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ABSTRACT 

The toboggan and watershed algorithms are two 
classic algorithms for image segmentation. Both 
of them are based on the concept that images can 
be segmented into homogeneous regions by 
partitioning the gradient images along the ridges. 
The watershed algorithm has been referred more 
frequently in the literature than the toboggan 
algorithm, partially because the watershed 
algorithm is conceptually easier in classifying 
the pixels in the flat regions or on the ridges. In 
this paper, we present an order-invariant 
toboggan algorithm, which can classify the 
pixels in the flat regions and on the ridges.  Also, 
a modified morphological grayscale 
reconstruction is introduced to preprocess the 
gradient image so that the over-segmentation 
problem can be alleviated. This paper 
demonstrates that the toboggan algorithm is 
faster than the watershed algorithm both in 
theoretical complexity and in runtime practice.  

I. INTRODUCTION 

Image segmentation is a fundamental problem to 
many computer vision applications. The 
toboggan [2,5,6] and watershed [1,3,8] 
algorithms are two classic algorithms for image 
segmentation. Since both methods segment 
images into homogeneous regions by dividing 
the gradient images along the ridges, they should 
generate roughly the same segmentation results 
when implemented with care.  However, the 
watershed algorithm has been referred to more 
frequently in the literature than the toboggan 
algorithm has, partially because the watershed 
algorithm is conceptually easier in classifying 
the pixels in the flat regions or on the ridges. In 
this paper, we present an order-invariant 

toboggan algorithm, which not only can classify 
the pixels in the flat regions and on the ridges, 
but also has the order-invariance property, i.e., 
the segmentation result is independent of the 
visiting order of the neighbors. 

Figure 1 shows an illustrative example of 
segmenting a one-dimensional signal.  Given a 
signal function f(x) as shown in Figure 1(a), we 
first compute the absolute value of its first 
derivative, i.e. G(x) = | f′(x)| , which will be 
referred to as the gradient magnitude for image 
data.  In Figure 1(c), we can find two local 
maxima at the positions of the inflective points 
of the original signal. Hence, the original signal 
is partitioned into three segments as shown in 
Figure 1(d).  
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Figure 1. An illustrative example of segmenting 
a one-dimensional signal based on its gradient 
magnitude. 
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Figure 2.  An example for illustrating flat and non-flat regions. In this example, pixels a, j, l, and m are 
on the non-flat regions, pixels b, c, d, e, f, and g  are on the non-local-minimum flat regions, and pixels 
h, i, and k  are on the local-minimum flat regions. 

 

Both the toboggan and watershed algorithms 
are designed to associate each pixel with the 
minimum of the valley where the pixel is 
located. The difference between the two 
algorithms is that the toboggan algorithm uses 
a top-down approach and the watershed 
algorithm uses a bottom-up approach. The 
watershed algorithm initially creates a unique 
marker at the local minimum of each valley, 
and then simulates water flooding from the 
markers level by level. The toboggan 
algorithm initially makes all pixels slide 
downward to the local minima, and then gives 
each connected component a unique label.  In 
some papers, the sliding of pixels is referred to 
as rain falling [2,4]. 

For most images, the basic toboggan and 
watershed algorithms tend to generate over-
segmented results, so in many applications, 
they are usually combined with other 
procedures. For example, [8] proposed a video 
object segmentation method that uses the 
watershed algorithm for initial segmentation. 
However, before applying the watershed 
algorithm, they first process the gradient 
images by erosion in order to eliminate the 
regions of shallow valleys. In [5], the 
segmentation results obtained by the toboggan 
algorithm are used as initial contours for the 
proposed intelligent scissors.  In this paper, we 
alleviate over-segmentation by adopting a 
method similar to that used in [7], which will 
be described in section V. 

II. ORDER INVARIANCE 

It is not hard to implement either the toboggan 
algorithm or the watershed algorithm to 
classify the pixels in non-flat regions, but it 
may be more complicated in determining 

which direction a pixel in a flat region should 
flood (upward) or slide (downward).  There are 
two kinds of flat regions in the gradient image: 
the local-minimum flat region and the non-
local-minimum flat region. A flat region is 
called local-minimum if the gradient 
magnitudes of the surrounding pixels are all 
greater than the gradient magnitude of the flat 
region. A local-minimum flat region can be 
uniquely labeled by finding the connected 
pixels having the same gradient magnitude 
(e.g., pixels h and i in Figure 2.). On the other 
hand, a non-local-minimum flat region can be 
a thick edge separating several valleys, and 
should be evenly divided between the valleys 
(e.g., pixels b, c, and d in Figure 2.). The 
toboggan algorithm in [4] solves this problem 
by associating the pixels in a non-local 
minimum flat region to the closest lower 
boundary. Here, the lower boundary means the 
region boundary whose neighbors have smaller 
gradient magnitudes than the gradient 
magnitude of the flat region (e.g., pixels d and 
g in Figure 2 are lower boundary points while 
pixel e is not). The watershed algorithm in [6] 
solves this problem by growing the labels from 
the lower boundary. It is worth mentioning that 
the method in [2] avoids the classification 
problem of the flat regions by working with 
the Gaussian smoothed floating point images. 
However, there exist some special cases where 
this method is not applicable.  

If there still exists ambiguity in determining 
the flooding/sliding direction of a pixel, the 
toboggan and watershed algorithms can either 
classify the pixel to any nearby segment or 
label the pixel a ridge pixel. In this paper, we 
define the order-invariant algorithms as the 
algorithms whose segmentation results are 
independent of the visiting order of the 
neighbors. Therefore, it is necessary for an 
order-invariant algorithm to label the 
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ambiguous pixels as ridge pixels and not to 
classify such pixels to any regions. The 
watershed algorithm described in [6] can 
classify pixels into ridges (which are referred 
to as watersheds), but it is not order-invariant 
because a pixel first labeled as a ridge point 
may be re-classified into another region 
depending on the visiting order. 

Notice that, in the illustrative example shown 
in Figure 2, pixels c and l are classified as 
ridges, because the pixel c has equal distance 
to pixels b and d, both on lower boundaries, 
and pixel l  has equal slope in the both sliding 
directions. Pixels e and f are classified into the 
same region as pixel g.  Pixels h and i are 
given the same label, and pixel k  is given 
another label.  Pixel j is not classified as a 
ridge because its slope to the pixel i is steeper 
than its slope to the pixel k .  The vertical 
dashed lines partition the one-dimensional 
signal into four regions, and the arrows show 
the sliding directions.  

III. ORDER-INVARIANT 
TOBOGGAN ALGORITHM 

This section presents the pseudo code of the 
proposed order-invariant toboggan algorithm. 
The proposed toboggan algorithm maintains a 
list of sliding direction(s) for each non-flat 
pixel (including those lower boundary pixels 
neighboring the flat regions). It is achieved by 
the following two steps.  

First, we examine the neighbors of each pixel 
and record the steepest downward direction in 
the sliding list (please refer to lines 5-16 of 
Algorithm 1  given below). After the first step, 
the sliding lists of the non-flat region and of 
the lower boundary of the non-local-minimum 
flat regions are non-empty. Second, the region-
growing technique (or more precisely, the 
breath first search) is used to find the shortest 
path(s) from each inner pixels in the non-local-
minimum flat regions to its lower boundary, 
and the possible directions for the shortest 
paths are put in the sliding lists of these inner 
pixels (lines 17-29 of Algorithm 1). After the 
second step, the remain ing empty sliding lists 
belong to the local-minimum flat regions.  

Then, the local-minimum flat regions are 
recognized and labeled by finding connected 
components (lines 30-45 of Algorithm 1). 

Finally, a topological sort is applied by taking 
the pixels as the vertices and the corresponding 
pixels in the sliding list as the targets of the 
directed edges. The core of the topological sort 
is a depth first search, which traverses the 
directed graph in post-order (lines 46-63 of 
Algorithm 1). Hence, we can visit the pixels 
in the order that the labels of the former pixels 
are independent of the latter pixels. It 
guarantees that the whole image can be 
segmented in linear time. To make the 
segmentation order-invariant, a pixel is labeled 
as ridge if the labels of the neighbors directed 
by the sliding list are not consistent. The 
following is the pseudo code of the toboggan 
algorithm: 

Algorithm 1. 

1 PROCEDURE Toboggan-Algorithm 
2 INPUT: Gradient Image G 
3 OUTPUT: Label Image L 
4  Initiate FIFO Queue 
 

Part 1. Simulation of sliding. 

5  FOR-EVERY p ∈ DOMAIN(G) DO  
6   h := G(p) 
7   hMIN := the minimal value of G in  
      Neighbor(p) 
8   IF h > hMIN THEN 
9    S := {q | G(q) = hMIN AND  
       q ∈ Neighbor(p)} 
10    Sliding-List(p) := S 
11    Queue � p 
12    Growing-Dist(p) := 0 
13   ELSE 
14    Sliding-List(p) := Ø 
15   END-IF 
16  END-FOR 
 

Part 2. Region growing from lower boundary. 

17  WHILE Queue is not empty DO  
18   p � Queue 
19   d := Growing-Dist(p) + 1 
20   h := G(p) 
21   FOR-EVERY q ∈ Neighbor(p) AND  
        G(q) = h DO  
22    IF Sliding-List(q) = Ø THEN 
23     Append p to Sliding-List(q) 
24     Growing-Dist(q) := d 
25     Queue � q 
26    ELSE-IF Growing-Dist(q) = d THEN 
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27     Append p to Sliding-List(q) 
28    END-IF 
29  END-WHILE 
 

Part 3. Labeling the local-minimum flat 
regions. 

30  FOR-EVERY p0 ∈ DOMAIN(G) AND  
        Sliding-List(p0) = Ø DO  
31   IF L(p0) is not assigned THEN 
32    L(p0) := NEW  LABEL 
33    Queue � p0 
34    h := G(p0) 
35    WHILE Queue is not empty DO  
36     p � Queue 
37     FOR-EVERY q ∈ Neighbor(p) AND 
          G(q) = h DO  
38      IF L(q) is not assigned THEN 
39       L(q) := L(p0) 
40       Queue � q 
41      END-IF 
42     END-FOR 
43    END-WHILE 
44   END-IF 
45  END-FOR 
 

Resolving labels  based on the sliding lists. 

46  FOR-EVERY p ∈ DOMAIN(G) DO  
47   Resolve(p) 
48  END-FOR 
 
 
49  PROCEDURE Resolve 
50  INPUT: Pixel p 
51   IF L(p) is not assigned THEN 
52    S := Sliding-List(p) 
53    FOR-EVERY q ∈ S DO  
54     Resolve(q) 
55    END-FOR 
56    IF S has a unique label α THEN 
57     L(p) := α 
58    ELSE 
59     L(p) := RIDGE-LABEL 
60    END-IF 
61   END-IF 
62  END-PROCEDURE 
63 END-PROCEDURE.  

IV. ORDER-VARIANT VERSION 
OF THE TOBOGGAN 

ALGORITHM 

Some applications require that every pixel be 
classified to exactly one segment. This can be 
achieved efficiently by performing an order-
variant version of the above algorithm, but the 
disadvantage is that the partition of the thick 
edges can be biased depending on the visiting 
order. To obtain the order-variant versions of 
the toboggan algorithm, we can rewrite lines 9 
as 

 S := list of the first pixel in {q  | G(q) = 
hMIN AND q ∈ Neighbor(p)} 

and remove the following lines: 12, 19, 24, 26, 
27, 58, and 59. After the modification, the 
uniqueness conditions in lines 56 become 
always true.  

V. PREPROCESSING OF 
GRADIENT IMAGE 

Some preprocessing of the gradient image is 
usually used to reduce the number of segments 
obtained by the toboggan and watershed 
algorithms. In [8], the gradient image is 
reconstructed by erosion. Instead, we use the 
reconstruction by closing [7] with some 
modification. The original morphological 
grayscale reconstruction defined by [7] has to 
repeat the elementary operation until the 
stability is reached. Although an efficient 
hybrid algorithm is proposed to improve the 
performance, the comp utation time still can be 
high in the worst case. In some applications, it  
is acceptable to preserve shallow valleys 
having large radiuses. Therefore, the 
reconstruction we used here is to repeat the 
elementary operation in a fixed number of 
iterations. The morphological grayscale 
reconstruction is defined as 

δM
(n) (K) = δM

(n-1) ο δM
(1) (K), ∀p, K(p) < M(p) (1) 

εM
(n) (K) = εM

(n-1) ο εM
(1) (K), ∀p, K(p) > M(p) (2) 

where n > 1, K and M are the kernel and mask 
images, respectively, and the elementary 
operations are 

δ (1)
M (K) = (K ⊕  B3×3) Ι M                            (3) 

ε(1)
M (K) = (K ○−  B3×3) Υ M                             (4) 
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⊕, ○−, Ι, Υ, and B3×3 stand for dilation, erosion, 
point-wise minimum, point-wise maximum, 
and a 3×3 square structuring element, 
respectively. Then, our reconstruction is 
defined to eliminate the valleys which are 
small (the contour of ridge cannot hold a 
(2r+1)×(2r+1) square) and shallow (the height 
of the surrounding ridge is less than h): 

G′ = ε(r)
G  � δ(r) G+h(G)                                       (5) 

where G is the original gradient image, and G′ 
is the reconstructed gradient image. The reason 
of using closing is that the dilation can fill up 
the undesired valleys and the erosion can 
correct the bias dilated ridges. 

VI. EXPERIMENTS 

The original gradient image in our experiments 
is obtained by using the Sobel operator, i.e. 

G(i, j) = Gx
2 (i, j) + Gy

2 (i, j)                  (6) 

where  

Gx = I ⊗  









- 1 0 1

- 2 0 2

- 1 0 1

, Gy = I ⊗  









- 1 - 2 - 1

0 0 0

1 2 1

, 

I is the luminance of the input image, and ⊗  
stands for the convolution. The input image 
can be 24-bit color or grayscale in 256 levels. 
The luminance of the color image is obtained 
by 

Lu = 






0.212671
0.715160
0.072169

T







R
G
B

                 (7) 

where R, G, and B are the values of red, green, 
and blue, respectively, in 256 levels, and Lu is 
rounded to the unit. 

In this section, we will compare the 
performance of the proposed toboggan 
algorithm with the more popular watershed 
algorithm. We have tried our best to optimize 
the watershed algorithm and make sure that the 
segmentation results obtained by using both 
algorithms are the same.   

In our implementation, the data type of the 
gradient magnitude can be either short integer 
or floating point. If the short integer is chosen, 
the counting sort algorithm is used for the 
watershed algorithm, and the values of the 
gradient magnitudes are rounded to the unit. If 
the floating point is chosen, the quick sort 
algorithm is used for the watershed algorithm, 
and the values of the gradient magnitudes are 
rounded to the single precision. The program 
of our implementation is written in C++ and 
compiled by the Microsoft Visual C++ 
compiler. 

 

 

 

 

 

Figure 3. The input image used in the 
experiments.  

 

Figure 4. The gradient image obtained by the 
Sobel operator without grayscale reconstruction.  
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Table 1. The computation time in different configurations. 

No. Algorithm Data Type Reconstruction Order-Invariant Connectivity Execution Time 

Toboggan 62 ms 
1 

Watershed 

Integer × × 4-neighbor 

63 ms 

Toboggan 73 ms 
2 

Watershed 

Floating 

Point 
× × 4-neighbor 

144 ms 

Toboggan 60 ms 
3 

Watershed 

Integer  × 4-neighbor 

79 ms 

Toboggan 40 ms 
4 

Watershed 

Integer ×  4-neighbor 

52 ms 

Toboggan 86 ms 
5 

Watershed 

Integer × × 8-neighbor 

81 ms 

Table 1 lists the parameters and the execution 
time of the toboggan and watershed algorithms 
in five different configurations. The 
parameters of the grayscale reconstruction are 
set as h = 32 and r = 8. The input image and its 
gradient image are shown in Figures 4 and 5, 
respectively.  The size of image is 
320(w)×242(h). In each configuration, the 
toboggan and watershed algorithms generate 
the same segmentation result. The 
segmentation results of the five experiments 
are shown in Figure 6. 

The execution time in Table 1 is the average of 
100 experimental results on a Pentium-II PC, 
excluding the computation time of the 
generation and reconstruction of the gradient 
image. We can use Experiment 1 as the 
standard configuration, where the data type of 
the gradient magnitude is integer, the gradient 
image is reconstructed by closing, order-
invariant algorithms are used, and the pixels 
are 4-connected. The experiment shows that 
the average execution time of the toboggan and 
watershed algorithms is very close. 

In Experiment 2, the floating point is chosen as 
the data type, so the watershed algorithm must 
use a comparison-based sorting algorithm and 
takes more time than the toboggan algorithm. 
In Experiment 3, the gradient image is not 
reconstructed, so an over-segmented result is 
generated (see Figure 6). It is interesting that 
this change almost has no influence on the 
toboggan algorithm, but it makes the 
watershed algorithm significantly slower. 

In Experiment 4, order-variant algorithms are 
used to segment the image. Although both the 
toboggan and watershed algorithms become 
faster than the order-invariant versions, the 
toboggan algorithm is more efficient than the 
watershed algorithm. In Experiment 5, 4-
connected neighbors are used instead. Because 
the resolving procedure of the toboggan 
algorithm is relative to the connectivity, the 
watershed algorithm is slightly faster than the 
toboggan algorithm. 



 

Experiment 1   (standard) 

 

 

Experiment 2    (floating point) 

 

Experiment 3     (no reconstruction) 

 

 

Experiment 4     (order-variant) 

 

Experiment 5        (8-neighbor) 

 

Figure 5. The segmentation results of five different configurations. 

In our experiments, the toboggan algorithm is 
faster than the watershed algorithm in most 
cases. Only that the connectivity becomes 
large (8-neighbor), the toboggan algorithm is 
slightly slower than the watershed algorithm. It 
is worthy to mention that our program assumes 
the neighbors are in the equal distance, so that 
we can use the region-growing technique to 
find the shortest paths between the inner pixels 
and the lower boundary in the non-local-
minimum flat regions. This assumption makes 
more ambiguous pixels inside the non-local-

minimum flat regions. Thus we can see thicker 
edges in the segmentation result of Experiment 
5. 

VII. CONCLUSION 

This paper has presented a new order-invariant 
toboggan algorithm for image segmentation. 
Our experiments show that, with careful 
implementation, the proposed toboggan 
algorithms and the more popular watershed 
algorithm can generate the same segmentation 
result. However, the proposed toboggan 
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algorithm is not only more applicable to 
different data types of the gradient magnitude 
but also faster than the watershed algorithm in 
most cases. Practically, the toboggan algorithm 
requires less memory than the watershed 
algorithm, because the sliding list and label 
image of the toboggan algorithm can share 
memory, but the watershed algorithm requires 
additional memory for storing the sorting 
results.  
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