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Abstract

For an NxNxN image I(x,3,2), it would generally require
of N3 ) time to compute the projections of N3 different
planes, since each plane contains about N? sample points
Jrom I(x,y,z). Reconstruction of an NXNxN image from N3

projections also would usually iake 0(N5 ) time. Our fast
approximate algorithmth performs planar projection and
backprojection in only 0(N5 log N) time. In this paper, we
present the implementation results (include both timing
results and images reconstructed by the algorithms) of the
fast approximate projection algorithm.  The results
demonstrate that our algorithms are not only feasible, but
also performs quite well.
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1. Introduction

The problem of digitally (2D) reconstructing an image from
its projections has become important during the past two
decades. The theoretical basis of X-ray computed
tomography is the mathematical theorem of Radon [9]
which states that a function f(x, y) can be uniquely

reconstructed from its line integrals in the x-y plane. There

are many areas where practical applications of this problem
arise. In the field of diagnostic radiology, this includes
computed tomography, in which X-rays are used to generaie
the projection data for a cross section of the human body.
From the projection data, one reconstructs a cross-sectional
image depicting with very high resolution the
morphological details of the body in that cross section.
Other medical applications are Positron Emission
Tomography (PET) and Magnetic Resonance Imaging
(MRD).

The reconstruction of 3D volume data by 2D sectional
imaging (a slice at a time) is commonly used in X-ray
computed tomography. Consecutive 2D sections are
stacked to form a 3D image, with the data for each section
being acquired and reconstructed independently of any other
section ({6], {7]). But this approach makes poor use of the
available imaging photons in the case of nuclear medicine
(in particular, Positron Emission Tomography) by rejecting
the direction of the photons outside a single section. One
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of the reasons for this waste of activity was that no practical
computer algorithm had been developed for reconstructing
3D images from all the data which could be acquired if the
interslice collimators were omitted (11]. But the demand to
increase the sensitivity of reconstructed images by making
better use of the oblique rays is driving the development of
3D reconstruction of digital images.

In the case of PET, to acquire a full set of planar projections
is not possible due to the geometry of the detectors. To
solve the problem, some researchers ([11], [5], (4], and
[13]) propose a two-pass 3D reconstruction procedure by
first estimating (reconstructing) the voxel value in each grid
point using the conventional 2D backprojection method,
followed by a planar forward projection process to
approximately compute the planar projections that are not
collected by the detectors. After the full set of projections
are available, a 3D reconstruction is applied. The complete
procedure is as follows.

Algortihm 1. 3D Image Reconstruction Procedure

Step 1: Perform a 2D image reconstruction and
obtain an estimation of the 3D voxel data set.

Step 2: Perform 2D forward projection to the 3D
data to obtain a set of planar projections that
are not collecied by the detector.

Step 3: Perform a 3D image reconstruction using
both the detector-collected projections and
forward-projected planar projections
(computed in Step 2).

However, reconstruction from planar projections requires
that the data be filtered to obtain its second derivative, and
backprojected, by summing all of the planes that “contain”
a point (x,y,7) to reconstruct that point [12]. For an NxNxN
image I(x,y,z), it would generally require O(NS) time to
compute the projections of N3 different planes, since each
plane contains about N2 sample points from I(x,y,z).
Reconstruction of an NxNxN image from e projections
also would usually take 0(N5) time. Studies shown in (8],
[14] and [5] indicate that it takes hours to compute the
above 3D image reconstruction and between 78 to 86% of
the total computation time is devoted to the forward
projection and backprojection phases. As a result, a fast
forward/backward projection algorithm has important



mmplications to 3D imaging, which can potentially speed up
the recomnstruction process.

We proposed a fast approximate algorithm for the
computation of planar projections of a 3D image and the
inverse problem of reconstructing a 3D image from its
projections [15]. Using a new fast Approximate Discrete
Radon Transform (ADRT) algorithm designed for the two-
dimensional Radon Transform [2], we construct an
algorithm (3-Dimensional Approximate Discrete Radon
Transform : 3D ADRT) to perform approximate planar
projection and backprojection in only 0(N310g N) time.
The algorithm is approximate, in that some of the sample
points used to compute a projection may be greater than one
half unit from the desired plane. However, this error is
small, and we will show that the quality of reconstructied
images using this technique is good. In addition, our
implementation results demonsirate that the algorithms are
computationally efficient, and is feasible in practice.

The remainder of this paper is organized as follows. A brief
description of the 3D ADRT algorithm is given in Section
2. In Section 3 we show the image quality of our
approximate 3D reconstruction algorithm. Timing results
of the 3D ADRT implemenation will be shown in Section 4.
Finally, we give a summary of our work and further research
direction in Section 5.

2, Approximate Discrete Radom Transform &
Approximate Discrete Planar Projection
Algorithm

In the 2D Discrete Radon Transform, a set of summed
projections is computed through a 2D image at various
orientations. Consider an NxN image, I(x,y). If the
sampling is dense enough so that every pixel is used to
compute at least one ray at any given projection angle, then
the number of sequential operations needed to compute a
single 2D projection will be Q(N2), and computing
projections at N different angles (independently) will require
Q(N3). However, for discrete non-interpolated line
sampling algorithms, different orientations do not
necessarily have to be computed independently. There can
be a great deal of intersection between the sample points of
lines at neighboring angles. For example, Figure 1 shows
lines at two orientations that share half of their data points.
One can potentially save time by computing such shared
partial sums only once for use in two or more lines.
Unfortunately, it is generally difficult to determine the
proper subsets and order the computations accordingly, and
it may be easier to simply calculate the sums independently.
The Approximate Discrete Radon Transform ([2], [15])
defines a new line sampling algorithm that sacrifices a little
accuracy and generality in order to generate line
rasterizations that allow maximum sharing of intermediate
terms. As a result, the ADRT is able to compute a specific

set of N projections over an NN image in only O(N210g N)
steps (see [2], [15] for a detailed description).

Using the fast 2D Approximate Discrete Radon Transform
(2D ADRT) algorithm designed for the two-dimensional
Radon Transform, we construct an algorithm to compute
approximate planar projections at N2 different orientations,
in only 0(N3log N) time [15]. A total of N planes are
projected at each angle, and most pass through Q(Nz) data
points. Our algorithm is thus @(Nz/logN) faster than
computing them independently. The planar projection
algorithm can be applied to the image reconstruction
problem in several ways. It can used to compute forward
projection, 2D image reconstruction, and truly 3D image

reconsiruction. In the following, we base our discussion on
Algorithm 1 (the 3D image reconstruction procedure) and
show when and how the planar projection algorithm can be
of use.
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Figure 1. Overlap between neighboring lines.

Algorithm 2. Procedure for the computation of
forward/backward projections and filtering.

Forward Projeciion:
Phase 1:
for slice I(x, y=c, 7),0<c< N do

{

for0<i<4do
Compute line projections
P1(x, y=c, a) using the 2D ADRT

}

Phase 2:
for slice P1i(x, y, a=c),
O0<c<Nand0<i<4do

for 0<j<4do
Compute planar projections
Pz,‘]‘(x, b, a=c) using the 2D ADRT

Backward Projection
Filtering:
Compute second order difference
P"Qij(x, b,a),0<i j<4
from planar projections Pajj(x, b, a)
Phase 3:
for slice P"z,-j(x, b, a=c),
0<c<Nand0<ij<4ddo
{
Compute projections
P3Z‘j(x, ¥, a=c) using the 2D ADRT
)
Sum partial projections
P3lj(x, ¥,a=c), 0<j<4 = P3;(x, ¥, a=c)
Phase 4:
for slice P3;(x, y=c, a),
O<c<Nand0O<i<4ddo
{
Compute line projections
Py4j(x, y, 2) using the 2D ADRT
}
Sum partial projections
Pai(x,y,2,0<i<4 = [(x,y,2)
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Slice

The ADPP algorithm can be used in the forward projection
process (Step 2 of Algorithm 1). It happens that the same
algorithm can also be used in the backward projection
process (Step 3, see [15] for the proof). Note that if Step 1,
the 2D image reconstruction, is computed using the 2D
ADRT, the whole 3D image reconstruction procedure then
contains repeated applications of the 2D ADRT, plus some
filtering steps ([15]). This greatly simplifies the
implementation of the 3D reconstruction process.

The detailed procedure for the computation of the full set of
forward and backward projections (plus the filtering step) of
the 3D ADRT is given in Algorithm 2. We also present the
forward projection procedure, since it is needed to compute
forward planar projections for use with our study. I(x,y, z
and I(x, v, ) represent the original and the reconstructed 3D
image respectively. Note that 20 (rather than 32)
applications of the 2D ADRT (to each of N slices of size

NxN) are required in the forward or backward projection
process (see [15] for a detailed description).

The 3D image reconstruction procedure can be performed
starting from the filtering step in Algorithm 2 if a full set of
planar projections are available. However, the ADPP-based
algorithm can also be used to compute the 3D reconsiruction
if only line projections are available. By starting from the
second phase of Algorithm 2, we forward-project the line
projections to 2D planar projections. Once the planar
projections are computed, a 3D image reconstruction can be
performed. The computational complexity remains

0(N310gN), however the complicated filtering steps required

Slice 29 31 33

in 2D image reconstruction are avoided. Note that the data
must be collected in linogram fashion (see [1] for
approaches in collecting Linogram projections) or
interpolated into the proper sampling distribution.

3. Quality of Recomnstructed Images wusing
the Approximate Dsicrete Planar Projection
(ADPP) Algorithm

We have evaluated the 3D reconstruction algorithm
(Algorithm 2) with an artificially constructed 64x64x64 3D
image, containing 7 spheres. The planar projections
(forward projections) are computed using the ADPP
algorithm. The filter is the simple second order difference
operator described in previous section. Figure 2 shows a
sequence of slices of the original and reconstructed 3D
images (each of size 64x64). The quality of the
reconstructed images appears to be fairly good. Figure 3
shows the pixel intensities vs. position along lines of slice
31. The reconstructed image follows closely the original
data, except at very high frequency points. (This is typical
of reconstructions by standard techniques as well.)

4. Performance of the 3D ADRT
Implementation

The Approximate Discrete Planar Projection algorithm has
been implemented and evaluated on various sequential
machines. Our test image is an artificially constructed

35 37 39

Figure 2. A sequence of slice images (each with size 64x64) from the original and reconstructed 64x64x64 phantom
(containing 7 spheres) (top: reconstructed images, bottom: original images)
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64x64%x64 “phantom” (as described in Section 3),
interpolated into 16x16x16, 32x32x32, 64x64x64, and

128%128x128 voxel data sets. Forward projections of the
phaniom are computed using our approximate planar
projection algorithm. We then reconstruct the 3D image by
computing the filtered backprojection, with the same
approximation algorithm used in the forward projection
process. A second order difference is used as the filter.

The procedure of our implementation of 3D reconstruction
was given in Section 2 (Algorithm 2). In planar 3D image
reconstruction, the reconstruction process starts from the
filtering step since the planar projections are already
available. Otherwise, the reconstruction is started from
phase 2 if the data are collected in a line projection format.

Note that zero-padding is used in the implementation of the
ADRT algorithm [15). Although the ADRT algorithm is
applied 10 slices of 3D voxel data in each phase of the

algorithm, we expand (by zero-padding) the NXNxN data
into a 2NX2Nx2N voxel data set (instead of expanding

slices of NxN data to 2NxN). The data size is therefore
increased by a factor of 8, rather than 2. The reason for
adopting such a strategy is for convenience in later steps
which need to sum partial projections of different ranges to
compute complete projections. This is, however, mainly an
implementation issue. A smarter implementation might
reduce the padding and improve the performance by about 4
times. We present results of our implementations of the
approximate 3D image reconstruction below.

The platform we used is a IBM Compatible PC with Pentium
I 450 MHz CPU and 256 MB main memory, running
Windows NT Server 4.0. We also perform 3D image
reconstruction from 1D line projections on a DEC 5000
workstation (running Ultrix 4.2 and 64 MB main memory)
for a comparison to the performance data derived in previous
research {10} which implemented 2D image reconstruction
based on the 2D ADRT algorithm.

Table 1. Execution time (in real time, ignoring 1/0) of 3D
ADRT image reconstruction on a Pentium IIT 450 PC. (All
times given in seconds.)

Data Size Backprojection Filtering

32x32%32 1.08 0.15

64x64x64 10.8 1.2
128x128x128 146.2 14.9

Table 1 shows the time reguired (real time in seconds, on the
Pentium III PC) by our algorithm for 3D image
reconstruction, separated into backprojection and filtering
times. The backprojection execution time includes phase 3
and 4 of Algorithm 2. In each case, the input data contains
16N-16 projections, with 2N-2 radial and 2N-2 angular
angles per projection. Since there is no comparable
algorithm, we show some earlier published timing results
for 3D backprojection using other algorithms and platforms
in Table 2 for a rough comparison. The many differences in
hardware and data sizes make direct comparison impossible,
however it seems reasonable to assume that our method will
be extremely fast in practice compared to standard
techniques.

Recall that the ADPP algorithm can be used to perform 2D
image reconstruction by initiating the reconstruction

procedure from phase 2 of Algonthm 2, if there are only 1D
linear projections available. To demonstrate the feasibility
of the idea, we make a performance comparison between the
two approaches (ours, and the work in [10] which uses 2D
ADRT and standard reconstruction approach), as shown in
Table 3. For N £ 32 our approach exhibits close to two
times speedup by avoiding the 2D filtering step. However,
notice that the execution time is larger than expected when
N=64. Since we do not find a similar pattern on the Pentium
III 450 PC and SUN 10 implementation (Table 4)," we
suspect that the pheonomon is platform dependent. We
have tested the same code in two other platforms — a SUN 4
and a SUN 10 workstation — each with the same main
memory (64 Mbyte) as the DEC 5000 workstation. The
results are shown in Table 4. Interestingly, the results on
SUN 4 do show the same pattern. On the other hand, the
results on SUN 10 follow the expected asymptotic
performance increase.

Table 2. Published computation times for 3D
backprojection;. (All times given in seconds.)
(* # of sinograms/# of radial angles/# of angular angles; **
# of sinograms/# of combined radial and angular angles; +
With Vaccelerator board; { Time for whole reconstruction
procedure, i.e., time for both filtering and backprojection.)

References | Platform | Input Image Exec.
data size | generated | time
3DADRT | SUN 10 N/A 6464 304.4
x64
[51 SUN 4 256/128 | 128x128 | 13800
196" %31
{4} VAX 58/128 128%128 | 1380
3200 |7160" |5
[13] SUN 72/3372 1320000 | 3240
SPARC wE voxels
2
[3] 44-node | 256/128 | 128x128 | 1174%
T-800 196" 31
Transputer

Table 3. Execution time (in CPU seconds, ignoring 1I/O) of
ADRT-based 3D and 2D image reconstruction using both the
ADRT and standard (STD) algorithms on a DEC 5000

workstation. (* times derived by multiplying the
reconstruction time of a NxN image by N)

Data Size Ours — [10)- ADRT | [10]-STD
3DADRT

16x16x16 4.7 1.2 16.0°

32%32x32 44.9 83.2" 147.2"

64x6ax64 | 607.8 697.6" 985.6
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Figure 3. Plots of image pixels vs. pixel intensity for row 15 (top left) and row 26 (top right), row 34 (bottom left) and row

48 (bottom right) of slice 31.

Table 4. Execution time (in CPU seconds, ignoring I/0) of
ADRT-based 3D algorithm on SUN 4 and SUN 10
workstations.

Data Size SUN4 SUN 10 P-II PC
16x16x16 6.5 3.5 0.17
32x32x32 60.1 32.6 1.83
64x64x64 776.0 304.4 18.29
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5. Summary

In this paper we have presented an asympiotically fast
approximate planar forward/backward projection algorithm
which, when combined with a simple second order difference
filter, can compute truly 3D image reconstruction (from
projections) very efficiently. This algorithm is directly
applicable to medical imaging techniques that collect planar
projection data directly, such as in Magnetic Resonance
Imaging (MRI) and Positron Emission Tomography (PET).
In this case, the data must either be collected in Linogram



fashion [1] or interpolated into the proper sampling
distribution. The fast filtered backprojection can then be
applied. However, the approach can also be applied t© data
collection techniques that produce line projection data.
Often, such data are collected as independent 2D slices, and
reconstructed independently using 2D reconstruction
methods. Normally, this would require 0(N4) time to
reconstruct data with N angles, N projections per angle, and
N slices. Furthermore, it requires a more complex (and in
practice, time-consuming) filtering operation, a
convolution with the function whose Fourier transform is
lol. Note that after the first phase of our forward projection
algorithm, we obtain this same type of data. We can
therefore apply our method to this data by starting from the
second phase of the forward projection algorithm to
compute planar projections from the line projections. We
then compute a full 2-pass 3D reconstruction as before. The
backprojection time is 0(N310g N). Furthermore, the
relatively complicated Fourier domaing filiering is replaced
by a simple local second order difference filter, requiring

only 0(N3) time [12].

The effects of using different filtering techniques on the
quality of the reconstructed images deserve further
evaluation. A qualitative comparison of the reconstructed
images between the ADPP-based 3D image reconstruction
and ADRT-based reconstruction methods would also be
interesting. Finally, there might exist other approximate
line sampling techniques, which may be potentially faster
and more efficient than the ADRT-based one. An
approximate curvature (non-planar) sampling technique
should have many potential applications in the fields of
image processing and computer vision.
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