PERANTOEEZH

SFEBMBARYSE

Proceedings of National Computer Symposium 1995

SRy, Ry

Evaluating Attributes During Parsing

RIF TR

3k

R L

Sting Ouyang Pei-Chi Wu Feng-Jian Wang

RIRBRERTARLRHFLA
Department of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

{stoyang, pcwu, fjwang} @csie.nctu.edu.tw

#H %

BEXEEEOREISEERETKRTED
e HERZ —BAEOBEAEERE
BINTSER AT BRMG - AREBREHER
BXBREA SR EFHEEE - TEBM
B B EE 2 B 2 1 (tree construction
sequence)FIEREFFFII(visit sequence)y &S HAE—i#E
HEEE: - HEEREENFYITTEEK
SLLAOEINTER - BIRLRDFEE - HELELE
WY BEQEENNTER UHEA#E
BYZE {7 & (free position) °

gz BUuEXE EFRIEANEEITE
(visit-oriented attribute evaluators) FATERE4
5.

ABSTRACT

Compilers automatically generated from
attribute grammars (AGs) are usually slower than
hand-coded ones. One of the reasons is that most
attribute evaluators are invoked after parsing.
This paper proposes two algorithms to insert
attribute evaluation codes of AGs into parsing
actions. The first algorithm combines tree
construction sequences (parsing actions) and
attribute evaluation sequences (visit sequences of
AGs) into a parse-time visit sequence. The
resulting sequence can be directly used in top-
down parsing. For bottom-up parsing, another
algorithm introduces additional steps to schedule
the visit sequence according to the free positions
in the grammar.
Keywords: attribute grammars, visit-oriented
attribute evaluators, parser generators.

1 Introduction

Attribute grammars (AGs) [Alb91] are a
formal method for compiler specification. AGs
associate program semantics with syntax by

447

attaching a set of attributes to the symbols of a
context-free grammar (CFG). Attribute values are
defined using attribution rules associated with the
productions of the CFG. Atntribute evaluators
evaluate attribution rules to get the semantics of
the- program. There are two categories of
evaluators: dynamic and static. A dynamic
evaluator determines the evaluation order of
attributes by a topological sort on an attribute
dependency graph. The evaluation order in a
static evaluator is pre-determined, so there is no
need to perform dependency analyses at runtime.
Static evaluators take less computing time and
memory storage than dynamic ones.

Using compiler generating tools such as AG
generators is a fast and easy way to write a
compiler. However, a compiler automatically
generated is usually slower than a hand-coded
one. One of the reasons is that most static attribute
evaluators are invoked after parsing, and the
whole parse tree for a program is constructed even
if the program can be analyzed in one pass. By
contrast, a hand-coded compiler may perform
semantic actions during parsing. Such parse-time
actions can reduce memory storage and compiling
time, because the number of tree traversals can be
reduced by one and the subtrees evaluated can be
freed early. '

There are several methods for static parse-
time attribute evaluation. Lewis, Rosenkrantz,
and Stearns [LLRS74] introduced the idea of L-
attributed AGs, where inherited and synthesized
attributes are evaluated through one left-to-right
traversal over the parse tree. L-attributed AGs can
be easily applied to top-down parsing. In LR
parsing, because the parse tree is constructed
bottom up, it is difficult to evaluate the inherited
attributes of a symbol before the symbol is
reduced. Watt [Wat77] explored a method to
evaluate both synthesized and inherited attributes
during LR parsing for L-attributed AGs. The
method stores the attributes in an attribute stack
and adds new e-productions for maintaining

attribute stack. Unfortunately, adding these
productions to an LR(k) grammar may make the
grammar not LR(k) anymore. Purdom and Brown
[PuB80] presented an algorithm to find all free
positions, where new €-productions and semantic
actions can be added without changing the
grammar class. Kastens [Kas91] presented the
idea of parse-time attribute evaluation, both top-
down and bottom-up cases. He proposed a two-
phase evaluation method for bottom-up parsing:
1) evaluating L-attributed AG at parse time, and
2) applying a common visit-oriented evaluator for
the rest of AG.

This paper presents two algorithms to insert
visit sequences of AGs into parsing actions. The
first algorithm combines tree construction
sequences (parsing actions) and attribute
evaluation sequences (visit sequences of AGs)
into a parse-time visit sequence. The resulting
sequence can be directly used in top-down
parsing. For bottom-up parsing, another algorithm
introduces additional steps to schedule the visit
sequence according to the free positions in the
grammar.

The rest of this paper is organized as follows.
Section 2 presents the definitions of AGs and
visit-oriented attribute evaluators. Section 3
presents the algorithms to schedule the visit
sequences of an AG in parsing actions. Section 4
gives an example. Section 5 concludes this paper.

2 Attribute Grammars and Visit-
Oriented Attribute Evaluators

2.1 Attribute Grammars

An attribute grammar (AG) augments the
context-free grammar G = (N, 7, P, S) by
associating a set of attributes to each symbol of G
and adding attribution rules to each production of
G. The set of attributes for a symbol X is denoted
A(X). A(X) consists of two disjoint finite sets: the
inherited attributes I(X) and the synthesized
attributes S(X), i.e., I(X) N S(X) = & and A(X) =
I(X) v S(X). R(p) is a set of dependency rules
associated with production rule p in P. Let p: X,
- X1"‘ an. An attribute occurrence of p is a tuple
(i,a),ae A(Xi)’ 0<i<n, Adependency ruleisa

dependency on two attribute occurrences:

(iy, ap) & (ip, ay);

where (i}, a;) € DO(p) (defined occurrences)
and (i, a,) € UO(p) (used occurrences)
[Alb91a],

DOp)={(0,a)lae SX)Y v {(,a)lae
IX), 1 <i<n),

UO(pp)=((Gi,a)lac AX), 0<i<n,}. The
notation '«' means "depends on".

Figure 1 shows a context-free grammar, which
represents the assignment statement part of a

S —>id=E (ifid.type = int

then E.exp_type = int
else E.exp_type = unspecified endif

IE()——)E1+T

E.exp_type = Ep.exp_type; T.exp_type = Eg.exp_type;
if E,.act_type = real

then Eq.act_type = real

else Eq.act_type = T.act_type endif

[E>T

T.exp_type = E.exp_type; E.act_type = T.act_type

case op.oper of

To — Pop T, if (To.exp_type = int) or (op.oper = *)
then P.exp_type = int; T|.exp_type = int
else P.exp_type = unspecified; T,.exp_type = unspecified endif

*: if P.act_type = real
then Tp.act_type = real
else Tp.act_type = T;.act_type
/ : if To.exp_type = int
then ERROR(); Ty.act_type = int
else Ty.act_type = real endif

T —> P P.exp_type = T.exp_type; T.act_type = P.act_type
IP—>(E) E.exp_type = P.exp_type; P.act_type = E.act_type
P — id if (P.exp_type = int) and (id.type = real)

then ERROR(); P.act_type = int

else P.act_type = id.type endif
op — * op.oper = *
op — / lop.oper =/

Figure 1. An AG for expressions.

programming language, together with the
attribution rules handling type checking. This
example is a modification of the AG in [Alb91a,
Example 3.2]. The attribute exp_type, which
stores the expected type, is an inherited attribute.
The attribute act_type, which stores the actual
type, is a synthesized attribute. Terminal symbols
id and op contain synthesized attributes, type
and oper, respectively. When the expected type
does not match the actual type, an error message is
prompted by calling ERROR().

Figure 2 shows the parse tree and the
evaluation flow for an example piece of code: I1
= I2 * I3, where all 1ds are int. Associated
with each node (grammar symbol) in the tree, the
lefthand side is an inherited attribute and the
righthand side is a synthesized attribute. The
values of inherited attributes propagate top down;
the values of synthesized attributes propagate
bottom up.

int
Figure 2. A parse tree decorated with attributes.
2.2 Visit-Oriented Attribute Evaluators

In a production p, the value of the attribute
occurrence (i, a) is available if the values of all
attribute occurrences (j, b) that (i, a) depends on
are available. An attribute evaluator analyzes the
attribute dependencies to choose a tree-walk
strategy. Here we concentrate on the visit-
oriented strategy, which evaluates the class of
linear-ordered AGs [Alb91b]. A detailed
discussion on visit-oriented attribute evaluators
can be found in [Kas91].

A visit-oriented attribute evaluator has an
evaluation pattern called visit sequences [Kas80]
for each production. A visit sequence vs, of
production p is a sequence vy, ..., v,,, where each

449

Vi, 1 £k <'m, is one of the following operations
(comp, visit, leave):

L. v = comp, define attributes of the context
by using some other
attributes.

2. v =visit(i, j) | visit the i-th child (i > 1) for

the j-th time (j > 1).

3. vi=leave(j) | return to the parent’s context

for the j-th time (j 2 1).

According to attribute dependencies, the
attributes of a symbol X, can be partitioned and
ordered as a number of attribute subsets: </,(X),
S1X), ..., In(X), Su(X) >. In a production p:Xp >
X ... X,, the visit sequence vs,, of p are constructed
based on the attribute partitions of symbols X,,
Xi, ..., Xn. The control moves between adjacent
contexts by visit and leave operations, after the
attribute evaluator starts to work. When the
control visits a child, some of the child’s inherited
attributes are computed. When the control returns
to the parent, some of the parent’s synthesized
attributes are computed. Figure 3 shows the
interaction between two visit sequences. These
visit sequences fit together for the parse tree, and
a complete tree walk is performed.

X~ X

vmt(l 1) visif(1, 2)

VAVA)

leave(1) leave(2)

Figure 3. Interaction between two visit sequences

3 Parse-Time Visit Sequences

This section discusses parse-time attribute
evaluation in both top-down (LL grammars) and
bottom-up (LR grammars) cases. The difference
between these two is that not all positions in LR
grammars are free to add attribute evaluation
codes. Cares should be taken to dcal with the
positions that are not free.

3.1 Combine Tree Construction Sequence with
Visit sequences

The visit sequences described in Section 2
assume that a tree walk for attribute evaluation is
performed after the parse tree is completely built.
If the evaluation works while the tree is being
built, the number of visits may be reduced and the

oo | | B |+ T |
comp, : construct(1), construct(2), | compy :
E;.exp_type = Ep.exp_type, | visit(1, 1), visit(2, 1), if Ej.act_type = real

T.exp_type = Ep.exp_type,

then Eq.act_type = real
else Eg.act_type = T.act_type

Figure 4. A production and its parse-time visit sequence

(evaluated) tree nodes can be freed immediately.
Thus, parse-time evaluation takes less time and
space than than after-parse evaluation.

Consider the production p: X; — X, ... X,,. The
tree construction sequence for production p is:

construct(l), | where construct(i) denotes
oy constructing the subtree rooted
construct(n), | with X,.

Embedding the visit sequence into the tree
construction sequence allows evaluating
attributes during parsing. For a visit sequence of
production p, only the first visit can be embedded
into p’s tree construction sequence, because LL
and LR parsing techniques are one pass. p’s tree
construction sequence and first visit of visit
sequence is thus called p’s parse-time visit
sequence. The parse-time visit sequence can be
further divided into n+1 sections, separated by
construct(i) operations, and labeled as 0 to n.
The following are the constraints for inserting
a visit sequence Into a tree construction sequence:
1. The order of operations of the visit
sequence cannot be altered.
2. A visit(i, 1) cannot precede a construct(i).
Algorithm 1 inserts the visit sequence into the
tree construction sequence.

Algorithm 1. Embed tree construction sequence
and visit sequence.
Input. A tres construction sequence and VS, the
first partition of visit sequence of production p: X,
d X] X,,.
Output. A parse-time visit sequence VS’.
Begin
Let VS = [vsy, visit(i}, 1), vs,, visit(iy, 1), vs,,...,
visit(i,,, 1), vs,, leave(l)], where
1Si,<i2<...<i,,,Sn.
VS® = [vsy, construct(1..i}), visit(i, 1), vs,,
construct(i;+1..1y), visit(iz, 1), vs,, ...,
cOnStruct(im.;+1..ip,), visit(ip, 1), vs,,
leave(1) 1;
return VS’;
End of Algorithm

The vs;, 0 < j < m, are sub-sequences of VS that
are separated by visit(i;, 1), ..., visit(i,,, 1). These
sub-sequences may contain other visits that do not
follow the monotonic increasing order: 1 <i; < i,

450

<...< i, < n. Since Algorithm 1 retains the order
of visit sequence, the first constraint is preserved.
The visit(i,, 1) operations are added after
construct(iy), that is, the second constraint is
preserved, too. The notation construct(i .. j)
represents the sequence [construct(i),
construct(i+1), ..., construct(j)}.

The embedded visit sequence of production E,
— E; + T in Figure 1 is shown in Figure 4. The
computation comp,; defines the inherited
attributes (exp_type) of E; and T, comp,
defines the synthesized attributes (act_type) of
Eo. The sequence [construct(l), visit(1, 1)] is
mapped into E;; the sequence [construct(2),
visit(2, 1)] is mapped into T.

3.2 Schedule Parse-Time Visit sequences in
Free Positions

A sequence of comp and visit operations can
be inserted between construct(j) and
construct(j+1), only if the j+1-th position of
production p is free. Algorithm | assumes that
every positions in the grammar are free; however,
this is not true for LR grammars. One way to solve
this is to move the visit sequence that is inserted
into a non-free (forbidden) position to the next
free position, as shown in Algorithm 2.1.

Algorithm 2.1 Adjust visit sequence for free
positions.
Input. Output of Algorithm 1 and the position
information of p.
Output. The visit sequence vs, that contains no
operations in forbidden positions.
Begin ‘
Letp: Xp > X, ... X,.
fori:=0tondo
if position i is forbidden and section i of vs, is
not empty
then move the operations in section i to
section i+1;
End of Algorithm

With Algorithm 2.1, each production is
associated with a corresponding parse-time visit
sequence, where all operations are scheduled in
free positions. One problem left is that the used
inherited attributes of a symbol may be
unavailable when parsing the symbol. This is
because the computation of these inherited

attributes is delayed to the next free position by | S —id | visit(1, 1);

Algorithm 2.1, and this delay may make the | = if id.type = int
computation unable to be invoked during parsing. then E.exp_type = int

A production p: Xy = X; ... X, is parse-time else E.exp_type = unspecified endif
evaluable if (1) the attribute occurrences in the visit(2, 1); visit(3, 1); leave(1);

parse-time visit sequence of p do not depend on
Xy’s inherited attributes; or (2) in any production
q where X, is the j-th righthand side symbol of g, ¢ E; +T | T.exp_type = Eg.exp_type;

is parse-time evaluable, and the used inherited visit(1, 1); visie(2, 1); visit(3, 1);
attributes of X, are available before construct()).
Algorithm 2.2 tests whether a production is

Egp— | Ej.exp_type = Ep.exp_type;

if Eq.act_type = real

parse-time evaluable. then Eg.act_type = real
else Eg.act_type = T.act_type endif

Algorithm 2.2. Output parse-time evaluable leave(1);

productions. E—> T | T.exp_type = E.exp_type;

Input. A grammar G and parse-time visit visit(1, 1);

sequence for each production. E.act_type = T.act_type;

Output. A set of productions that are parse-time leave(1):

evaluable. . Tn — P visit(2, 1);

Begin . 0 : —; = %
P := the set of productions of G; op T} if (To.exp_type = ”ft) or (op.oper =*)
Q := @, { initialization for parse-time evaluable then P.exp_type = int;

productions } Ti.exp_type = int
foreachp: Xp > X, ... X, in P do - | else P.exp_type = unspecified;

if the inherited attributes of X, are not used in
the parse-time visit sequence
then move p from P to ;

T|.exp_type = unspecified endif
visit(1, 1); visit(3, 1);
case op.oper of

repeat) * 1 if P.act_type = real
foreach p: Xp— X, ... X, in Pdo
avail := TRUE; then Tp.act_type = real
for every occurrence of Xping: ¥ — ... else Tg.act_type = Tj.act_type
Ty q yp 1 p
Xp...do endif
if the used inherited attributes of Xj in the 1+ if Tg.exp_type = int
parse-time visit sequence - .
of p are not available before construct(X,) then ERROR(); Tq.act_type = int
in vs, else Tp.act_type = real endif
then avail := FALSE; leave(1);
if avail then move p from P to Q; TP |Pexp_type = T.exp_type; visic 1, 1);

until no production can move from P to Q; T.act_type = P.act_type; leave(1);

for each g: Xo — X, ... X, in Q do P E.exp_type = P.exp_type; visit(t, 1)
ifthereisap: Xo—Y,...Y,in Pthenmoveq | (g) visit(2, 1); visit(3, 1);

from Q to P; P.act_type = E.act_type; leave(1);

End of Algorithm P—id | visit(l, 1);
if (P.exp_type = inf) and (id.type = real)
then ERROR(); P.act_type = int;

else P.act_type = id.type endif
leave(1),

op — * | op.oper = *; leave(1);

| op —/ | op.oper =/; leave(1);

Figure 5. The visit sequences of the AG in Figure
1.

4. An Example

This section presents an example to show how
the algorithms in Section 3 work. Figure 5 shows
the visit sequences of the AG in Figure 1.

451

S—id

construct(1); visit(1, 1);

if id.type = int

then E.exp_type = int

else E.exp_type = unspecified endif
construct(2); visit(2, 1); construct(3);
visit(3, 1); leave(l),

Egp—>
E{+T

E|.exp_type = Eg.exp_type;
T.exp_type = Eg.exp_type;
construct(1); visit(1, 1); construct(2);
visit(2, 1); construct(3); visit(3, 1);

if Eq.act_type = real
then Eg.act_type = real

else Eq.act_type = T.act_type endif
leave(l);

E->T

T.exp_type = E.exp_type;
construct(1); visit(1, 1);
E.act_type = T.act_type; leave(l);

To—>
Pop
T

construct(l); construct(2); visit(2, 1),

if (Tg.exp_type = int) or {op.oper = *)
then P.exp_type = int; Ty.exp_type = int
else P.exp_type = unspecified,

T1.exp_type = unspecified endif
visit(1, 1); construct(3); visit(3, 1);
case op.oper of

* . if P.act_type = real

then Tg.act_type = real

else To.act_type = Tj.act_type endif
/:if To.exp_type = int

then ERROR(); Tg.act_type = int

else Tgp.act_type = real endif
leave(l);

P.exp_type = T.exp_type; construct(1);
visit(1, 1);
T.act_type = P.act_type; leave(1);

P

(E)

E.exp_type = P.exp_type; construct(1);
visit(1, 1);

construct(2); visit(2, 1); construct(3);
visit(3, 1);

P.act_type = E.act_type; leave(1);

P-id

construct(1); visit(1, 1);

if (P.exp_type = int) and (id.type = real)
then ERROR(); P.act_type = int

else P.act_type = id.type endif

leave(l);

op —*

op.oper = *; leave(1);

op —/

op.oper =/; leave(1);

Figure 6. The resulting parse-time visit sequences

" of Algorithm 1.

Figure 6 presents the resulting parse-time visit
sequences of Algorithm 1. Figure 7 shows the free
positions in the production rules. The free
positions are marked by {}. Figure 8 shows the

452

adjusted parse-time visit sequences by Algorithm
2.1. Figure 9 classifies the production rules
according to whether they are PTE or not.

=>{}d{}=(}1E{}
ESE({}+{}T(}
E- {}T{}
TP {}op{}T{}
T->P{}
P> (E(){}
P—{}id {}
op—{}*{}
op—>{}/{}

Figure 7. The free positions of the expression
graminar.

5 Conclusions and Future Work

In this paper, we have presented algorithms to
generate parse-time visit sequences both for top-
downand bottom-up parsing. With this technique,
the generated compiler from attribute grammars
can be more efficient in time and space. We plan
to implement this technique in the system ag++,
which is an object-oriented compiler generator
based on attribute grammars and reusable
components.

References

[Alb91a] Alblas, H., Introduction to attribute
grammars. LNCS 545, Springer-Verlag, pp. 1-15
(1991)

[Alb91b] Alblas, H., Attribute evaluation
methods. LNCS 545, Springer-Verlag, pp. 48-111
(1991)

{Kas80] Kastens, U.: Ordered Attributed
Grammars, Acta Informatica 13, pp. 229-256
(1980)

(Kas91] Kastens, U.: Implementation of Visit-
Oriented Attribute Evaluators. LNCS 545,
Springer-Verlag, pp. 114-137 (1991)

[LRS74] Lewis, P.M., Rosenkrantz, D.J. and
Stearns, R.E.: Attributed translations. Journal of
Computer and System Science 9, pp. 279-307
(1974). _

[PuB80] Purdom, P. and Brown, C.A.: Semantic
Routines and LR(k) Parsers. Acta Informatica 14,
pPp- 299-315 (1980).

[Wat77] Watt, D.A.: The parsing problem for
affix grammars. Acta Informatica 8, pp. 1-20
Q1977).

attributes is delayed to the next free position by |§ —id | visit(1, 1);
Algorithm 2.1, and this delay may make the =E if id.type = int

computation unable to be invoked during parsing. then E.exp_type = int
A production p: Xy — X, ... X, i5 parse-time else E.exp_type = unspecified endif
evaluable if (1) the attribute occurrences in the visit(2, 1); visit(3, 1); leave(1):

parse-time visit sequence of p do not depend on
X,'s inherited attributes; or (2) in any production
g where X, is the j-th righthand side symbol of g, 4 | E1 +T | T.exp_type = Eg.exp_type;

is parse-time evaluable, and the used inherited visit(1, 1); visit(2, 1); visit(3, 1),
attributes of X, are available before construct(j).
Algorithm 2.2 tests whether a production is

Eqg— | Ej.exp_type = Eg.exp_type;

if Ej.act_type = real

parse-time evaluable. then Eg.act_type = real
else Eg.act_type = T.act_type endif
Algorithm 2.2. Output parse-time evaluable leave(1);
productions. E—>T | Texp_type = E.exp_type;
Input. A grammar G and parse-time visit visit(1, 1);
sequence for each production. E.act_type = T.act_type;
Output. A set of productions that are parse-time leave(1);
;valflable- ., To—P | Visit2, 1);
egin . . .
P := the set of productions of G; op T if (To.exp_type = "ft) or {op-oper = *)
Q = &; { initialization for parse-time evaluable then P.exp_type = inr;
productions } , Ty.exp_type = int
foreachp: X, = X; ... X,in P do else P.exp_type = unspecified,

if the inherited attributes of X, are not used in
the parse-time visit sequence
then move p from P to Q;

T|.exp_type = unspecified endif
visit(1, 1); visit(3, 1);
case op.oper of

repeat) * 1 if P.act_type = real
foreachp: Xp— X, ... X, in P do
avail -= TRUE; then Tg.act_type = real
for every occurrence of Xping: ¥ — .. else Tg.act_type = T}.act_type
Xp...do endif
if the used inherited attributes of X, in the /if To.exp_type = int
parse-time visit sequence -
of p are not available before construct(X,) then ERROR(); Tg.act_type = int
in vs, . else Tp.act_type = real endif
then gvail := FALSE; leave(1);
if avail then move p from P to 0; T — P | P.exp_type = T.exp_type; visit(1, 1);

until no production can move from P to Q; T.act_type = P.act_type; leave(1);

for each g: Xo = X; ... Xuin Q do P— E.exp_type = P.exp_type; visit(1, 1):
if thereisap: Xo— ¥,....Ysin P thenmoveq | (g visit(2, 1); visit(3, 1);

from Q to P; P.act_type = E.act_type; leave(1);

End of Algorithm P—id visit(l, 1)’ .

if (P.exp_type = int) and (id.type = real)
then ERROR(); P.act_type = int;

else P.act_type = id.type endif

leave(1);

op — * | op.oper = *; leave(l);

op -/ | op.oper =/; leave(1),

Figure 5. The visit sequences of the AG in Figure
1.

4. An Example

This section presents an example to show how
the algorithms in Section 3 work. Figure 5 shows
the visit sequences of the AG in Figure 1.

451

S —id | construct(1); visit(1, 1);

= if id.type = int

then E.exp_type = int

else E.exp_type = unspecified endif
construct(2); visit(2, 1); construct(3);
visit(3, 1); leave(1);

Eqg —
E1+T

Ej.exp_type = Eg.exp_type;
T.exp_type = Eg.exp_type;
construct(l); visit(1, 1); construct(2),
visit(2, 1); construct(3); visit(3, 1);

if Eq.act_type = real
then Eg.act_type = real

else Eg.act_type = T.act_type endif
leave(l);,

T.exp_type = E.exp_type;
construct(l); visit(1, 1);
E.act_type = T.act_type; leave(l);

To — construct(1); construct(2); visit(2, 1);
Pop if (Tg.exp_type = int) or (op.oper = *)
Ty then P.exp_type = int; T.exp_type = int
else P.exp_type = unspecified,
T1.exp_type = unspecified endif

visit(1, 1); construct(3); visit(3, 1);

case op.oper of

* : if P.act_type = real

then Tg.act_type = real

else Tp.act_type = Ty.act_type endif
/:if Tp.exp_type = int

then ERROR(); Tp.act_type = int

else Tp.act_type = real endif
leave(l);

P.exp_type = T.exp_type; construct(1);
visit(1, 1);
T.act_type = P.act_type; leave(1);

P—o E.exp_type = P.exp_type; construct(1);
(E) visit(1, 1);

construct(2); visit(2, 1); construct(3);
visit(3, 1);

P.act_type = E.act_type; leave(l);

P —id | construct(1); visit(1, 1);

if (P.exp_type = int) and (id.type = real)
then ERROR(); P.act_type = int

else P.act_type = id.type endif

leave(1);

op —* | op.oper = *; leave(l);

op — / | op.oper =/; leave(l);

Figure 6. The resulting parse-time visit sequences
of Algorithm 1.

Figure 6 presents the resuiting parse-time visit
sequences of Algorithm 1. Figure 7 shows the free
positions in the production rules. The free
positions are marked by {}. Figure 8 shows the

adjusted parse-time visit sequences by Algorithm
2.1. Figure 9 classifies the production rules
according to whether they are PTE or not.

S—>{}id{}={}E{}

E-E{}+{}T{}

E-{}T{}

T—-P{}op{}T{}

T->P{}

P> ({}JE{})D

P {}id {}

op—{}*{}

op—{}/{}

Figure 7. The free positions of the expression

grammar.

5 Conclusions and Future Work

In this paper, we have presented algorithms to
generate parse-time visit sequences both for top-
down and bottom-up parsing. With this technique,
the generated compiler from attribute grammars
can be more efficient in time and space. We plan
to implement this technique in the system ag+-+,
which is an object-oriented compiler generator
based on attribute grammars and reusable
components.

References

[Alb91a] Alblas, H., Introduction to attribute
grammars. LNCS 545, Springer-Verlag, pp. 1-15
(1991)

[Alb91b] Alblas, H., Attribute evaluation
methods. LNCS 545, Springer-Verlag, pp. 48-111
(1991)

[Kas80] Kastens, U.. Ordered Attributed
Grammars, Acta Informatica 13, pp. 229-256
(1980)

[Kas91] Kastens, U.: Implementation of Visit-
Oriented Attribute Evaluators. LNCS 545,
Springer-Verlag, pp. 114-137 (1991)

[LRS74] Lewis, P.M., Rosenkrantz, D.J. and
Stearns, R.E.: Attributed translations. Journal of
Computer and System Science 9, pp. 279-307
(1974). .

[PuB80] Purdom, P. and Brown, C.A.: Semantic
Routines and LR(k) Parsers. Acta Informatica 14,
Pp- 299-315 (1980).

[Wat77] Watt, D.A.: The parsing problem for
affix grammars. Acta Informatica 8, pp. 1-20
Q977).

S —id | construct(1); visit(1, 1);

= if id.type = int
then E.exp_type = int
else E.exp_type = unspecified endif
construct(2); visit(2, 1); construct(3);
visit(3, 1); leave(l);

Eg— construct(1);

E{+T E|.exp_type = Eg.exp_type;
T.exp_type = Eg.exp_type; visit(1, 1);
construct(2); visit(2, 1);
construct(3); visit(3, 1);
if Ej.act_type = real
then Eq.act_type = real
else Eg.act_type = T.act_type endif

1 leave(1);

E - T | T.exp_type = E.exp_type;
construct(1); visit(1, 1);

E.act_type = T.act_type; leave(l);

To— construct(1); construct(2); visit(2, 1);

Pop if (Tg.exp_type = int) or (op.oper = *)

Ty then P.exp_type = int; T|.exp_type = int
else P.exp_type = unspecified,

T} .exp_type = unspecified endif
visit(1, 1); construct(3); visit(3, 1);
case op.oper of
* . if P.act_type = real

then Tg.act_type = real

else Tg.act_type = T .act_type endif
/:if Tg.exp_type = int

then ERROR(); Tg.act_type = int

else Tp.act_type = real endif
leave(1);

T — P | construct(1); P.exp_type = T.exp_type;
visit(1, 1);

T.act_type = P.act_type; leave(1);

P> E.exp_type = P.exp_type; construct(1);

(E) visit(1, 1); construct(2); visit(2, 1);
construct(3); visit(3, 1);

P.act_type = E.act_type; leave(l);

P —id | construct(l); visit(1, 1);
if (P.exp_type = int) and (id.type = real)
then ERROR(); P.act_type = int
else P.act_type = id.type endif
leave(1);

op — * | op.oper = *; leave(l);

op — / | op.oper =/, leave(1),

Figure 8. The adjusted parse-time visit sequences
of Algorithm 2.1.
PTE:

453

S—>id=E
T—>PopT
T—>P
op—*
op -/
non-PTE:
E—-E+T
E-T
P-(E)
P—id
Figure 9. Production rules classified by PTE and
non-PTE.

	
	
	
	
	
	
	
	
	
	

