chERE/\+/\FREFERTER

EZERTFARREAHENIERALTOREARS
A User-Oriented Proxy Server Supporting Data Prefetching and Refreshing

Shang-Rong Tsai

tsa1@turtle.ee.ncku.edu.t

EH
Chung-Kie Tung

tung @turtle.ee.ncku.edu.t

B &
Hung-Ming Wang

whm@turtle.ee.ncku.edu.i

Distributed System Laboratory, Department of Electrical Engineering
National Cheng-Kung University, Taiwan, R.O.C.

#HE

PBX L~ X BETHABRRE D EMZEF S5

HREBLRE, FERFRELCTH S A48 R HIREAER
B L HHAERREEFEBER, UKD E T
i B AT F 69 BF R, B B R A R A IR B LR

Abstract

Most studies of the proxy server focus on increasing the cache
hit rate of the proxy server by caching the most popular pages.
But the most popular pages are not what users need
sometimes, especially for the professional. In this paper ™, we
propose a user oriented proxy system supporting prefetching
and refreshing. The users could subscribe the URLs he want s
and the documents of the subscribed URLs will be cached and
automatically refreshed by the proxy system. A private space
is reserved to store the subscribed pages to avoid being
flushed out in the cache replacement. Thus, whenever the
subscribed pages are requested, they can be got directly from
the proxy system. The proxy systen can be used as an ordinary
proxy server in addition to supporting prefetching and
refreshing. To evaluate the service capacity of our proxy
system, we collected statistic data from four running proxy
servers to estimate the storage requirement of a typical
subscription.

Keyword: Proxy, Prefetch, Web Latancy
1. Introduction

The World Wide Web has become the most popular
application on the Internet. The increasing number of web
servers and browsers makes the web traffic overflow the
Internet bandwidth. Most users of the web experience
significant latency when they are ysing the web. How to
reduce the web latency efficiently has become an important
issue in today's Internet environment.

There are three sources of the web latency: the network
latency, the speed of the hardware and the HTTP
protocol[1,2,3,4]. The network latency is because of the lack
of enough bandwidth and the network propagation delay. The
network propagation is dependent on the distance between the
server and the client and it could not be eliminated. The
computer hardware and the network equipment would have
influence on the network latency too. The HTTP protocol 1.0

* This project is funded by National Science Council, Project
Number: NSC89-2219-E006-003

C-408

[1] makes one connection for each object. A web page
containing many objects would need many connections to
complete, this costs a lot of TCP initial delay. The newer
HTTP protocol 1.1[2] makes use of persistent connection and
pipelining to reduce the network delay caused b the TCP
connections[3,4].

Since the propagation delay only depends on the distance
between the client and the server, the solution is using cache
or mirroring to make the data to be retrieved near by the client.
Mirroring is usnally used to speed ftp access. Mirroring a
server must consider the legality of copyright. For web access,
cache approach is generall used. The cache approach can be
categorized into three types: the server side, the client side
and the proxy server. The server side cache is build on the
web server, which eliminates the processing time on the web
server to locate frequently accessed objects. It won't reduce
the propagation delay. The client side cache is build on most
of the modern web browsers, it could efficiently reduce the
requests for the same object from the same client. The client
side cache sometimes appears in the form of 'server,push’.
The users of the client subscribe the material s they want, and
the server pushes the data back to the client in background.
This is normally done by 'client-poll' approach. [7] In case the
users want to browse the data, the data is immediatel
available on the clients. lthough the client side cache
effectively reduces the request for same object on one client,
another client can not enjoy the benefit he wants to access the
same object. The proxy server is the solution to this problem.
It usually locates on the same local area network as the client
does. When different clients access the web throu gh the same
proxy server, they share the cache. If the cache hit, the access
would get much lower latency compared to directl
connecting to the web server. Due to the limited space of the
proxy server and the number of users on the same proxy, a
busy proxy server would do cache replacement frequendy.
Some studies show that the best hit ratio on a proxy server is
about 30% to 50%[6]. Statistics show that the cache hit ratio
of a proxy server is normally less than 30%.

Various researches[12,13,15] have focused on how to increase
the hit ratio of a proxy server, and the prefetch mechanism is
the most usual way. The prefetcher on the proxy server can
gather information from different clients and the proxy server.
With this information, the prefetcher makes prediction of
what will be needed in the near future and prefetches them
into to the cache. When the clients makes requests to the
proxy server, the requested-data is already in the cache. This
makes the web access much faster when browsing the web

pages.

Increasing the hit ratio of the proxy cache is not appropriate
sometimes. Because the most frequently accessed data ma

not fill the needs for some users. For example, when a doctor
tries to fetch some medical data through the proxy, most of
the time the cache will miss because the medical data is not
frequently accessed. The doctor has to wait for the data to be
fetched in to the cache. Even after the medical data enters the
cache, it won't stay in the cache for a long time because other
frequently used data may kick this medical data out of the
cache.

In this paper, we will propose a user oriented proxy system
supporting prefetching and refreshing, which can solve the
problems described above. With our proxy system, users can
subscribe the web objects they are interested in. The proxy
system can prefetch the subscribed objects and refresh them
automatically. A group of users with similar interests can thus
share the web information through the proxy system and
enjoy very fast access. In section 2, we will show'several
researches related to our work. In section 3, we will describe
our proxy system in detail. In section 4, we will show some
statistics to evaluate the service capacity of our system. In
section 3, the result of our system is described. Conclusion is
given in section 6.

2. Related Work
In this section, we will show some researches on prefetching.
2.1 Statistical Prefetching

‘Statistical prefetching[10] tries to analyze the log on the
proxy server and prefetch the most frequently accessed pages
by a threshold. It is based on the assumption that the most
frequently accessed pages in the past will be also accessed
frequently in the future. Inappropriate threshold could make
statistical prefetching waste a lot of bandwidth. Here is a
tradeoff between bandwidth and latency.Further more, the
retrieving delay for non-prefetched data may actually increase
due to the extra traffic of the prefetching.

2.2 Deterministic Prefetching

Unlike the statistical prefetching which may fetch unwanted
data by analyzing the old access log, the deterministic
prefetching[11] will only prefetch the pages specified by the
user. Because the user knows what pages he will need in the
near future, the deterministic prefetch costs almost no extra
bandwidth overhead. The disadvantage of the design is that
the prefetcher and the user preferred link database is located
on the client side, the user's computer needs to keep powered
on when doing prefetching. Since the user preferred link
database is located in client side, it is not convenient when a
user uses more than one computer.

2.3 Interactive Prefetching

The basic idea of interactive prefetching[13] is the links
contained in a page is very possible to be viewed in the next.
The proxy server parses the content of the requested page and
find all the linked pages in it. When the user on the client is
viewing the requested page, the prefetcher on the proxy server
fetches the objects in those linked pages. This approach could
raise the hit ratio of proxy server cache up to 60% but also
make the traffic 4.12 times larger than a normal proxy server.
The disadvantage is the exira traffic caused by prefetching.
Because the interactive prefetcher only considers the links in
the requested page and doesn't make use of the user access
history log, it may prefetch many unwanted pages. Moreover,

C-409

the parse of the page contents also induces overhead to the
Proxy server.

2.4 Top-10 Approach

The Top-10 approach [14] has 2 assumptions: Only the most
popular pages are worth o be prefetched, and the amount of
pages needed to be prefetched from a server is not equal for
all clients. It should depend on how many pages have been
requested by the client in a past period. The Top-10 approach
needs the cooperation of the client, the proxy and the server.
The Top-10 daemon on the server processes the access log to
get theTop10, the most popular pages on the server. The
prefetching agent on the client analyzes the access history to
see if the request page count for any server is over a thresh old.
Then the agent fetches the Top-10 pages from that server. The
study shows that more than 40% requests could be cached
with no more than 10% traffic. The problem of this design is
the client, the proxy and the server need to follow the same

policy.
2.5 Predictive Prefetching

There are two main components in this predictive
prefetching[12]: the prediction daemon and the prefetching
engine. The prediction daemon on the server generates the
dependency graph of the client access. It will inform the
prefetch engine on the client to do prefetching if any page is
found to be highly dependent on current requested page.

g7 | imagel.gif

image2.gif

0.5

oot

0.01
Fig 2-1: An example of the dependency graph
The imagel.gif has 50% chance to be accessed
when is browsed

By making use of the dependency graph containing the
portability information, the prediction engine could make
pretty good predictions. The disadvantage of this design is
that it needs to modify the HTTP protocol.

2.6 Hybrid Prefetching

When the client requests a page, the hybrid prefetcher [15]
tries to find the candidate to prefetch from 3 sources: the links
contained in the current requested page, the dependenc

graph build from the "referer” HTTP[1] header and the pages
located in the same directories as current requested page is.
The hybrid prefetcher will prefetch those candidates under 2
constraints: the popularity and the portability of the candidate.
The studies shows that the proxy server cache hit rate could
be more than 70% with no more than 40% extra network
traffic.

2.7 The Squid Web Cache Proxy

The Squid proxy[8] is derived from the ARPA -funded

‘Harvest project. Squid is a high-performance proxy system

for web clients and supports the caching of FTP, gopher, and

HTTP data objects. The Squid uses the ICP[9] to do the inter
proxy server communication. WithICP, the Squid servers
could be arranged to form a hierarchy structure to share the
objects in their cache. Due to the great characteristics of the
Squid proxy, our User Oriented Proxy system is based on the
Squid proxy.

3. The User Oriented Proxy System
3.1 Motivation

A proxy server in general serves many people. To make the
use of the cache space efficientl , the proxy server tends to
cache those most popular pages. In such circumstance, a
professional people trying to retrieve some specific
information ma probably get cache miss since the
information is not popularly interested. Even more, after the
information is cached into the proxy sever, it will be probably
flushed out very soon due to the cache replacement.

The World Wide Web has become a very helpful tool in
teaching and learning. More and more people use the
documents on the web as their reference materials for
teachin in their classes. To avoid violating the copyright, the
teacher should not copy those data into his own web site.
Consequently, when far-away web pages are referenced for
teaching on the class, the people would wait for a long time.

The off line browsers are usually used by users to grab the
contents of a web site. Using this kind of tools has several
disadvantages. The data could not be shared with others. The
bandwidth will be waste if many people fetch the same data
and the pages fetched back could not be viewed correctl
sometimes. Besides, the storage of a personal computer is
generally limited.

All the problems listed above lead us to think about designing
a user orieried proxy system which supports prefetching and
could refresh the data automatically.

3.2 Design objectives
There are four objectives in the design of our system.

1. The system should be compatible with existing prox
servers. Thus the user can use our proxy system with n o
modification to their browsers. Because squid is the most
popular proxy server in the Internet, we decide to use
squid as the base component of our system.

2. The system should have a friendly interface. Users use this

’ interface to subscribe pages by specifying the parameters
for prefetching, including the, URL needed to be
prefetched, the depth of internal links *and external links
to be prefetched, the refresh frequency, etc.

3. The system would be used as a data-collecting tool. The
system prefetches the data for the user and keeps it up to
date automaticaly. Teachers can use this system to
prefeich the referenced materials without violating the
copyright. Students can browse the referenced material
with very low latency delay by setting this system as their
proxy.

" The page of a URL and all pages linked from that URL
form a URL tree. The links from the same directory of the
URL or the sub directories of the URL are internal links.
Others are external links.

Subscribe

Page
: ¥ ¥
Private Private Private
ProxyServer ProxyServer ProxyServer
Web : : :
Access I 100Mbps

4. The system would be easily extensible. Since one server
has the limitation in disk space and processing power,
multiple server configuration is applied. The service
capacity will be easily extended by adding more servers to
the system.

3.3 System Architecture

User/URL
Page
: | Database
Page Schedr

M

Pages

k)
\& l Public Proxy Server

Web

Fig 3-1: System Architecture of the User Oriented Proxy System

The system architecture is shown in figure 3-1 and the main
components of our system are described below.

1. Public Proxy: This is the proxy server directly accessed b
the client (the browser). It use ICP[9] to communicate with
other private proxy servers.

2. Private Proxy: The private proxy servers provide the space
to cache the pages subscribed by users. They are not
directly accessible to users. They are responsible for
passing the fetch requests to the prefetch engine to cache
the pages subscribed by users. The private servers are
configured as sibling servers of the public proxy. It will
answer the ICP query from the public server but won't fetch
data for the public proxy.

3. Page Subscriber: It provides the user interface for users to
add/delete the pages to be subscribed. The user also uses
this interface to check the status of the subscribed
pages.(complete, not complete or updated)

4. User/URL Database: It is used to store the user account
data, including the password, the subscribed URL and the
status of the subscribed URL.

5. Page Scheduler: This is the most important component in
our system. The scheduler looks for the URL to be
prefetched or refreshed in the database. It then passes the
refreshing job to the refreshers on the private proxy server.
The scheduler monitors the operating status of each
refresher and distributes the job to those active refreshers
using a hash value based on the URL string. In case the
refresher or the private proxy server crashes, the system
can still operate correctly. This gives oursystem a limited
fault tolerant capability.

6. Page Refresher: Each private proxy server in our system
has a refresher. The refresher accepts the URL passed b
the page scheduler, it then forks a prefetch engine to do the
prefetching job. After the job is complete, the refresher
updates the prefetch status for the URL in the database.

7. Prefetch Engine: This is the process doing the real
prefetching job. It is forked by the page refresher and will
report the status back to the refresher.

C-410

. Number of Number of
Proxy Server T(;tlaégfzg t(s)f NE?EE:SM }T’Iu'l\rj[lget{ﬂzg Iniernal links in| external links in
J] all HTML files | all HTML files
Turtle .ee.ncku.edu.tw 3180000 172837 28512 148639 111872
Proxy.ncku.edu.tw 4002100 199711 42911 217649 177959
Proxy2.ncku.edu.tw 15134000 820160 147611 720764 651339
Gate2.ncku.edu.iw 5538700 252267 50531 257327 239908
Server Total 27854800 144, 4975 269565 1344379 1181078

Table 4-1 : statistics on 4 proxy servers in ncku.edu.tw

The mean size of |The mean size of a
. The average count | The average count
Proxy server an object page . . .
. = of internal links | of external links
(unit:k) (unit:k)

Turtle.ee.ncku.edu.tw 18.39884 111.532 5.213208 3.923681
Proxy.ncku.edu.tw 20.03946 93.26513 5.072103 4.147165
Proxy2.ncku.edu.tw 18.4525 102.5262 4.882861 4412537
Gate2.ncku.edu.tw 21.95571 109.6099 5.092458 4.747739

Pag Average 19.7 104 5.06 4.3

Table 4-2 : Statistics on 4 proxy servers in ncku.edu.tw

3.4 Implementation

We use the squid software for the public and private prox
servers. The prefetch engine is written in perl. The page
scheduler and page refresher are java applications. The page
subscriber is made with CGI form and Java serviet. The

database is MySQL. It is accessed through the JDBC interface.

There are some issues in our implementation.

1. Prefetching Polic

The system must engage a policy to decide the priority of
each URL object to be fetched. In oursystem, the priority is
dynamically changed. Each URL in the database has a weight
value. The initial value assigned by the system administrator
is depend on the user group. The scheduler will increase the
weight of all URLs everyday, then it passes those URL whose
weight >=100 to the refreshers on the private proxy servers.
The weight value of the new added URLs will be set to 100 to
make them be prefetched as soon as possible.

2. Load distribution on multiple private proxy server

In order to have sufficient cache space to store the subscribed
pages, muliiple private proxy servers are set up and cooperate
in our system. An algorithm is needed to distribute a
document pbject to one of the private proxy servers. The
distribution formula is

Proxy_Server_Number = Hash_Number mod N

Where
N is the total numbers of the private servers
Hash_Number is a hash value calculated based on the
URL string
Proxy_Server_Number is the private proxy server where
the prefetch job will be

Because the Hash_Number is calculated based on a URL,
each page will has a fixed hash value. If the number of the
private proxy servers doesn't change, a page will be cached to
a fixed server. If the number of the privaie proxy servers
changes, the page would be cached to another server, and the
page cached on the original server will be finall expired and
deleted automatically by the squid system.

C-411

3. Load control on each private server

The page prefetching and refreshing is actually done in each
private proxy server. The refresher on each private prox
server forks mulitiple child precesses to execute the prefetch
engine. The refresher will monitor the system load. If the
system load is (0o high, it won't fork new child process until
the load is down.

4. Prefetching size control

Unlike other web grabbing tools which typically use only one
parameter to control the depth of the URL tree to feich, our
prefetch engine has the depth control for both internal and
external links. Thus the user can specify the space of the web
documents to be prefeiched more precisely. To control the
size of one prefeiching, the system limits the maximum value
of the depth in prefretching. In order to minimize the impact
of the extra traffic caused by the prefetching, The prefetching

can be set to start when network is idle.

4, Evaluation of storage requirements

The capacity of this service is important We want to make
sure how many subscriptions are affordable in practice.
Because the system is used to cache the subscribed URLs, we
define the service capacity as the number of URL trees that
can be cached when the total cache size is fixed. In other
words, we want to figure out what is the size of a typical URL
tree. We define the expression of a URL tree as follow

Tree: [URL, depth_of_internal_links,
depth_of_external_links]

In the following, we evaluate how much space is needed if a
user subscribe a URL tree [URL,5,1]. The evaluations have
been done in three cases.

Case 1: The URL tree is a full tree

We have made statistics on 4 proxy servers in our university.

There are total 1444975 objects in the caches and the total
object size is 27 GB.

In table 4-1, 4-2, it shows that

Number of ‘ Number of
Number of Number of internal Number of external
Proxy Server HTML files mterr;gl HTML non-HTML extern:al HTML non-HTML
inks . links .

links links
turtle.ee.ncku.edu.tw 24919 110436 23762 63393 30381
proxy.ncku.edu.tw 42235 138589 36294 135214 33417
proxy2.ncku.edu.tw 130205 446607 96079 410731 91286
gate2.ncku.edu.tw 47958 177451 34677 168867 30589

Table 4-3 : statistics on 4 proxy servers in ncku.edu.tw

Thfz average count 'I"he average count of The average count of The average count of
Proxy Server of internal HTML | internal non-HTML . external non-HTML
links Tinks external HTML links links
Turtle.ee.ncku.edu.tw 4.433806 0.95357 2.564027 1.21919
Proxy.ncku.edu.tw 3.210347 0.859335 3.201468 0.791216
Proxy2.ncku.edu.tw 3.43003 0.737906 3.154879 0.701094
- Gate2.ncku.edu.tw 3.700133 0.72307 3.521144 0.637829
Pag Average 14 =3.693579 1, =0.81847 E,=3110379 E . =0.837332

Where

Table 4-4 : statistics on 4 proxy servers in ncku.edu.tw

I is the number of internal HTML links inside a page

I, is the number of internal non-HTML links inside a page (the number of internal leaf links)
Ey is the number of external HTML links insid e a page
E, is the number of external non-HTML links inside_ apage (the number of external leaf links)

The average count (The average count of The average count of
Proxy server name of internal HTML | internal non-HTML The average count of external Non-HTML
links links external HTML links links
Turtle.ee.ncku.edu.tw 2480435 0.795922 1.434412 1.017629
proxy.ncku.edu.tw 1.974842 0.765683 1.926749 (.704988
Proxy2.ncku.edu.tw 1.690504 0.634419 1.554895 0.60277
gate2.ncku.edu.tw 1.973332 0.630034 1.877874 0.555761
Pag Average 1, =2.029778 I, =0.706515 E n =1.698483 E » =0.720287

Table 4-5 : statistics on 4 proxy servers in ncku.edu.tw (duplication removed)

1. The mean object size in the cache is about 20 K. Other
research[5]) shows the same result,

2. The mean page size is about 100 K.

3. Each page contains 5 internal links and 4 external links.

An I-way full tree with depth =L willhas -1 nodes. If
each node has E external links, then there will be E¥(L+1~l)
external links. For a Tree:[URL,L,1], there will be

(11-1) + AML1)*E = (1™'-1) * (1+E) HTML pages.
[formula 4-1}

From table 4-2, it shows each HTML page has 5 internal links
and 4 external links. The count of pages in Tree:[URL,5,1]
will be

5714 (144)=78120 pages.

From table 4-2, it shows the mean page size is 100k. The size
of Tree:[URL,5,1] will be

78210*100k=7.45GB

This result shows the maximum size of a iree:{URL,5,11. Tt is
different from the size of a normal tree: [URL,5,1], The reason
is most URL trees are not full trees. The links inside a page

may link to a non-HTML object. There will no child nodes of

these non-HTML links.
Case 2: The URL tree is not a full tree.

The node with no further links available is call ed a leaf. The
mean size of a leaf is 20k . We make the statistics on the same
four proxy servers again to find the number of internal leaf
links and external leaf links.

The size of a URL tree Tree:[URL,5,1] is

(number of internal_html_links+number of
external_html_links)* 100k +

(number of internal_non-html_links-+number of
external_non_html_links) * 20k =

(171 + (1B * 100k + (1)1, +
(I,-1)*Ey)*20k [formula 4-2]

In table 44, it shows §,=3.7, 1,=0.8, E,=3.1, E,=0.84. With
formula 4-2, the size of Tree:[URL,5,1] is 894M bytes.

This size is still much larger than a normal URL tree because
we do not take the duplication of the links into account.

Case 3: URL tree is not a full tree with duplication
between links.

C-412

The links contained in the pages in a URL treec may point to
the same HTML files or objects.(ex: an image) We need to
consider of the duplication in calculating the size of a UR
tree.

We redo the statistics on the same 4 proxy servers with the
duplication of links removed.

From table 4-5, it shows =2, £=0.7, E;=1.69, E;=0.72. With
formula 4-2, the size of Tree:{URL,5,1] will be 19.81MB

For URL trees of 20MB size, a proxy system with 10 GB
cache space will be able store 500 trees. If each user
subscribes 10 URL trees, the proxy system will be able to
serve 50 people. Thus our proxy system is suitable for a
laboratory or an office as a data collecting tool.

5. Experimental Resuli

In our running system, there are 10 subscribed URLs with
different fetch depth setting for each, the total size of the UR
trees is about 250MB. Each tree occupies about 25 MB. This
result is closed to our evaluation in section 4.

The hit rate of our proxy system depends on how often the
user accesses the subscribed pages.

For example, if the hit rate an ordinary proxy is 20%, and
10% of the user access is on the subscribe pages; the hit rate
of our system will be 0.1¥100%+0.9%25%=28%.

6. Conclusion

Various researches have focused on how to increase the cache
hit rate of the proxy server by caching the most popular pages.
But the most popular pages do not fill the need for all people,
especially for the professional. The professional information
will be probably flushed out when competing with those
popular pages in the proxy cache. In this paper, we propose a
user oriented proxy system which supports prefeiching and
refreshing and give the estimation of the service capacity of
our system. When users subscribe pages with our prox
system, these subscribed objects will be stored in the private
proxy cache and won't be flushed out by ordinary data. In
summary, our system has the following characteristics:

1. Tt is compatible with the existing proxy server, the user
could use our system without any difficulty.

2. After the user makes a subscription in our system, the
system will prefeich the page and refresh the content
periodically to keep the information up to date.

3. This system is suitable for data collecting without
violating the copyright because the data is accessed in its
original URLs.

4. This system is easy to extend. The cache space could be
increased by adding more private proxy servers to get
higher service capacity.

5. This system has limited fault tolerant ability in case any of
the private proxy server is crash.

6. Due to the large disks pace needed to cache a URL tre,
this system is intend to be used for a small group of users
as a data collecting tool.

Much future work remains. The control of disk size used b
one user could be done by making the system more adaptive
when interpreting the link fetching depth. The impact of extra
traffic caused by the system needs to be further studied
though it could be reduced by prefetching at the time the

C-413

network traffic is low. Interactive prefetching can also be
adopted in case the page subscribed by user is not in the
private cache.

Reference

[1]1 T Bemers-Lee, RFielding & H. Frystyk., "Hypertext
Transfer Protocol -- HTTP/1.0," RFC 1945, UC Iivine,
May 1996.

[21 R Fielding, J. GettysJ. Mogul, H. Frystyk, T.
Berners-Lee, "Hypertext Transfer Protocol --
HTTP/1.1,” RFC 2068, UC Irvine, January 1997.

[31 World Wide Web Consortium. "Initial HTTP/1.1
Performance Tests,"
http:/fwww. w3.org/pub/WW W/Protocols/HTTP/Perfor
mance/Pipeline.html

[4] Binzhang Liu, Ghaleb Abdulla, Tommy Johnson and
Edward A.Fox, “Web Response Time and Proxy
Caching”, Virginia Polytechnic Institute and State
University. http://iwww.cs.vt.edu/~nrg/pubs.html

[5] Ghaleb Abdulla, Edward A Fox and Marc Abrams,
“Shared User Behavior on the Eorld Wide Web”. In
Association for the Advancement of Compuiing in
Education, 1997.
hitp://www.cs.vi.edu/~chitra/docs/97webnet

{6] Marc Abrams et al. "Caching Proxies: Limitations and
Potentials,”
http://ei.cs.vt.edu/~succeed/WW W4/WWW4.himl

[7] “Seminar Paper Survey of World Wide Web Caching”,
University of British Culumbia, Mar 1997

(81 “Squid Web Proxy Cache”, the National Laborator
for Applied Network Research,
htip://squid.nlanr.net/Squid/

[91 Duane Wessels, "Internet Cache Protocol Version 2,"
RFC 2186.

[10] Azer Bestavros. “Using speculation to recluce server
load and service time on the WWW”, in Proc of
CIKM95: The Fourth ACM International Conference
on Information and Knowledge Management,
Baltimore, Maryland, Nov 1995

[11]1 Zheng Wang and Jon Crowcroft “Prefetching in World
Wide Web”, Department of Computer Science,
University College London Gower Street , Lodon
WCIE 6BT, United Kingdom
hitp://www.cs.ucl.ac.uk/staff/zwang/papers/prefetch.ps.
zZ

[12] Radhika Malpani, Jacob Lorch, and David Berger,
Venkata N. Padmanabhan and Jeffrey C. Mogul,
"Using Predictive Prefetching to Improve WorldWide
Web Latency," ACM SIGCOMM Computer
Communication Review, July 1996,
hitp://daedalus.cs.berkeley.edu/publications/ccr-july96.

Ds.gz

{13] Ken-ichi Chinen and Suguru Yamaguchi, “An
Interactive Prefetching Proxy Server for Immprovement
of WWW Latency”, Nara Institute of Science and
Technology, Japan.

[14] Evangelos P. Marktos and Catherine E. Chronaki, “A
Top-10 Approach to Prefetching on the Web”, In Proc
of INET 98, July 1998,
hitp://130.75.2.13/inet98_proc/lifli 2.htm

[15] Yui-Wen Horng, Wen-Jou Lin and Hsing Mei, “Hybrid
Prefetching for WWW Proxy Servers”, IEEE 1998.
hitp://dlib.computer.org/conferen/icpads/8603/pd /860

30541 .pdf

