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Abstract

Product networks define a class of topologies
that are used very often such as mesh, tori, and
hypercube, etc. This paper proposes a generalized
algorithm for fault-tolerant parallel sorting in the
product networks. To tolerate multiple faulty
nodes, product network is partitioned into a
number of subgraphs such that each subgraph
contains at most one fault. Our generalized sort
algorithm is divided into two steps. First, a single-
fault sorting operation is presented to correctly
execute on each faulty subgraph containing one
fault. Second, each subgraph is considered as a
supernode, and a fault-tolerant multiway merge
operation is presented to recursively merge two
sorted subsequences into one sorted sequence.
Our generalized sort algorithm can be applied
on any product network if the factor graph of
product graph can at least embed a ring structure.
Further, we also show the time complexity of
our sorting operations on the grid, hypercube,
and petersen cube. The performance analysis
illustrates that our generalized fault-tolerant sort
algorithm is near-optimal.

1 Introduction

Product network defines a class of topologies
that are used very often. A lot of researches
on product networks have been done in recent
literature[4][5][6]. This network has interesting
topological properties that make them especially
suitable for parallel algorithms. Examples of prod-
uct networks include hypercubes, grids, and tori.
There are many algorithms developed for spe-
cial case of the product networks. Examples can
be found in hypercubes and grids. The drawback
of these algorithms is that there is no portabil-
ity for different topologies. For example, a fault-
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tolerant sorting algorithm developed for a hyper-
cube in {3][7] cannot work on a grid, even though
both hypercube and grid are product network.
Recently, A. Ferndndez and K. Efe [4] proposed
a generalized sorting algorithm on product net-
work. The main function of their algorithm is
to propose a multiway-merge operation. How-
ever, their algorithm is without fault-tolerant ca-
pability. This paper presents a generalized fault-
tolerant sorting algorithm on product network.
Our fault-tolerant sorting algorithm is based on a
A. Fernandez and K. Efes’ algorithm. We modify
the multiway-merge operation as a fault-tolerant
multiway-merge operation. By using this fault-
tolerant multiway-merge operation, we present the
faulf{-tolerant sorting algorithm on product net-
work.

Our generalized sort algorithm is divided into
two steps. Firstly, a single-fault sorting operation
is presented to correctly execute on faulty sub-
graphs that each contains at most one fault. Sec-
ondly, each subgraph is considered as a supern-
ode. A fault-tolerant multiway merge operation is
presented to recursively merge two sorted subse-
quences into one sorted sequence. Qur generalized
sort algorithm can be applied on any product net-
work under the constraint the factor graph of prod-
uct graph can at least embed a ring structure. The
performance study on grid, hypercube, and person
cube illustrates that our generalized fanlt-tolerant
sort algorithm is near-optimal.

The rest of this paper is organized as follows. In
Section 2, we present the definitions and notations
used in this paper. In Section 3, we present our
fault-tolerant sorting algorithm. In Section 4, we.
analyze the time complexity of the proposed algo-
rithm. The conclusions of this paper are drawn in
Section 5.

2 Preliminaries

In this section, we define the product network
and derive the partitioning property of product
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Figure 1: Examples of product network:(a) prod-
uct network of G and Gy; (b) product network of
Go and GO.

network. Finally, we present the snake ordering
method for product network in Subsection 2.2.

2.1 Product Network

An interconnection network is usually modeled as
an undirected graph G = (V,E) with the node-
set V and edge-set E. |G|( or |V|) denotes the
number of nodes in G. Let Go = (Vo, Ey) and
G1 = (W4, Ey) be two finite undirected graphs. The
product of Gy and Gy is defined as G = (V, E) =
G X G with the node-set V =V; x Vo = {(z,y) |
z € Vi,y € Vp}. There is an edge {(z,y), (u,v)
in F iff either z = u and {y,u} € Ey, or {z,u
€ E; and y = v. The graphs G4 and Gy are called
the factors or component network of G. Figure 1
shows an example of product network.

Let PG1 = G. We can use the lower di-
mensional product graph PG._; to construct the
higher dimensional product graph PG,. The con-
struction of PG, from PG,_,, where PG; =G, is
shown in Figure 2. Let z be a node of PG,
l; be the label of node z, and N be the num-
ber of nodes of PG;. Symbol [u]PG,—; denotes
the product graph obtained by putting an addi-
tional digit v before the label [, of every vertex
z in PGp_y, for v = 0,1,---,N — 1. Thus, the
label I, of every vertex r € PG,_ibecomes ul,.
We describe the construction of PG, from PG,_;
in logical view. First, arrange all the vertices of
PG,_; one by one along a horizontal (or vertical)
direction. Then, make N copies of PG,_; along
vertical (or horizontal) direction such that the ver-
tices with identical label fall in the same column.
Next, relabeling the uth copy of PG,—q to ob-
tain {u|PG,_;, for v = 0,1,--- ,N — 1. Finally,
connect the corresponding nodes of [u]PGr_; and
[WPG,_1 if (u,u') € Eg. Figure 2 illustrates this
construction process for two and three dimensional
products graph. The factor graph G is shown in
Figure 2(a). Nodes in the ith row of Figure 2(b)
are labeled by putting an additional digit ¢ before
their labels. Thus, the ith row in Figure 2(b) can
be viewed as [i]PG;. By similar way, we may con-
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Figure 2: Recursive construction of multidimen-
sional product network. (a) The factor graph; (b)
Two-dimensional product; (c¢) Three-dimensional
product.

struct PG5 as shown in Figure 2(c). Since the
operations described above is logically the same
as the product operation x defined in Definition
1, the PG, generated by PG,_; is also a product
network.

2.2 Network Partitioning

To perform the fault-tolerant sorting operation
on PG,, we first partition PG, into a number of
PG5. The jth-split operation on PG, is defined
by partitioning PG, along dimension-j into N
copies of PGY_,. Let D = (dy,do,. dy),n < T.
The D-split on PG, is the operation to apply
dyth-split, dy th-split, ..., and d, th-split on PG,.

orer We can obtain N* copies of
PG’ " by partitioning PG, along k dimensions
1,32, ,ip, where k < r, N is the number of
nodes of factor graph.

Proof: The proof can be referred to [2].

The notation [u|PG%i_, naturally defines an
ordering for subgraphs PG,_i;. In general,
[u]PGi_, is the uth copy of the PG,_;subgraph
at dimension 3. The subgraph ordering has a
number of different ways. We define a particular
subgraph ordering method, say snake ordering,
with certain useful properties for data sorting.

Definition 1: The snake order for the product
graph PG, is defined by:

1) If » = 1, the snake order is the same as the
order used for labeling the nodes of G.

2) Assume the snake order has been defined for
PG,_1,7>1. Then
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Figure 3: The snake order of the product network
PG5 whose factor graph is a 4-node ring.

(a) [u]PGL_;has the same order as PG,_; if
u is even, and reverse order if u is odd.

(b) if v < v then the order of all vertices
in [u) PG _,precedes the order of all ver-

tices in [v]PGT_;.

Figure 3 shows the snake order for a product graph
PG5 shown in Figure 2(c). As discussed in latter, if
the factor graph of product network is a ring struc-
ture, we use the odd-even like sorting operation as
single-fanlt algorithm executing on each PG,. In
this case, each node in PG, will be assigned a pro-
cessor number according to the snake order. On
the other hand, if the factor graph is a hypercube
structure, we use the bitonic-like sorting operation
as single-fault sorting algorithm executing on each
PG5, The processor numbering for each node in
PGy is according to the original order.

3 Generalized Algorithm of
Fault-Tolerant Sorting

For a faulty product graph PG, we will first par-
tition it into several subgraphs PG> such that each
P{d5 contains at most one faulty node. To toler-
ate up one faulty node, we propose two single-fault
sorting operations for each PG». This ensures that
we can obtain a correct sorting order for elements
on each PG;. However, we still need to merge all
elements node by node. For this purpose, we mod-
-ified the well-known multiway merge operation [1]
which is originally without fault-tolerate capabil-
ity.
We outline our generalized fault-tolerant sort-
ing algorithm as follows. The detailed operations
are presented in the following subsections.

/* Fault-Tolerant Sorting Algorithm on PG, */

Generalized Fault_Tolerant_Sorting (G, r, F, M)

/* Sorting M keys on PG, with F faults */

{
Partition_PG,:
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/* Partition PG, into PG, */ ‘

Step 1. Perform a D-split operation to
partition PG, into N"~2 copies of
PG+ such that each PG, contains
at most one faulty node.

Step 2. Assign one dangling node in each
healthy PG». The dangling node is
logically considered as a faulty node.

Distribute_Data:

Distribute M elements to the nonfaulty nodes.
Single Fault_Sorting:
/* Apply single-fault-sorting algorithm on

each PG, */

For each PG,,

if ( G can be embedded to an n-cube

structure) then {

Step 1. Perform the processor numbering
operation according to the original
labeling order.

Step 2. Execute the bitonic-like sorting
operation. }

else

{ Step 1. Perform the processor

numbering operation according to

the snake order.

Step 2. Execute the odd-even-like

sorting operation. }
Fault-Tolerant_Multiway Merge:

Recursively perform our fault-tolerant

multiway merge operation to merge

unmerged keys from PG; into PGy,
where 2<i<r—1.

3.1 Partitioning Scheme for Faulty
Product Network

To tolerate up r — 1 faults in faulty PG, we parti-
tion original PG, into N™=2 copies of PG5 by ex-
ecuting a feasible D-split operation on PG, such
that each PG, contains at most one faulty node.
In the condition of f 3 r — 1, there exist some par-
titioned PG» without faulty node. For the reasons
of regular operation and balancing the workload of
each PG, we determine a dangling node in each
nonfaulty PGs. Node in nonfaulty PG with the
same position of most faulty nede in all of faulty
PG5 will be selected as a dangling node. We will
logically consider the dangling node as faulty node
and will not assign any data to it.

3.2 Distribute Unsorted Keys

The next step is to distribute unsorted keys into
all nonfautly nodes. Assume that there are M >
N7 unsorted elements. Since the total number of
nonfaulty node is N — N"~2, each nonfaulty node
contains M/(N" — N™=2) = M/((N? - 1)N"~2)
keys.
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Figure 4: Relabeling the processor number for sub-
product network according to snake order. (a) The
original labels of graph; (b) Relabeling the faulty
node to position 00; (c) Relabeling the processor
number for each node according to snake order.

3.3 Single-Fault Sorting Operation

Two single-fault sorting operation algorithms are
given here for PG, to sort M/N"~2 keys into AS-
CENT/DESCEND order. As mentioned before,
we apply single-fault odd-even sort operation on
each PG if the factor graph G can embed a ham-
intian cycle. If an n-cube structure can be embed-
ded into the original factor graph G, we perform
%Cer' single-fault bitonic sorting operation on each
2.

Before applying one of these two sort operations,
a simple rotation operation is performed based on
the address of faulty node. The purpose of ro-
tation operation is to reset the logical address of
nodes such that the logical address of faulty node
and dangling node can be considered as Fy. For
example, consider a PG> containing a faulty node
whose label is 23 as shown in Figure 4(a). After
rotation, the faulty node can be considered as Py
as shown in Figure 4(b). Noted that the label of
each node has changed by rotation operation as
shown in Figure 4(b). According to snake order,
we assign each node a processor number as shown
in Figure 4(c).

Before executing the single-fault sorting opera-
tion, all nodes in PGy should be assigned a pro-
cessor number. If odd-even sort operation is deter-
mined to apply on PQs, the processor numbering
is according to snake order. On the other hand, if
bitonic sorting operation is determined to apply on
PG5, the processor numbering is according to orig-
inal labels’ order. The relabeling of original order
is the same as one in snake order.

After applying the relabeling operation, we per-
form single fault sorting operation on each PG..
The single-fault odd-even sort operation is applied
on each PG, if the factor graph G can embed a
hamintian cycle. The odd-even sorting alrogithm
which deals with one fault is now described. First,
we apply the sequential sorting algorithm, such as
quick sort or heap sort, on M/((N? —1)N"~2) el-
ements of each nonfaulty node. Then, in the odd
step, each pair of nodes P, and P,_;, for n is odd,
compares each other element by element. In the
even step, each pair of nodes P, and P,_;, for n is
even, applies the compare-and-exchange operation
element by element. After each step of odd-even
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sorting algorithm, we also need to perform the se-
quential sorting algorithm to each node. Since Fy
is a faulty node, Py and P; do nothing in both odd
and even steps.

If an n-cube structure can be embedded into the
original factor graph G, we perform the single-fault
bitonic sorting operation on each PG,. The bitonic

sorting algorithm consists of Zl_‘;gf"z' compare-
exchange stages for n elements. The key concept
of the bitonic sorting algorithm is recursively exe-
cuting the comparison-exchange operations on sub-
cube such that the first half of elements are lo-
cated in one subcube and the last half of elements
are located in another subcube. Noted that node
Py performs no operation during the execution of
compare-and-exchange operations. No matter the
odd-even sort or bitonic sort algorithm is applied
to perform the single fault sorting operation, the
next step of our generalized sorting algorithm is to
perform the fault-tolerant multiway merge opera-
tion, as described in the next subsection.

3.4 Fault-Tolerant Multiway Merge
Operation

A. Fernandez and K. Efe [4] proposed a general-
ized parallel sorting algorithm. The kernel func-
tion is the multiway merge operation[l]. Before
discussing the fault-tolerant multiway merge oper-
ation, we firstly define a fundamental operation,
namely the fault-tolerant compare-exchange oper-
ation. Our fault-tolerant merge operation is built
based on the fault-tolerant compare-exchange op-
eration.

3.4.1 Fault-Tolerant
Operation

Compare-Exchange

The main function of the fault-tolerant compare-
exchange operation is to perform the compare-
exchange operation between each pair of adjacent
nodes z and y when z € PG; and y € PGS, if PG;
and PG are both faulty.

The fault-tolerant compare-exchange operation
is a recursive operation. Let FCE(P@2) denote
the fault-tolerant compare-exchange operation on
any pair of two copies of PGs. We describe the
fault-tolerant compare-exchange operation in fol-
lows. Every PG exactly has one faulty or dangling
node. Three possible cases are discussed depend-
ing on the location of faulty nodes f € PG2 and
f' € PG,. A column/row of a product network
is said to be a faulty column/row if it contains a
faulty node. Based on the property of product net-
work, each pair of nodes z and y located in same
location can logical connect to each other by a path
with length &), where z € PG5 and y € PGY.
Now we discuss these cases.

Case 1. (Nodes f and f' located in the same
physical location.) Each node z # f sends its data
to adjacent node y # f' by physical link and per-
forms the compare-exchange operation. The time
complexity for sending data to adjacent node is

O(LF)).
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Figure 5: The FCE(PG») operation executed on
example of case 2 that faulty nodes of two PG+ are
located at the same row. The processor numbering
is in snake order.

Case 2. (Nodes f and f' located in the same
physical row.) Two phases are needed in this case.

1. Data moving phase: Without loss of
generality, let P; in PGy and P in
PG, are faulty nodes, where i < j.
Processor sequence Piyi,Piys,...,P; will
send data to P/, P{,;,...,Pj_; by 2-hops
as follows. First, each node P, in
Piy1,Piy2,...,P; communicates with P,

and then every Py shifts the received data
to the neighbor processor P{_,. Therefore,
P/, P{i1,...,P]_, acquire data. Ifi > j, a
similar way can be applied. For nodes P;
that are not located in the faulty row, they
will send data to node P} with same processor
number in PGY. The time complexity of data
moving phase is thus O(| | +1). Figure 5 il-
lustrates this operation. Figure 5(a) shows the
processor numbering of PG5 and Figure 5(d)
illustrates the same PG with data which have
been sorted in PG5 in an ascending snake or-
der. Figure 5(b) illustrates the data in nodes
of first row (the row the faulty node located)
moving from PG, to PG),. Figure 5(e) shows
the data layout of PG, after data moving op-
eration performed on each node.

2. Rotation phase:All nodes except the faulty
node perform a rotation operation as follows.
All nodes in each row repeatedly shift right a
position until a node with smallest processor
number arrives the position of 7+ 1. The time
complexity of rotation phase is then O(N).
Figure 5(c) illustrates the result of rotation
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Figure 6: The snapshot of operation of redistribu-
tion step.

phase and Figure 5(f) illustrates the resultant
data layout of Figure 5(c).

Case 3. (Nodes f and f' located in differ-
ent physical row.) Initially, a similar data mov-
ing phase in Case 2 is done. Figures 6(a) and
6(b) display the operation of moving phase. The
only difference is that the number of faulty rows
is more than one. We perform the rotation opera-
tions. The rotation operation can be divided into
three phases as described in what follows.

1. Horizontal rotation phase: Each row per-
forms a horizontal rotation operation as fol-
lows. Assume that the faulty node is located
in the jth-column. Let row number of the first
row be labeled by 0. For that row whose row
number is less than the faulty row, all nodes
shift left/right a position until a node with
maximum address arrives at the jth-column.
If the faulty row with an odd/even number,
all the nodes in the faulty row except the
faulty node repeatedly shift left/right a po-
sition until a node with largest/smallest ad-
dress arrives at the (j + 1)th-column. For the
rest rows whose row number is odd/even, all
nodes shift left/right a position until a node
with maximum/minimum address arrives at
the jth-column. The time complexity of hor-
izontal rotation phase is O(|%]) time steps.
Operation of the horizontal rotation is shown
in Figure 6(c).
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is g. A tuning operation is needed to perform
in the next g rows beginning from the faulty
row. The task is described as follows. Assume
that the faulty row is relabled by row 0. For
every row of these g rows, if its row number
is odd, nodes on this row shift one position to
the left. The time complexity of tuning rota-
tion phase is O(1). Operation of the tuning
rotation phase is shown in Figure 6(e).

Theorem 2: The FCE(PG)) operation can be
correctly executed in O(| 2| + 2) time steps if the
processor numbering uses snake-order or original-
order, where k < 7.

Proof: The proof can be referred to [2).

3.4.2 The Fault-Tolerant Multiway Merge
Operation

The multiway merge operation was originally used
by A. Fernandez and K. Efe [4]. However, their
multiway merge operation is without fault-tolerant
capability. The proposed multiway merge opera-
tion is a recursive algorithm. For ease of presen-
tation, a dimension variable k, 2 < k < r, is nsed
to denote the current dimension in the recursive
process.

We define the terms of virtual PGy and vir-
tual PG5 sequence in follows. The wirtual PG-
is consists of N copies of PG;. Any two PG, in
the virtual PG> may not connected directly. The
structure of virtual PGs is similar to PGs except
that the communication of each pair of neighbor-

ing PG; may need more than one step since there’

may not exist direct link between them. The wvir-
tual PG5 sequence is the sequence of a number of
virtual PG5.

Similar to [4], the fault-tolerant multiway merge
operation is consist of redistribution step, merge
step, interleave step, and clear-dirty step. The
only difference is at the opertion of & = 2 in re-
distribution step and merge step. In case.of k = 2
of redistribution step, we are not only collecting
unmerge data from different dimensions, but also
collecting data from all of faulty columns of ev-
ery original PG to organize a virtual PG». Figure
7 displays the snapshot of redistribution step. In
case of k = 2 of merge step, the single-fault sorting
and FCE(PG,) are performed on the virtual PG»
sequence.
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Figure 7: The snapshot of operation of redistribu-
tion step.

4 Analysis of Time Complex-
ity of Generalized Sorting
Algorithm

In this section, we give the time complexity of the
generalized sorting algorithm. We discuss the time
complexity of torus, grid, hypercube, and petersen
cube by applying our algorithm.

4.1 Generalized Time Complexity

To analyze the time complexity of the sorting
algorithm, we will study the time complexity
of sequential sorting algorithm, communica-
tion operation and the merge process on a
k-dimensional product network. We assume that
each nonfaulty node contains L keys. We have
L=M/(NT"—N"2%)=M/ ((N:' - 1)N’_2). The
time cost of sorting L keys on a node is denoted as
Tss. Let T, denote the time complexity required
for sorting operation performed on PGs, Tj,
denote the time complexity required for sorting
operation performed on PG in virtual PG2, and
T, denote the time complexity of the multiway
merge process performed on a k-dimensional
product network.

Lemma 1: Merging N sorted sequences of N*~!
nodes on PG} takes Ty, = T5,Tss(N + 1) +



(3] +2) x N + 2(k ~ 2) (To,Tss + | 2] +2)
time steps.
Proof: Step 1 of multi-fault sorting operation
takes only constant computation time. Step 2 is
a recursive call to merge operation for & — 1 di-
mensions, and hence takes T, _, time cost. Step
3 takes only constant computation time. Finally,
step 4 takes the time of one sorting operation
performed on PG>, two communication opera-
tions performed on PG> (the time for FCE(PG,)),
and another sorting operation performed on PGs.
Whenever we sort the keys of a node, we need to
perform a sequential sorting algorithm. This im-
plies that we pay time complexity T for each step
of merging operation. :

The value of T}y, , therefore, can be recursively
expressed as:

T, = Taoy + 2 (Te Tos + (| 3] +2)),
In total, we perform N + 1 times of sorting oper-
ation in PG, and N times of compare-exchange in
virtual PG,. Therefore, Ty, wil} be

Tary = T, Tss(N + 1) + (| 2] +2) x N.
This yields

Tat, = To, Tos(N + 1) + (|2 ] +2) x N

+2(k — 2) (Ty, Tos + (|2X] +2)) .

Now we can derive the value of fault-tolerant sort-
ing algorithm F'S,(N) by the following Theorem.

Theorem 3: For any factor graph G, the time
complexity of fault-tolerant sorting on PG, is
FS,(N) = O(r*Ts,Llog L+r*N?+rNT,, Llog L),
where L is the number of keys contained in each
node and G contains f < r — 1 faulty nodes.
Proof: By the algorithm of Section 3, the time
complexity taken to sort on PG,, with f <r —1
faulty nodes, is the time complexity taken to sort
a two dimensional subgraph and then recursively
merge N sorted sequences into an increasing order
in PG,. The expression of the time complexity is
measured as follow:

FS.(N) =T, Tos+Tnts +Trsy ++ -+ T, +T01,
=T, Tss + (r — 2)(To, Tos (N + 1) + (| 2] +2) x
N) +2(To, Tos + (|2 ] +2)) £7°( - 2)

= ((r-D(r—-2)+1)Ts,Tss + (r — 2)(r + N —
D 2] +2) + (r = 2)(N + )T, Ty

Since complexity of heap sort algorithm, in the
worst case, is (L —1)log L + 1 time steps, the time
complexity of F'S,.(N) becomes:

FS.(N)=((r—-1)(r—2)+1)T5,((L—1)log L+1)
+ (r - 2(r + N D] + 2) +
(r — 2)J(N + DSWIN)(L - DlogL + 1)
=  O(r*T,,LlogL + r°N? + rNT,, LloglL)

Corollary 1: The time complexity of odd-even-
like sorting is O(r* N2Llog L). If each non-faulty
node contains only one key, the complexity will
become O(r?N?).
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Proof: 1In Theorem 3, we get the gener-
alized time complexity of our algorithm is
O(r*T;,LlogL + r®*N? + rNT,,LlogL). We
have paid T,, = O(N?) time steps to perform
odd-even sorting in a PG. with snake order,
and T, = O(N) time steps to perform odd-even
sorting in a PG. Therefore, the time complexity
can be bounded to O(r?N?LlogL). Note that if
L =1, the time cost becomes O(r>N?).

Corollary 2: The time complexity of bitonic-
like sorting is O(r’Llog L(log, N?)* + r*N? +
rNLlog L(log, N)?). If each non-faulty node
contains only one key, the complexity will become
O(r*(log, N?)? +72N? + rN(log, N)?).

Proof: From Theorem 3, we know that the
time complexity of the generalized algorithm.
When we perform the bitonic sorting on a

PGs, we need T,y = S%M"; time steps,

2 =1
and T;, = le-‘ffNi time steps to perform
bitonic sorting in a PG. Therefore, the time
complexity is O(r®LlogL(log, N?)? + r?N? +
rNLlog L(log, N)?). Note that if L = 1, the time
complexity will be bounded to O(r*(log, N?)? +
r?N? + rN(log, N)?).

4.2 Time Complexity of Torus and
Grid

From Corollary 2, we have that the complex-
ity of our fault-tolerant sorting on torus is
O(r?N?LlogL). - Note that if L = 1, the time
complexity on tours is FS,{N) = O (r>N?). To
analyze the time complexity of grid, we propose
the follow corollary to explain the time complexity
by using our faulty-tolerant sorting algorithm.

Corollary 3: If PG, is a grid, the time complexity
of sorting operation performed on PG, is at most
O(r*N2Llog L).

Proof: To prove, we first propose the complexity
of our faulty-tolerant sorting algorithm on the r-
dimensional tours. Then, we refer to a result in
(8] which indicates that, if G is a connected graph,
PG, can emulate any computation on the N"-node
r-dimensional torus by embedding the tours into
P(,. with dilation three and congestion two. Since
this embedding has constant dilation and conges-
tion, the emulation has constant slowdown. (In
fact, the slowdown is no more than six). We use
the slowdown values to compute the exact running
time for PG,.

The complexity of sorting on r-dimensional
torus had been proposed in pervious. That is,
5.(N) = O(r*N*LlogL). Since the emulation of
our algorithm by P@, requires a slowdown factor
of, at most, six, grid can sort with complexity 6x
Sr(N) =6 x O(r*N?LlogL) = O(r*N*LlogL).
Note that if L = 1, the time complexity on grid is
bounded on FS,(N) = O (r’N?).



Figure 8: Peterson graph.

4.3 Time Complexity of Hypercube

The hypercube has fixed N = 2. We use the
bitonic sorting operation in single-fault sorting op-
eration. From Corollery 3, we can compute the
complexity of fault-tolerant sorting on hypercube.
That is, F'S,(N) = O(r*Llog L +r* +rLlogL) =
O(r?Llog L). Note that if L = 1, the time com-
plexity on hypercube becomes F'S,(N) = O (r?).

4.4 Time Complexity of Petersen
Cube

The Petersen cube is the r-dimensional product of
the Petersen graph, as shown in Figure 8. Product
graph obtained from the Petersen graph is stud-
ied in [9]. Like the hypercube, the product of Pe-
tersen graph has fixed N. Since the Petersen graph
is Hamiltonian, its 2-dimensional product contains
the 10x 10 2-dimensional grid as a subgraph. Thus,
we can use grid algorithm for sorting 100 nodes
on the 2-dimensional product of Petersen graph
in constant time. Consequently, the r-dimensional
product of Petersen graph can sort 10" nodes in
O(r’LlogL). Note that if L = 1, the time com-

plexity on petersen cube will be F'S.(N) = O (r?).

5 Conclusions

In this paper, we present the fault-tolerant sort-
ing algorithm on r—dimensional product net-
work with the number of faulty nodes f <
r — 1.  The proposed algorithm is general-
ized and portable for executing sorting oper-
ations on faulty product network. The time
complexity of the proposed fault-tolerant sort-
ing algorithm is O(r?Llog L(log, N?)? + r*N? +
rNLlog L(log, N)?) in case of using bitonic-like
sorting and is O(r? N2Llog L) in case of using odd-
even-like sorting, where L is the number of data
distributed on each node and f < r — 1. In case
of L=1, the time complexity of hypercube and pe-
tersen cube are the same as K. Efe et al. sorting
algorithm which is without fault-tolerant capabil-
ity. Complexity study shows that the proposed
fault-tolerant sorting algorithm is near optimal.

C-435

References

[1] K. Batcher. "Sorting Networks and Their Ap-
plications,” Proc. AFIPS Spring Joint Com-
puting Conf., 32:307-314, 1968.

[2] Chih-Yung Chang, Yuh-Shyan Chen, and
Chun-Bo Kuo. ”A Generalized Sorting Algo-
rithm for Faulty Product Networks,” Techni-
cal Report, AU-TR9908, Depariment of Com-
puter Information Science, Aletheia Univer-
sity, 1999.

[3] Y. W. Chen. "The Design and Analysis
of Fault-Tolerant Prefix Computation, Sorting
and Embedding Algorithms on Hypercube,”
PhD thesis, Graduate School of Management
in National Tatwan University of Science and
Technology, 1999.

[4] A. Ferndndez and K. Efe. ”Generalized Al-
gorithm for Parallel Sorting on Product Net-
works,” IEEE Transactions on Parallel and
Distributed Systems, 8(12):1211-1225, Dec.
1997.

[5] A. Fernandez and K. Efe. "Product Networks
with Logarithmic Diameter and Fixed Degree,”

IEEE Transactions on Parallel and Distributed
Systems, 6(9):963-975, Sept. 1995.

(6] D. R. Ohring and Dirk H. Hohndel. ” Optimal
Fault-Tolerant Communication Algorithms on
Product Netowrks using Spanning Trees,”
Proc. of sizth IEEE Symposium on Parallel and
Distributed Processing, pp- 188-195, Jan. 1994.

[7] J. P. Sheu, Y. S. Chen, and C. Y. Chang.
" Fualt-Tolerant Sorting Algorithm on Hyper-
cube Multicomputers,” Journal of Parallel and
Distributed Computing, 16:185-197, 1992.

[8] A. Ferndndez and K. Efe. ”"Mesh-Connected
Trees: A Bridge Between Grids and Meshes
of Trees,” IEEE Transactions on Parallel and
Distributed Systems, 7(12):1281-1291, 1996.

[9] S.R. Ohring and S. K. Das. " The Folded Peter-
son Cube Network: New Competitiors for The
Hypercubes,” IEEE Transactions on Paral-
lel and Distributed Systems, 7(2):151-168, Feb.
1996.



