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ABSTRACT

The noise reduction of speech performed in
wavelet domain is rather seldom used. The
Fourier transform performs well upon linear
time-invariant  signal  processing and s
appropriate for many applications like stationary
signal processing. Nevertheless it cannot deal
with many transient characteristics of which
speech signals possess. The wavelet expansion
gives a more accurate local description and
separation of signal characteristics. Wavelets can
adjust themselves well to suit the signal and
reveal its properties. Besides its time complexity
is only O(N). Though there are some theories
regarding to the wavelet shrinkage, most of them
focus on artificial signal or 2-D image signal
processing. The determination of the threshold
value for the wavelet shrinkage of speech signals
is either unsuitable or lacks theoretical
foundation. This paper will find out this value
from the view of mean-squared-error perspective,
and derive it step by step mathematically. Once
the threshold could be set accurately, the noise
reduction of speech through wavelet shrinkage
could be successfully done and it might not alter
the characteristics of the speech or distort the
speech itself. Experimental results show that our
approach gives encouraging results in noise
reduction for speech signals.

[. INTRODUCTION

Digital signal processing of noisy speech in a
background of noise is important as more
applications of speech recording or recognition
can not always be performed in a soundproof

booth or made in an anechoic chamber. Speech
recognition rate has dropped owing to the
corrupted speech signals. As new technologies
develop, voice will dominate to be the input
media of the computer in the future. Just like in
the films “star war” or “knight rider”, talking to
a computer will definitely be possible and get a
fair response.

Speech signal processing is usually applied in
the frequency domain through Discrete Fourier
Transform (DFT). The time complexity of Fast
Fourier Transform (FFT) is O(N log N), where N
is the sample size, and is often a large number as
the sample rate might be 8k, 22050, or 44100 Hz
etc. Such algorithms cost CPU time for even
seconds of speech signal.

There are some researches using Wavelet
Transform (WT) techniques concerning noise
removal either in one-dimensional artificial
signal or in 2-D signal processing like image
processing [1,2,3.4,5]. But few concern about
and deal with speech signal. If we can make
noise reduction and improve the quality of
speech such as signal-to-noise ratio (SNR), the
speech recognition rate will definitely increase
and this will make computer voice input more
reliable and less error prone.

Donoho and Johnstone [1] had proposed the

universal threshold th=0,/2log, N where o is

the standard deviation of Gaussian noise. For
large N, this threshold seems unrelevant, and is
against reasoning to have the threshold that
depends upon the sample size. Soon et al. [6]
treat the threshold as the expected value of the
noise magnitude in the decomposed subband, but
this value lacks sound theoretical proofs in
wavelet arena.

The time complexity of discrete wavelet
transform (DWT) 1is O(N), 1ie, linearly



proportional to the sample size. That makes
noise reduction by DWT rather faster. There are
basically two types of threshold rule, one is soft
thresholding(#,), and the other is hard

thresholding(z,):
Ew -th w=th
n,(w,th) =0 w| < th
Se+th || <—th (1)
By w| = th
th) =
(0. 14) %) w| <ih.

where w is wavelet coefficients, and 4 is the
threshold.

Speech signals are different in a way from
those artificial ones. It possesses its own nature.
We thought it is one dimension of signal and
image signal as two dimensional, but their
characteristics are quite different. The research
about acoustic theory of speech production starts
from physics laws and the theory brings up
waveform  representations and parametric
representations. In digital signal processing of
speech through wavelet transform, not much
research done concerns about finding the
threshold value.

This paper proposes a theoretical method to
determine the value of the threshold more
soundly. This begins approximation of the noise-
free signal by minimizing the mean squared
error (MSE). The foundations of noise reduction
by thresholding coefficients in transformed
wavelet subbands are based wupon the
concentrating capability of the wavelet
transform. If a signal has its energy concentrated
on the small number of transformed coefficients,
these coefficients tend to relatively large
compared to the transformed coefficients of the
noise in each subband. We assume the clean
signal 1s independent of the noise. The shrinkage
of the coefficients will remove the undesired
signal (the noise) in the wavelet domain. And
then the inverse of the wavelet transform will
then retrieve the desired signal. Generally
speaking, noise reduction is achieved by
thresholding the wavelet coefficients of the
wavelet transform of the noisy signal.

The rest of the paper is outlined as follows.
The wavelet transform theory is described in

section II. Section IIl provides the threshold
selection. The experimental results and analysis
are in section IV. Conclusions and references are
then at final.

I1. The Wavelet Transform Theory

Suppose the noisy signal y in time domain (t)
is additive, ie., y[t] = fIt] + #n[t], and is
decomposed in an orthogonal basis,

G={g}1omer (. 8n) = (fr20) H (1 20), (D)

where f is the clean signal to be recovered, » is
Gaussian noise of zero-mean and standard
deviation ©.

When the sample size (5) of the noisy signal is
equal to 2", The WT decomposition produces
the scaling function coefficients {c, k=1,..., 2"}
at (coarsest) scale level L, the wavelet
coefficients { w,, k=1,..,2;j=1L,.J} at
scale level L to J, and for a total of
2042842M 42 42T = 2" = § transform
coefficients.

But for speech signal the sample size S is
usually not in the form of 2’s power. Each level
of WT decomposition is actually achieved by
convolving the data sequence with h, and down-
sampling to obtain the scaling coefficients of
half size, and also by convolving the data
sequence with h; and down-sampling to get the
wavelet coefficients of half size. h, is a low-pass
filter and is the scaling function(¢) coefficients;
whereas h, is a high-pass filter and is the wavelet
(y) coefficients. Their relationship can be
denoted as:

by ()= (-1)" iy (1= ). 3)
The procedure of splitting, filtering, and down-
sampling is shown below in figure 1.

Figure 1. Scale level J-to-L Two-band Decomposition Tree

The thresholding is applied in wavelet
coefficients in each subband while leaving



unchanged the scaling function coefficients {c,,
k=1,...,2"} of scale level L (coarsest level).

The discrete wavelet thresholding procedure
executed in our model is diagramed in figure 2.
The synthesis of the clean speech and the noise
is finished by the tool Cool Edit 2000.

spe
i Al | DWT 10-level obtained IDWT 1.listen the result]
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d itios 2.thresholdi reconstruction 2.calculate SNR.
applied L

Figure 2. The DWT thresholding flowchart.

ITII. THRESHOLD SELECTION

We observed the noisy signal y[t] = f[t] + n[t]
+ Viued » Where n[t] is independent of f[t] and
identically distributed (iid) as normal probability
density function (pdf): Normal(0, 0*). V,,,., is
the dc offset and is a constant. The whole noisy
signal could be shifted to zero horizontal x-axis,
thus eliminating the bias. So the goal is to
remove the noise #[t], and to obtain an estimate

m] m]
fIt]. The criterion of finding f[t] is to
minimize the mean squared error (MSE),

O O
MSE(ft]) = 5 (fTt]-At]) 4
Let ¥ = T(y[t]) be the operation of wavelet
transform (7T) of noisy signal, similarly F' =
T(ft]), and N = T(n[t]). Since the transform is
orthogonal, N is also 1id  normal
pdf: Normal(0, 0°), with mean = 0, and

variance = 0. So after DWT, we get a formula
in wavelet domain as:

Y=F+N (5)

In digital processing of speech signals[7], the
pdf of the amplitudes of speech in time domain
is approximately Laplacian distribution (the
double exponential distribution) [8,9]. Because
of DWT applied is orthonormal, so is F
Laplacian distribution. Thus the objective is to
find a soft-threshold value 4 which minimizes
the risk,

Risk(th) = Exp { I (th)- '}’

= Expy Expyr { I (th)- F' }
(6)

where Exp is the expectation of probability, F' ~
Laplacian(0, 0,°), with zero mean, and
variance = 0.’ .

Y| ~ Normal(f ¢?). Y|F is normal
distribution and has the same mean as f, which
is equal to zero after eliminating the bias. Y[/

also has variance equal to 0.

e _ Ben(Y (Y| -th), [Y|=h
F(th)—ns(Y)—Ep ¥l <

(7)

The risk (6) calculation now is to solve the

Bayesian probability [10,11,12] and it could be
derived as follows:

ExpExpye (F () F 1= [ (0, )~
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From the above formulas, we can get the
optimal value of 4 :
th*=arg min risk(th) (11)
th
The th* obtained is not in closed form and must
be computed through numerical integration from
formulas (6) - (11) to find this wvalue.

Nevertheless it is interesting to point out that if
2

g .
we set th= — for each subband (where 0 is
GF

oth1+0,’) =

the noise variance in each subband, and 0 is

the standard deviation of signal in each subband),
the deviation from #h* (the theoretical value)
will be controlled within certain range. It has not
only the simplicity, but is also fast to set
adaptively the threshold in each detailed subband,
i.e., except the coarsest level subband of scaling
function coefficients.



IV. Experimental Results and Analysis

The wavelet bases selected for performing
DWT are Daubechies Wavelets, which are
compactly supported and orthonormal, and the
lengths of filter coefficients are 4, 8, 14, and 20
respectively. The clean signal is the clear and
noise-free speech, named as ‘ktv.wav’ and 30
seconds long. The noise ‘babble’ 30 seconds
long is a mumble speech of people. As opposed
to ‘babble’ noise, the noise ‘f16’, also 30
seconds long, is the screaming of jet fighter
engine. Before adding the noise, the amplitude
of it is scaled 50% and 25% respectively as high.
The DWT decomposition and synthesis is 10-
level. The sampling rate is 22050 Hz. So the
sample size is indeed a huge number. The whole
experiments are all done and programmed in
Matlab (v. 5.2) environment.

Even if the perfect reconstruction of DWT, we
pass the clean speech to a 2-level decomposition
and synthesis model to estimate the maximum
SNR obtainable, i.e., no thresholding applied.
Though the speech not altered a little and as
clear, the maximum obtained is 16.809 dB as
computed. This could be attributed to the
computer round-off and the huge of sample size.
The SNR results are listed in table 1. Besides the
above reasons, the SNR value upgraded within a
certain limit is due to one-time estimation of the
parameters. If the noisy speech is segmented,
and each segment, for example, 2-3 seconds long
is processed individually, it will make elevating
SNR value higher possible and is left for further
research.

Signal & SNR before |SNR after the experiments & wavelet
Noise type  |the selected

experiments | D4 D8 D14 D20

ktv + (50%) 8.102 9.471 9.556 9.622 9.664
babble noise

ktv + (25%) 14.123 14.735 | 14.796 | 14.838 | 14.869
babble noise

ktv + (50%) 7319 9.121 9292 9.393 9.440
f16 noise

ktv + (25%) 13.339 14234 | 14.406 | 14485 | 14.524
16 noise

Tabel 1. SNRs (in dB)
Note. D#: Daubechies wavelet of length #.

V. CONCLUSION

From the above, we may observed that the
larger the length of filter coefficients used, the
better SNR value obtained. This means that
larger Daubechies wavelet has better filtering
effects. The wavelet shrinkage for noise
reduction of speech is possible, but we should
first estimate the parameters correctly. This is the
main purpose of the paper to provide the
theoretical threshold for noise reduction. One of
the characteristics of wavelet is that it is well
suited to transient signals like speech, and it can
separate the noise from signal. This make noise
reduction possible by thresholding in wavelet
domain. Whereas Fourier analysis deals mostly
with stationary signals and is appropriate for
periodic signals whose statistical characteristics
don’t change with time, so it can not remove
some types of noises in speech like the ‘babble’
noise.

Even though the huge sample size, the wavelet
thresholding is rather faster in performing noise
reduction. This is because the time complexity of
it is O(N), rather than O(N log N) which is
needed in Fourier transform.
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