70 90 110 130 150 170 190 210
0

200

400

600

800

1000

1200

1400

1600

1800

2000
w−disk, 150,000 leaves, Degree=24

k

T
un

in
g

T
im

e

pDFS
wDFS

Figure 5. Comparisons of pDFS and wDFS
broadcast schedules on tuning time (a) and
latency (b) for different values of k using
algorithm w-disk.

(a) Tuning Time

(b) Latency

- 560 -

