
ORDER-INVARIANT TOBOGGAN ALGORITHM FOR IMAGE
SEGMENTATION

Yung-Chieh Lin(林永傑)† ‡, Yi-Ping Hung(洪一平) † ‡,

Chiou-Shann Fuh(傅楸善) ‡

† Institute of Information Science, Academia Sinica, Taipei, Taiwan
‡ Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan

Email: hung@iis.sinica.edu.tw

ABSTRACT

The toboggan and watershed algorithms are two
classic algorithms for image segmentation. Both
of them are based on the concept that images can
be segmented into homogeneous regions by
partitioning the gradient images along the ridges.
The watershed algorithm has been referred more
frequently in the literature than the toboggan
algorithm, partially because the watershed
algorithm is conceptually easier in classifying
the pixels in the flat regions or on the ridges. In
this paper, we present an order-invariant
toboggan algorithm, which can classify the
pixels in the flat regions and on the ridges. Also,
a modified morphological grayscale
reconstruction is introduced to preprocess the
gradient image so that the over-segmentation
problem can be alleviated. This paper
demonstrates that the toboggan algorithm is
faster than the watershed algorithm both in
theoretical complexity and in runtime practice.

I. INTRODUCTION

Image segmentation is a fundamental problem to
many computer vision applications. The
toboggan [2,5,6] and watershed [1,3,8]
algorithms are two classic algorithms for image
segmentation. Since both methods segment
images into homogeneous regions by dividing
the gradient images along the ridges, they should
generate roughly the same segmentation results
when implemented with care. However, the
watershed algorithm has been referred to more
frequently in the literature than the toboggan
algorithm has, partially because the watershed
algorithm is conceptually easier in classifying
the pixels in the flat regions or on the ridges. In
this paper, we present an order-invariant

toboggan algorithm, which not only can classify
the pixels in the flat regions and on the ridges,
but also has the order-invariance property, i.e.,
the segmentation result is independent of the
visiting order of the neighbors.

Figure 1 shows an illustrative example of
segmenting a one-dimensional signal. Given a
signal function f(x) as shown in Figure 1(a), we
first compute the absolute value of its first
derivative, i.e. G(x) = | f′(x)| , which will be
referred to as the gradient magnitude for image
data. In Figure 1(c), we can find two local
maxima at the positions of the inflective points
of the original signal. Hence, the original signal
is partitioned into three segments as shown in
Figure 1(d).

f(x)

(a)

f′(x)

(b)

G(x)

(c)

Result

(d)

Figure 1. An illustrative example of segmenting
a one-dimensional signal based on its gradient
magnitude.

Gradient
Magnitude

b c d

e f g

h i

j
k

l

m
a

local-minimum flat region
non-flat region

lower boundary
non-local-minimum flat region

Figure 2. An example for illustrating flat and non-flat regions. In this example, pixels a, j, l, and m are
on the non-flat regions, pixels b, c, d, e, f, and g are on the non-local-minimum flat regions, and pixels
h, i, and k are on the local-minimum flat regions.

Both the toboggan and watershed algorithms
are designed to associate each pixel with the
minimum of the valley where the pixel is
located. The difference between the two
algorithms is that the toboggan algorithm uses
a top-down approach and the watershed
algorithm uses a bottom-up approach. The
watershed algorithm initially creates a unique
marker at the local minimum of each valley,
and then simulates water flooding from the
markers level by level. The toboggan
algorithm initially makes all pixels slide
downward to the local minima, and then gives
each connected component a unique label. In
some papers, the sliding of pixels is referred to
as rain falling [2,4].

For most images, the basic toboggan and
watershed algorithms tend to generate over-
segmented results, so in many applications,
they are usually combined with other
procedures. For example, [8] proposed a video
object segmentation method that uses the
watershed algorithm for initial segmentation.
However, before applying the watershed
algorithm, they first process the gradient
images by erosion in order to eliminate the
regions of shallow valleys. In [5], the
segmentation results obtained by the toboggan
algorithm are used as initial contours for the
proposed intelligent scissors. In this paper, we
alleviate over-segmentation by adopting a
method similar to that used in [7], which will
be described in section V.

II. ORDER INVARIANCE

It is not hard to implement either the toboggan
algorithm or the watershed algorithm to
classify the pixels in non-flat regions, but it
may be more complicated in determining

which direction a pixel in a flat region should
flood (upward) or slide (downward). There are
two kinds of flat regions in the gradient image:
the local-minimum flat region and the non-
local-minimum flat region. A flat region is
called local-minimum if the gradient
magnitudes of the surrounding pixels are all
greater than the gradient magnitude of the flat
region. A local-minimum flat region can be
uniquely labeled by finding the connected
pixels having the same gradient magnitude
(e.g., pixels h and i in Figure 2.). On the other
hand, a non-local-minimum flat region can be
a thick edge separating several valleys, and
should be evenly divided between the valleys
(e.g., pixels b, c, and d in Figure 2.). The
toboggan algorithm in [4] solves this problem
by associating the pixels in a non-local
minimum flat region to the closest lower
boundary. Here, the lower boundary means the
region boundary whose neighbors have smaller
gradient magnitudes than the gradient
magnitude of the flat region (e.g., pixels d and
g in Figure 2 are lower boundary points while
pixel e is not). The watershed algorithm in [6]
solves this problem by growing the labels from
the lower boundary. It is worth mentioning that
the method in [2] avoids the classification
problem of the flat regions by working with
the Gaussian smoothed floating point images.
However, there exist some special cases where
this method is not applicable.

If there still exists ambiguity in determining
the flooding/sliding direction of a pixel, the
toboggan and watershed algorithms can either
classify the pixel to any nearby segment or
label the pixel a ridge pixel. In this paper, we
define the order-invariant algorithms as the
algorithms whose segmentation results are
independent of the visiting order of the
neighbors. Therefore, it is necessary for an
order-invariant algorithm to label the

3

ambiguous pixels as ridge pixels and not to
classify such pixels to any regions. The
watershed algorithm described in [6] can
classify pixels into ridges (which are referred
to as watersheds), but it is not order-invariant
because a pixel first labeled as a ridge point
may be re-classified into another region
depending on the visiting order.

Notice that, in the illustrative example shown
in Figure 2, pixels c and l are classified as
ridges, because the pixel c has equal distance
to pixels b and d, both on lower boundaries,
and pixel l has equal slope in the both sliding
directions. Pixels e and f are classified into the
same region as pixel g. Pixels h and i are
given the same label, and pixel k is given
another label. Pixel j is not classified as a
ridge because its slope to the pixel i is steeper
than its slope to the pixel k . The vertical
dashed lines partition the one-dimensional
signal into four regions, and the arrows show
the sliding directions.

III. ORDER-INVARIANT
TOBOGGAN ALGORITHM

This section presents the pseudo code of the
proposed order-invariant toboggan algorithm.
The proposed toboggan algorithm maintains a
list of sliding direction(s) for each non-flat
pixel (including those lower boundary pixels
neighboring the flat regions). It is achieved by
the following two steps.

First, we examine the neighbors of each pixel
and record the steepest downward direction in
the sliding list (please refer to lines 5-16 of
Algorithm 1 given below). After the first step,
the sliding lists of the non-flat region and of
the lower boundary of the non-local-minimum
flat regions are non-empty. Second, the region-
growing technique (or more precisely, the
breath first search) is used to find the shortest
path(s) from each inner pixels in the non-local-
minimum flat regions to its lower boundary,
and the possible directions for the shortest
paths are put in the sliding lists of these inner
pixels (lines 17-29 of Algorithm 1). After the
second step, the remain ing empty sliding lists
belong to the local-minimum flat regions.

Then, the local-minimum flat regions are
recognized and labeled by finding connected
components (lines 30-45 of Algorithm 1).

Finally, a topological sort is applied by taking
the pixels as the vertices and the corresponding
pixels in the sliding list as the targets of the
directed edges. The core of the topological sort
is a depth first search, which traverses the
directed graph in post-order (lines 46-63 of
Algorithm 1). Hence, we can visit the pixels
in the order that the labels of the former pixels
are independent of the latter pixels. It
guarantees that the whole image can be
segmented in linear time. To make the
segmentation order-invariant, a pixel is labeled
as ridge if the labels of the neighbors directed
by the sliding list are not consistent. The
following is the pseudo code of the toboggan
algorithm:

Algorithm 1.

1 PROCEDURE Toboggan-Algorithm
2 INPUT: Gradient Image G
3 OUTPUT: Label Image L
4 Initiate FIFO Queue

Part 1. Simulation of sliding.

5 FOR-EVERY p ∈ DOMAIN(G) DO
6 h := G(p)
7 hMIN := the minimal value of G in
 Neighbor(p)
8 IF h > hMIN THEN
9 S := {q | G(q) = hMIN AND
 q ∈ Neighbor(p)}
10 Sliding-List(p) := S
11 Queue � p
12 Growing-Dist(p) := 0
13 ELSE
14 Sliding-List(p) := Ø
15 END-IF
16 END-FOR

Part 2. Region growing from lower boundary.

17 WHILE Queue is not empty DO
18 p � Queue
19 d := Growing-Dist(p) + 1
20 h := G(p)
21 FOR-EVERY q ∈ Neighbor(p) AND
 G(q) = h DO
22 IF Sliding-List(q) = Ø THEN
23 Append p to Sliding-List(q)
24 Growing-Dist(q) := d
25 Queue � q
26 ELSE-IF Growing-Dist(q) = d THEN

4

27 Append p to Sliding-List(q)
28 END-IF
29 END-WHILE

Part 3. Labeling the local-minimum flat
regions.

30 FOR-EVERY p0 ∈ DOMAIN(G) AND
 Sliding-List(p0) = Ø DO
31 IF L(p0) is not assigned THEN
32 L(p0) := NEW LABEL
33 Queue � p0
34 h := G(p0)
35 WHILE Queue is not empty DO
36 p � Queue
37 FOR-EVERY q ∈ Neighbor(p) AND
 G(q) = h DO
38 IF L(q) is not assigned THEN
39 L(q) := L(p0)
40 Queue � q
41 END-IF
42 END-FOR
43 END-WHILE
44 END-IF
45 END-FOR

Resolving labels based on the sliding lists.

46 FOR-EVERY p ∈ DOMAIN(G) DO
47 Resolve(p)
48 END-FOR

49 PROCEDURE Resolve
50 INPUT: Pixel p
51 IF L(p) is not assigned THEN
52 S := Sliding-List(p)
53 FOR-EVERY q ∈ S DO
54 Resolve(q)
55 END-FOR
56 IF S has a unique label α THEN
57 L(p) := α
58 ELSE
59 L(p) := RIDGE-LABEL
60 END-IF
61 END-IF
62 END-PROCEDURE
63 END-PROCEDURE.

IV. ORDER-VARIANT VERSION
OF THE TOBOGGAN

ALGORITHM

Some applications require that every pixel be
classified to exactly one segment. This can be
achieved efficiently by performing an order-
variant version of the above algorithm, but the
disadvantage is that the partition of the thick
edges can be biased depending on the visiting
order. To obtain the order-variant versions of
the toboggan algorithm, we can rewrite lines 9
as

 S := list of the first pixel in {q | G(q) =
hMIN AND q ∈ Neighbor(p)}

and remove the following lines: 12, 19, 24, 26,
27, 58, and 59. After the modification, the
uniqueness conditions in lines 56 become
always true.

V. PREPROCESSING OF
GRADIENT IMAGE

Some preprocessing of the gradient image is
usually used to reduce the number of segments
obtained by the toboggan and watershed
algorithms. In [8], the gradient image is
reconstructed by erosion. Instead, we use the
reconstruction by closing [7] with some
modification. The original morphological
grayscale reconstruction defined by [7] has to
repeat the elementary operation until the
stability is reached. Although an efficient
hybrid algorithm is proposed to improve the
performance, the comp utation time still can be
high in the worst case. In some applications, it
is acceptable to preserve shallow valleys
having large radiuses. Therefore, the
reconstruction we used here is to repeat the
elementary operation in a fixed number of
iterations. The morphological grayscale
reconstruction is defined as

δM
(n) (K) = δM

(n-1) ο δM
(1) (K), ∀p, K(p) < M(p) (1)

εM
(n) (K) = εM

(n-1) ο εM
(1) (K), ∀p, K(p) > M(p) (2)

where n > 1, K and M are the kernel and mask
images, respectively, and the elementary
operations are

δ (1)
M (K) = (K ⊕ B3×3) Ι M (3)

ε(1)
M (K) = (K ○− B3×3) Υ M (4)

5

⊕, ○−, Ι, Υ, and B3×3 stand for dilation, erosion,
point-wise minimum, point-wise maximum,
and a 3×3 square structuring element,
respectively. Then, our reconstruction is
defined to eliminate the valleys which are
small (the contour of ridge cannot hold a
(2r+1)×(2r+1) square) and shallow (the height
of the surrounding ridge is less than h):

G′ = ε(r)
G � δ(r) G+h(G) (5)

where G is the original gradient image, and G′
is the reconstructed gradient image. The reason
of using closing is that the dilation can fill up
the undesired valleys and the erosion can
correct the bias dilated ridges.

VI. EXPERIMENTS

The original gradient image in our experiments
is obtained by using the Sobel operator, i.e.

G(i, j) = Gx
2 (i, j) + Gy

2 (i, j) (6)

where

Gx = I ⊗









- 1 0 1

- 2 0 2

- 1 0 1

, Gy = I ⊗









- 1 - 2 - 1

0 0 0

1 2 1

,

I is the luminance of the input image, and ⊗
stands for the convolution. The input image
can be 24-bit color or grayscale in 256 levels.
The luminance of the color image is obtained
by

Lu =






0.212671
0.715160
0.072169

T







R
G
B

 (7)

where R, G, and B are the values of red, green,
and blue, respectively, in 256 levels, and Lu is
rounded to the unit.

In this section, we will compare the
performance of the proposed toboggan
algorithm with the more popular watershed
algorithm. We have tried our best to optimize
the watershed algorithm and make sure that the
segmentation results obtained by using both
algorithms are the same.

In our implementation, the data type of the
gradient magnitude can be either short integer
or floating point. If the short integer is chosen,
the counting sort algorithm is used for the
watershed algorithm, and the values of the
gradient magnitudes are rounded to the unit. If
the floating point is chosen, the quick sort
algorithm is used for the watershed algorithm,
and the values of the gradient magnitudes are
rounded to the single precision. The program
of our implementation is written in C++ and
compiled by the Microsoft Visual C++
compiler.

Figure 3. The input image used in the
experiments.

Figure 4. The gradient image obtained by the
Sobel operator without grayscale reconstruction.

6

Table 1. The computation time in different configurations.

No. Algorithm Data Type Reconstruction Order-Invariant Connectivity Execution Time

Toboggan 62 ms
1

Watershed

Integer × × 4-neighbor

63 ms

Toboggan 73 ms
2

Watershed

Floating

Point
× × 4-neighbor

144 ms

Toboggan 60 ms
3

Watershed

Integer × 4-neighbor

79 ms

Toboggan 40 ms
4

Watershed

Integer × 4-neighbor

52 ms

Toboggan 86 ms
5

Watershed

Integer × × 8-neighbor

81 ms

Table 1 lists the parameters and the execution
time of the toboggan and watershed algorithms
in five different configurations. The
parameters of the grayscale reconstruction are
set as h = 32 and r = 8. The input image and its
gradient image are shown in Figures 4 and 5,
respectively. The size of image is
320(w)×242(h). In each configuration, the
toboggan and watershed algorithms generate
the same segmentation result. The
segmentation results of the five experiments
are shown in Figure 6.

The execution time in Table 1 is the average of
100 experimental results on a Pentium-II PC,
excluding the computation time of the
generation and reconstruction of the gradient
image. We can use Experiment 1 as the
standard configuration, where the data type of
the gradient magnitude is integer, the gradient
image is reconstructed by closing, order-
invariant algorithms are used, and the pixels
are 4-connected. The experiment shows that
the average execution time of the toboggan and
watershed algorithms is very close.

In Experiment 2, the floating point is chosen as
the data type, so the watershed algorithm must
use a comparison-based sorting algorithm and
takes more time than the toboggan algorithm.
In Experiment 3, the gradient image is not
reconstructed, so an over-segmented result is
generated (see Figure 6). It is interesting that
this change almost has no influence on the
toboggan algorithm, but it makes the
watershed algorithm significantly slower.

In Experiment 4, order-variant algorithms are
used to segment the image. Although both the
toboggan and watershed algorithms become
faster than the order-invariant versions, the
toboggan algorithm is more efficient than the
watershed algorithm. In Experiment 5, 4-
connected neighbors are used instead. Because
the resolving procedure of the toboggan
algorithm is relative to the connectivity, the
watershed algorithm is slightly faster than the
toboggan algorithm.

Experiment 1 (standard)

Experiment 2 (floating point)

Experiment 3 (no reconstruction)

Experiment 4 (order-variant)

Experiment 5 (8-neighbor)

Figure 5. The segmentation results of five different configurations.

In our experiments, the toboggan algorithm is
faster than the watershed algorithm in most
cases. Only that the connectivity becomes
large (8-neighbor), the toboggan algorithm is
slightly slower than the watershed algorithm. It
is worthy to mention that our program assumes
the neighbors are in the equal distance, so that
we can use the region-growing technique to
find the shortest paths between the inner pixels
and the lower boundary in the non-local-
minimum flat regions. This assumption makes
more ambiguous pixels inside the non-local-

minimum flat regions. Thus we can see thicker
edges in the segmentation result of Experiment
5.

VII. CONCLUSION

This paper has presented a new order-invariant
toboggan algorithm for image segmentation.
Our experiments show that, with careful
implementation, the proposed toboggan
algorithms and the more popular watershed
algorithm can generate the same segmentation
result. However, the proposed toboggan

8

algorithm is not only more applicable to
different data types of the gradient magnitude
but also faster than the watershed algorithm in
most cases. Practically, the toboggan algorithm
requires less memory than the watershed
algorithm, because the sliding list and label
image of the toboggan algorithm can share
memory, but the watershed algorithm requires
additional memory for storing the sorting
results.

REFERENCES

[1] J. Fairfield, “Toboggan Contrast
Enhancement for Contrast Segmentation,”
in Proceedings of the 10th IEEE
International Conference on Pattern
Recognition, vol. 1, pp. 712–716, 1990.

[2] J. M. Gauch, “Image Segmentation and
Analysis via Multiscale Gradient
Watershed Hierarchies,” IEEE
Transactions on Image Processing, vol. 8,
no. 1, pp. 69–79, January 1999.

[3] Y.-P. Hung and X. Yao, “Keep-Sliding
Toboggan Image Segmentation,” in
Proceedings of National Computer
Symposium, vol. 2, pp. 392–397, Taiwan,
December 1991.

[4] A. Moga, B Cramariuc, and M. Gabbouj,
“An Efficient Watershed Segmentation
Algorithm Suitable for Parallel
implementation,” in Proceedings of IEEE
International Conference on Image
Processing, vol. 2, pp. 101–104,
Washington, D.C., October 1995.

[5] E. N. Mortensen and W. A. Barrett,
“Toboggan-Based Intelligent Scissors with
a Four-Parameter Edge Model,” in
Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition,
pp. 452–458, 1999.

[6] L. Vincent and P. Soille, “Watersheds in
Digital Spaces: An Efficient Algorithm
Based on Immersion Simulations,” IEEE
Transactions on Pattern Analysis and
Machine Intelligence, vol. 13, no. 6, pp.
583–598, June 1991.

[7] L. Vincent, “Morphological Grayscale
Reconstruction in Image Analysis:
Applications and Efficient Algorithms,”
IEEE Transactions on Image Processing,
vol. 2, no. 2, pp. 176–201, April 1993.

[8] D. Wang, “Unsupervised Video
Segmentation Based on Watersheds and
Temporal Tracking,” IEEE Transactions
on Circuits and Systems for Video
Technology, vol. 8, no. 5, pp. 539–546,
September 1998.

