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Abstract

In order to provide different service treatments to
individual or aggregated flows, layer 4 routers in
Integrated Services networks need to classify packets
into different queues. The classification module of
layer 4 routers must be fast enough to support gigabit
links at a rate of millions of packets per second. In
this work, we present a new software method OLBM
to lookup multiple fields of a packet, in a dynamically
pre-defined order, against the classification database.
This algorithm can classify packets at a rate of well
over 1 million packets per second while scaling to
support more than 300K flows. Complexity analysis
and experiment measurements are also presented in
this study.
Index Terms: classification, layer 4 router, packet
filtering, lookup, match, scalability

1 Introduction

In order to support QoS in the Integrated
Services (IntServ) [1][2][3] networks, several traffic
control modules need to be added into the layer 4
routers which examine not only IP headers but also
transport-layer headers. The admission control, in the
control-plane, and the classifier, scheduler, in the
user-plane, are three basic modules for QoS traffic
control. The classifier, which distinguishes incoming
packet into different flows, becomes essential.
Besides QoS processing, firewall and VPN [4] for
example, also need the classifier to classify packets
based on multiple fields. In this work, we focus on the
classification for per-flow QoS processing concerning
five fields: src/dest port, protocol ID, and src/dest IP.

There are three key components in the
classification module: the filter database, the
classification database, and the classifier. The filter
database consists of filtering rules updated by the
admission control module at run-time. Then the filter
database inserts its information to the classification
database as search indexes for the classifier to refer.

Figure 1 shows the role of the classification module
and its process.
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Figure 1: Classification module and its process.

Two methods have been proposed for fast
classification. Table 1 is a summary comparing these
two methods. Both these methods lookup all the five
fields of a packet against each filtering rule. In
addition, they do not seem to be scalable enough to
meet the high scalability requirement. Thus, we
provide a scalable method :Ordered Lookup with
Bypass Matching (OLBM). Ordered Lookup (OL)
may save unnecessary work without looking up all the
five fields. Bypass Matching (BM) can help to finish
the OL more quickly.

High-Speed Policy-based Packet
Forwarding Using Efficient Multi-
dimensional Range Matching [5]

Fast and Scalable Layer
4 Switching [6]

Dest-src tries
Cross-producting

Multi-dimension matching

Method Bit-parallelism

Implement |Hardware Software

Tens of thousands of

Scalability |Thousands to tens of thousands of filters
fileters

Throughput |About 1 Mpps At least 1 Mpps

Using special hardware
Low memory space

Using general processor

Features .
High memory space

Table 1: Summary of two published methods.

The rest of this work is organized as follows. We
give our design objectives and motivation in section 2.
Section 3 presents the OLBM algorithm. Section 4
draws the analytical results of the worst case.
Experimental performance studies are given in section
5. Our conclusion is given in section 6.




2 Objectives and Motivation

2.1 The Design Objectives OLBM Algorithm
There are three objectives for designing a
classification algorithm:

1. Throughput: The algorithm must be able to
process at least 1 million packets per second. For
an OC-3 link of 155 Mbps, considering that all
incoming packets are as small as 64 bytes, the
classifier must process 317,440 packets in one
second. Thus, for a router with multiple interfaces,
the processing rate of over 1 million packets per
second is required.

2. Scalability: The algorithm must be scalable.
Recent studies have shown that an OC-3 link
might have an average of 240K flows [7], which
implies that there would be as many as 240k
filtering rules in the data structures of a classifier.

3. Extensibility: The algorithm must be flexible
enough to be extended to lookup using more fields,
or even payload, against even IP prefix type filters.

2.2 The Design Motivation of Ordered Lookup

The motivation to design OL is that the classifier
could use fewer fields of the packet header to find the
matched filtering rule, if any. It needs fewer memory
references and CPU instructions, which means that
the classifier can achieve the same function faster.

This algorithm is designed for software
implementation. Since the classifier has to
sequentially compare all the five fields of the packet
header with the filtering rules, it can pre-define an
order for these fields to lookup, and may find the
matched filtering rule before all the five fields are
looked up.

Now how to design this pre-defined lookup order
to minimize the classification time is an important
issue. We propose that the classifier selects the field
that the filtering rules are distributed most evenly, and
compares the packet against that field first. We will
describe the strategies to determine the lookup order
according to the distribution of the filtering rules in
section 3.3.

3 Ordered Lookup with Bypass Matching

3.1 Data Structures of the Classification Database

The date structures of our classification database
are constructed by two primitive tables, named 64k-
table and 256-table, as shown in Figure 2. It takes one
64k, one 64k, one 256, two 64k, and two 64k tables
for the src/dest port, protocol ID, and src/dest IP

fields, respectively. The index of the tables
corresponds to the value of the field. Each table entry
stores a list of 3-byte pointers to the filtering rules in
the filter database. The data structures for the fields of
src/dest IP address require more explanations. The
index value of each entry in the first 64k-table
represents a 16-bit IP prefix. The index value of each
entry in the second 64k-table represents a 16-bit IP
suffix.

0 |list of filtering rules

1 |list of filtering rules | 0 | list of filtering rules

2 | list of filtering rules I |list of filtering rules

65535 |list of filtering rules | 255 | list of filtering rules

(a) 64k-table (b) 256-table
Figure 2: The data structure of 64k-table and 256-
table.

3.1.1 Insertion Operations

A filtering rule is inserted into an entry of the
table for a specific field, according to its value for that
field. The insertion operation for src/dest IP address
field needs more explanations. When a filtering rule is
to be inserted into the classification database, it is
inserted into the first and the second 64k-table, using
its 16-bit IP prefix part and the 16-bit IP suffix,
respectively. The advantage of this scheme is that we
do not have to use a 32-bit flat table but needs merely
two 64k-table to index an IP address field.

3.1.2 Lookup Operations
To clarify the description of the lookup
operation, we first define some terms.

Definition: field-matched filtering rule
A field-matched filtering rule is a filter retrieved by
looking up only one field of the packet header.
Definition: matched filtering rule
A matched filtering rule is a filter containing exactly
the same values for the five fields as those of the
incoming packet at the end of the classification process.
Definition: partially matched filtering rule
A filter is said to be a partially matched filtering rule it
some of its fields are the same as those in the incoming
packet.

When the classifier wants to get the field-
matched filtering rules for src/dest IP address, it uses
the 16-bit prefix part and 16-bit suffix part of the IP
address in the packet header as indexes to the two
basic  tables, respectively, to retrieve the



corresponding filtering rules. If the sets of filtering
rules found in the first 64k-table and the second 64k-
table are denoted as FR1 and FR2, respectively, the
classifier performs (FR1 M FR2) to retrieve field-
matched filtering rules for the IP address field.

3.2 Ordered Lookup Algorithm
We introduce the OL algorithm here. First, we
define some terms to clarify the algorithm.

Definition: ordered lookup
Ordered lookup is the process to perform lookup
operation with the five fields of a packet, one by one,
in a pre-defined order.

Definition: lookup operation
A lookup operation is to take the value of one field of
a packet header as the index into the tabular data
structures for the field.

Definition: match operation
A match operation is to compare all the five fields of a
packet with the corresponding fields of one filtering

rule.
In the following we describe the OL algorithm.
The classifier lookups the first field of a packet in the
pre-defined order, against the tabular data structures
and obtains a set of partially matched filtering rules,

which forms a candidate set of matched filtering rules.

If the size of the set is 0, surely the packet does not
match any filtering rules; if the size of the set is 1, the
classifier has to perform a match operation with the
packet and that filtering rule to see whether the packet
really matches the filtering rule; if the number of the
set is more than 1, the classifier continues to lookup
the second field and obtains another set of filtering
rules. If the number of this set is more than 1, the
classifier intersects this set with the candidate set and
result in a new candidate set of filtering rules. If the
new candidate set contains only one filtering rule, a
direct match is performed.; if there are more than one
filtering rule, subsequent lookups and intersections
are performed. Table 2 describes the required
functions and variables in our pseudo code. Figure 3

shows the pseudo code of this algorithm.

Function Description

lookup(PF, FF)  [Lookup the field PF of a packet against the tabular
data structures for the field FF

match(PKT, FR) [Match a packet PKT with a set of filtering rules FR

Variable Description

Packet The incoming packet

LO[0-4] The lookup order of the five fields

CFR[] The candidate set of filters rules for a packet

FR[ ] One-field lookup resulting set of filters for a packet
Destination_port |The tabular data structures for the dest port number
Destination_IP The tabular data structures for the dest IP address
Source_port The tabular data structures for the src port number
Source 1P The tabular data structures for the src IP address
Protocol_id The tabular data structures for the protocol

Table 3: Function and variable descriptions of OL.

Algorithm: Ordered_Lookup
Input: packet, LO[0~4]  /* lookup order */

Output: CFR[ ] /* candidate set of filtering rules */
CFR[ ] = NULL
forl=0to4

switch LO[I] /* lookup the 5 fields by the given order */

case Destination_Port:
FR[ ] = lookup(packet.destination_port, Destination_port)
goto Match

case Destination_|IP:
FR[ ] = lookup(packet.dstination_IP, Destination_IP)
goto Match

case Source_Port:
FR[ ] = lookup(packet.source_port, Source_port)
goto Match

case Source_|P:
FR[ ] = lookup(packet.source_IP, Source_IP)
goto Match

case Protocol_|dentifier:
FR[ ] = lookup (packet.protocol_id, Protocol_id)
goto Match

Match:
if sizeof FR[ ] = 0, return NULL
if sizeof FR[ ] = 1 and match(packet, FR[ ]) = TRUE, return FR[ ]
else CFR[ ] =CFR[] M FR[]
if =4, return CFR[]  /* last lookup order */
if sizeof CFR[ ] = 1 and match(packet, CFR[ ]) = TRUE, return CFR[ ]

end switch
end for

Figure 3: Pseudo code of OL algorithm.

3.3 Decision Strategies for Lookup Order

It may happen that different lookup order will
result in different classification speed. The best
lookup order is the one that uses the least lookups on
the average to find the matched filtering rule, if any.
To minimize the number of lookups, it is
straightforward that the classifier should first lookup
the field in which the average number of field-
matched filtering rules per table entry is the least
among all the five fields. Because the classifier might
get the minimal number of field-matched filtering
rules on the average after each lookup, the lookup
sequence is more likely to terminate in the midway.

There are other ways to determine a good lookup
order. We define the average number of field-matched
filtering rules per entry as avg, and the standard
deviation of the number of field-matched filtering
rules per entry as sdv. We provide the following three
strategies for the classifier to determine the lookup
order. The lookup order is according to the sorted
results, from minimum to maximum, of the five fields.
MAF: Minimum Average-length First

The classifier first lookups the field that has the
minimal avg. Thus the classifier is likely to get the
least field-matched filtering rules on the average after
each lookup. However, in the worst case the classifier
may index to the entry that has the maximum number
of filtering rules among all entries. This maximum
number could be large if sdv of the field is large.



MSF: Minimum Standard deviation First

The classifier first lookups the tabular data
structures for the field that has the minimal sdv. Thus
the classifier is likely to get the similar number of
field-matched filtering rules after each lookup.
MASF: Minimum avg and sdv first

The classifier first lookups the field that has the
minimal avg*sdv. Thus the classifier may not only on
the average case but also on the worst case get the
least field-matched filtering rules after each lookup.

We compare the throughput of different lookup
orders determined by these three strategies in section
5.

3.4 Bypass Matching

As mentioned in section 3.2, the classifier
terminates the lookup process by direct match when
the number of field-matched or partially-matched
filtering rules is one. In fact, the lookup process might
be terminated more quickly. Assume that the number
of field-matched or partially-matched filtering rules is
k, then the classifier matches the packet directly with
the k field-matched or partially-matched filtering rules
if the cost of k& matches is less than that of the
remaining lookups. We call this operation bypass
matching, and define the maximum value of k that
satisfies the above criteria for direct matching as K.
Figure 4 is the modified pseudo code for the OLBM
algorithm.

Match:
if sizeof FR[ ] = O return NULL
if sizeof FR[ ] <=K
for each lin FR[ ]
if match(packet, 1) = FALSE
remove (J, FR[ ])
return FR[ ]
else CFR[ ] =CFR[] N FR[]
if 1=4, return CFR[]  /* last lookup order */
if sizeof CFR[ ] <=K
for each ] in CFR[ |
if match(packet, 1) = FALSE
remove (J, CFR[])

return CFR[ ]

Figure 4: Modified pseudo code for OLBM

The threshold K for bypass matching is a
machine dependent threshold. We now describe how
to determine the bypass matching threshold. There are
two major kinds of CPU instructions in our algorithm.
One is memory reference, and the other is compare,
with their costs Cm and Cc, respectively. If there are k
filters left after lookup some fields, whether to
directly match k filters or continue to lookup the
remaining fields is up to the following inequality:

k(Cm+5Cc)<2~Cm+k-%-Cc+(Cm+5Cc)

where E is the number of entries in the tables for
a field and N is the number of filters.

The left part of the inequality is the cost of k
direct matching, each of which contains one memory
reference to retrieve the filter and five comparisons to
compare the five fields. The right part of the
inequality is the least cost to lookup the remaining
fields, which happens in the following situation: the
next field lookup first use two memory reference to
take the next field of the packet to index to the
corresponding table, and retrieves (N/E) field-
matched filtering rules, in the average case. Then the
(N/E) filters intersect with the k filters to form a new
candidate set of matched filtering rules, which costs

(¢.N.c.). The least cost situation happens in that the
E

resulting candidate set contains only one filter, and its
remaining cost is simply a match operation of that
filter, which costs (Cm + 5Cc).

Thus,
3Cm+5Cc
k< —r— """

Cm+(5—%)(,'c
So the maximum number of k, denoted by K,

equals to | 50,4 5c¢

Cm+(5- E)Cc
E

In brief, once you have decided to run this
algorithm on some machine, given the costs of
memory reference and compare instructions, with the
knowledge of current number of filtering rules N and
current number of entries in the table, the machine
dependent threshold K can be determined.

4 Complexity Analysis: Time and Space

Our OLBM algorithm is concerned with five
fields. It has at most five lookups in the classification
process. Because each field is basically the same, so
we show the time and space complexity of this
algorithm by analyzing a single field first.

The worst case happens when all of the filtering
rules for this field are stored in only one table entry.
After retrieving the field-matched filtering rules, the
classifier either lookups into the next field and then
intersects the resulting field-matched filtering rules
with those from the previous lookup, if any, or
matches the packet with the currently candidate set of
matched filtering rules. Both of them take O(N) time
in the worst case.

As we have mentioned that there are at most five
lookups and four matches in our method, so the time
complexity of lookups and matches for F' fields are



O(N*F) and O(N*(F-1)). And the time complexity of
our algorithm is O(N*F). In IntServ networks filters
are always in per-flow type. Thus the space
complexity for our classification database is O(N*F).

Table 3 shows the time and space complexity of
three classification methods. The space complexity of
ours is much lower than [5]. [6] needs a huge memory
space and cannot scale to 300K filtering rules.

Description s . Space'
Complexity Complexity
Ordered Lookup with Bypass Matching O(N*F) O(N*F)
High-Speed Policy-based Packet
Forwarding Using Efficient Multi- O(N*F) O’ *F‘?)
dimensional Range Matching [5]
Fast and Scalable Layer 4 Switching [6] O(log + %) O(N*W)

Table 3: Time and space comparison of the methods.
(W denotes the maximum bit length of any destination or source prefix, k
denotes the number of fields to be checked by the classifier.)

5 Performance Study

We have implemented and experimented our
algorithm on two platforms. One is the Intel Pentium-
IT 350 Mhz CPU platform and the other is the Sun
UltraSparc 300Mhz CPU platform. The hit ratio for
arriving packets is 80%, i.e. only 80% of arriving
packets will hit one filtering rule. The default strategy
for deciding lookup order is MAF.

5.1 Memory Usage

Figure 5 shows the memory usage of our
algorithm. Our classification algorithm uses quite
reasonable size of memory, e.g. 10 MB for 300K
filtering rules, while [6] uses 7.489 MB memory for
only 20K filtering rules.
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Figure 5: Memory usage of the ordered lookup

algorithm.
5.2 Throughput

Figure 6 shows the throughput of OL and the
improvement of BM with threshold K as 2. In this
experiment the filtering rules are randomly generated.
Note that without BM the throughput drops more
rapidly because the number of lookups for each
packet increases when the number of filtering rules
increases. We can see that from Figure 7.
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Figure 6: The effect of OL and OLBM on two
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Figure 7: Number of lookups used by the OL.

5.3 Sensitivity to Locality

In routers both incoming packets and filtering
rules might have some degree of address locality and
could affect the performance of the classifier. We use
three simple address locality models shown in the
Table 4 to simulate the address patterns observed at a
router.

80% filters concentrate in 20% filters are
Model 1 30% of the address space
Model 2 20% of the address space | Randomly generated
Model 3 10% of the address space

Table 4: Three address locality models

From Figure 8 we can see that higher address
locality leads to lower throughput, especially when
the number of filtering rules is large. It is because the
average number of field-matched filtering rules after
each lookup increases, as both the address locality
and the number of filtering rules increases. But
overall, the throughput sensitivity to locality is not
very high.
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Figure 8: The effect of address locality (on P-1I ).



5.4 Decision Strategy for Lookup Order

We use the address locality model 1 in section
5.3 to generate the filtering rules for this experiment.
In section 3.3 we provided three decision strategies
for lookup order. In Figure 9 it shows that MSF and
MASF result in almost the same throughput. The
lookup orders decided by these two strategies are
almost the same in the repeated runs. The standard

deviation seems to be more dominant than the average.

But the throughput of MAF is a little lower, because
of the worst case we described in section 3.3. MSF
and MASF turn out to be better strategies for our
algorithm.
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Figure 9: The effect of different lookup order decision
strategies on Pentium-II platform.

5.5 Scalability

Figure 10 shows that OLBM  algorithm is
scalable. Even with 300K filtering rules in the
classification database, the throughput is still above
1.1 Mpps, compared to 1.1 Mpps with 20K filtering
rules in [6]. 300K is already larger than our design
objective, 240K [7], set in section 2. The bypass
matching threshold is set to 8 for this experiment.
When the number of filtering rules increases, the
number of filtering rules per table entry becomes
larger, which increases the cost of intersection
operations. The intersection operation dominates the
performance of our algorithm.
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Figure 10: At least 1 million packets per second for

300K filtering rules.
5.6 Extensibility

Although our algorithm is mainly for per-flow
classification, it can be extended to lookup more
fields or even the payload of a packet. Once you
decide to extend it to support more fields, you simply
analyze the extra memory reference and compare
instructions to lookup that field, and then re-compute
the machine dependent threshold K as the criteria for
bypass matching. In this way, the algorithm is capable
of being extended to lookup various filtering rules for
VPN or firewall layer 4 routers, while preserving high
performance features such as scalability and
throughput.

6 Conclusions

In this work we presented a new multi-field
classification algorithm that scales well to support
300K filtering rules using 10 MB memory at a rate
over one million packets per second, compared to 1.1
Mpps with 20K filtering rules in [6]. When there are
20K filtering rules in our classification database, our
algorithm is 50% faster than the algorithm proposed
by V. Srinivasan et al. [6]. [6] needs a huge memory
space and cannot scale to 300K filtering rules.
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