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Abstract

We present a prototype system for reconstruc-
tion of the boundary representation for a great
vessel from a set of CT images. The system
includes segmentation of great vessel, finding
the contours for the boundary of the great ves-
gel, and triangulation a pair of corresponding
contours. In this system, we tried to reduce
the user interface. The subtasks that still need
many user interfaces are the segmentation step
and determining the corresponding contours
that need to be connected. Many Computa-
tional Geometry techniques are employed so
that we can generate a good quality triangu-
lation.

Key Words Medical Imaging,Surface Recon-
struction, Solid Modeling, Computational Ge-
ometry.

1 Introduction

CT images contains the information of the
anatomic structure of human body. This prop-
erty increases the applications of CT image in
clinic especially with the help of a computer.
Marching cube method for volume rendering
is one of such applications. Marching cube
method finds the isosurface for given thresh-
olds and present the isosurface by using polyg-
onal patches. We then are able to use the com-
puter graphics technique to render the polyg-
onal patches so that we can see the area of
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interest non-invasively.

Recently, people look for more sophisticate
applications such as planning and simulation
of a surgery[3]. Suppose we can have a solid
representation of the area of interest, then we
could simulate a surgery process or we can do
the planning of the surgery and predict the
result of the surgery. This paper describe a
prototype system toward this goal.

The subject we studied in this paper is the
great vessel of a heart in the CT images. We
plan to reconstruct the boundary representa-
tion of the great vessel from a set of CT im-
ages. Our prototype system includes the fol-
lowing subtasks.

1. Segmentation: We have to identify the
great vessel from CT images and find the
boundary of the great vessel.

2. The boundaries of the great vessel are ac-
tually boundary points. We need to cal-
culate the contours (polygons) from the
boundary points.

3. It is hard to have an image processing
technigue which is able to identify a pre-
cise great vessel. We design an user inter-
face method to remove those not on the
great vessel.

4. To reconsiruct the boundary representa-
tion for the great vessel. Since CT images
are parallel to each other, it is a natural
approach to connect two contours in two



consecutive slices by using triangle patch.
We use [5] approach which converted this
problem {o a problem of finding the short-
est path in a grid graph. We also use 3D
Delaunay triangles to improve the quality
of the solid been reconstructed.

In the next section, we shall describe these
subtasks in details. In the last section, we
present some results.

2 The Prototype System

In this gection, we present each subtask in de-
tails.

2.1 Segmentation

Before we present the segmentation subsys-
tem, we briefly describe the CT images we
studies. The areas of interest in the images are
the great vessel and the heart. In radiology,
the great vessel and the heart are intensified
by putting contrast media into the circulation
system. The contrast media makes the area
of interest generally having intensity greater
than the soft tissue but less than bone. How-
ever, the intensity for the area of interest is
not a constant for all the cases. The intensity
depend on the dose of the contrast media, the
weight of the patient, and the time between
the contrast media was putting into the pa-
tient and the images were acquiring. Each CT
scan has dimension 512 by 512 and there are
4k grey scales in a set of volume data.

Since we are dealing with CT images, we
take advantage of the fact that different ma-
terial has different CT value. The segmenta-
tion process is based on the intensity. We also
know that the area of interest has intensity
less than bone but more than soft tissue. We
segment the images points whose intensity is
in between a given interval. Not all the image
points having intensity in the interval is an im-
age point of area of interest. This problem is
solved by finding the connected components
of the thresholded image points. Generally
speaking, the largest connected component is
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the set of image points of heart and great ves-
sel. Since the heart and the great vessel are
connected in natural, we cannot identify those
image point of great vessel only. User inter-
face is the only way to separate the heart and
the great vessel. The boundary poinis of the
connected component is a set of points of the
endocardial surfaces.

2.2 Closed Contour for Boundary
Points

We found a set of boundary points of the area
of interest. However, what we need is a close
contour which represents the boundary of the
area of interest. To convert the set of bound-
ary points, we design and implement a system
which systematically calculate the closed con-
tour no mater what the shape is. The pro-
posed method is based on the a-shape and
need a doubly connected edge list (DCEL) data
structure for implementation [1]. The pro-
posed method finds two closed contours that
the set of boundary points are between these
two contours.

a-shape mathematically define the shape of
a set of points in space. The a-shape of a
set of points can be obtained from the Delau-
nay triangulation of the set of points. Our ap-
proach takes advantage of the concept of the
a-shape but it does not follow the definition
of the a-shape. Recall that we are looking
for the pair of contours which sandwiches the
set of boundary points. We first calculate the
Delaunay triangulation of the set of boundary
points and the four corners of the image. For
a given q, we consider the following cases of a
Delaunay triangle ¢.

1. All sides of ¢ are greater than «. In this
case, the 3 points of the triangle are not
connected. We discard these 3 edges.

2. All sides of ¢ are less than «. In this case,
the 3 points of the triangle are connected
and these 3 sides should be considered in
the interior of a componeni, We also dis-
card these three edges.



3. One of two edges are greater than « and
the others are less than «. In this case,
the sides which are less than « are bound-
ary of the shape. These boundary edges
should be connected to form the contours.

Note that, the above approach does not al-
ways find two closed contours. There are cases
that an edge with only one end point anchored
at a contour or two contours connected by an
edge. In order to deal with all these cases, we
need a formal data structure to represent the
planar graph produced by the above method.
The data structure is the doubly connected
edge list. This data structure support the op-
eration to find the polygonal path that enclose
a face. By using DCEL, we are able to find all
the polygonal paths that enclose all the sur-
faces. In most of the cases, the data struc-
ture reports two contours, i.e., one is enclosed
by the other. In this case, we take the path
that has more vertices on it. If there are more

than one path reported, we take the outermost

path.

2.3 User Interfaces

The user interface subsystems are required in
the following cases.

1. To specify the pair of contours in consec-
utive slices that should be connected by
triangles.

2. A contour encloses more than one mate-
rial, for example heart and great vessel.
This case occurs when the image process-
ing technique couldn’t separate two dif-
ferent material in an image.

3. When there are branches of the area of in-
terest between a pair of consecutive slices.

Very often, there are more than one contour
that should be connected together. It is very
hard to give a rule (a piece of computer code)
to determine the connectivity of contours es-
pecially when we are processing patients with
congenital hear problem. It i3 required that
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Figure 1: A toroidal graph corresponding to
two contours ¢; and co. Assume that the line
segment connecting vertex 0 in ¢; and vertex
0 ¢2 must be in the triangulation, we find the
shortest path from (0,0) to (m,n). The bold
edges corresponding to the triangles in the De-
launay Triangulation.

a physician to point out the connectivity be-
tween contours. Our user interface system dis-
plays two consecutive slices and let a user to
select a contour from each slice for triangula-
tion.

Case 2 and case 3 are handled idemtically
that we split part of the contour away from the
original contour. We always split a contour to
two contours by adding a line segment which
has both end points on the contour. The split-
ted comtours are part of the contour concate-
nate with the line segment. The user interface
allow us to select the location of the points by
using keyboard input. In case 2, we simply
split the contour in to two. In case 3, we split
a contour followed by a case 1 selection. Al-
though the length of the newly added line seg-
ment i3 generally relative longer than the line
segment originally on the contour, the surface
reconstructed from the contours by using this
method does not have unpleasant artifact.



2.4 ’ﬁ'iaﬁgulation
2.4.1 Shortest Path approach

Reconstruction of the boundary of a solid from
two contours in the parallel slices is a prob-
lem received intensively studied. In this work,
we use a combinatorial optimization approach.
We transform the triangulation problem to
a problem of searching shortest in a toroidal
graph.

As shown in Figure 1, a toroidal graph con-
sists of squared meshes. An m rows by n
columns toroidal graph corresponds to a pair
of closed contours ¢; and ¢y of length m by n
which should be connected by using triangle
patches. A horizontal edge (z,i +1) on row j
corresponds to a triangle whose 3 vertices are
respectively the ¢’th and the (¢4 1)’th vertices
on ¢y and the j’th vertex on ¢i. Similarly ver-
tical edge (4,7 + 1) on column ¢ corresponds
to a triangle whose 3 vertices are the j’th and
(j +1)’th vertices on ¢, and the ¢’th vertex on
c3. A sequence of triangles representing the
boundary of solid between these pair of slices
corresponds to & path from (0,0) to (m,n) in
the Toroidal graph. The toroidal graph is a
weighted graph that each edge has a weight
corresponding to the cost of a triangle. The
possible costs for a triangle can be:

1. the total length of the sides connecting
the two contours, or

2. the area of the triangle connecting the two
contours.

In our experiment, there was no significant
difference between the resulis obtained from
these two cost functions. :

Suppose that we look for the shortest path
in the graph from (0,0) to (m,n), we assume
that the path must contain 2 line segment con-
necting vertex 0 in ¢y and vertex 0 in ¢z. The
optimal triangulation may not contain those
edge containing the two vertex. In order to
find the optimal triangulation, we find all the
shortest paths containing (0,7),¢ = 1...n.
In our experiment, the triangulation obtained
from the short path approach always looks
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good in it shape and the variation of surface
normal (looks smooth). The difference be-
tween the optimal triangulation and any other

“good” triangulation may nor be significant.

But its performance is very stable and defi-
nitely better than an “heuristic” triangulation
most of the time.

2.4.2 Delaunay Triangulation

Very often, we wish that the triangles in the
triangulation do not contain a very “sharp”
triangle. The shortest path approach stated
above does not prevent a triangulation con-
taining such triangles. We propose to employ
the Delaunay Triangulation. In k-D space, the
Delaunay Triangulation of a set of points has
a property that a “sphere” in k-D space pass-
ing through k + 1 points of a Delaunay Tri-
angle does not contain any other points. This
nice property suggest that a triangle in the
Delaunay Triangulation has little chance that
it is very sharp (otherwise the sphere passing
through the triangle could be large enough to
enclose other points). Based on the observa-
tion, we prefer to include as much as the De-
launay Triangles in the triangulation.

For a given pair of contour ¢; and ¢, we
first calculate the Delaunay Triangulation in
3-D space[l3]. Note that, since there are
only 2-D triangles in a triangulation, for each
Delaunay Triangle, there are four 2-D trian-
gles. Let the set of 2-D triangles be denoted
T ={t]s =1,...,M}. A triangle ¢; can be
included in a triangulation if #; contains an
edge in ¢, and a vertex in ¢y, z,y = 1,2 and
z # y. Bach such triangle has a cost so that we
can assign the cost to the weight of an edge in
the toroidal graph. Since there are cases that
vertex (0,0) and (m,n) in the toroidal graph
may not be connected through those edges of
Delaunay triangles, a triangulation must con-
tain some other edges not in the Delaunay Tri-
angulation. However we prefer to include an
edge in the Delaunay Triangle first. Our al-
gorithm to achieve this requirement is t0 give
those edges not in the Delaunay Triangulation
having a cost 10 times larger than the cost if



it is a Delaunay Triangle.

3 Conclusion and Result

We develop a prototype system that construct
the boundary representation of the great vessel
from CT images. The system includes segmen-
tation of the great vessel, find the boundary
point of the segmented great vessel, convert
the boundary points to closed contours, and
find a triangulation to connect a pair of con-
tours. For the subtasks converting boundary
points to contours and finding the triangula-
tion, the proposed approached do not need any
user interface. There are still processes that
need user interfaces especially when the great
vessel did not correctly segmented and when
we need to decide which two contour should
be connected. A “smart” system to automat-
ically do these tasks are proposed as future
work.

The reconstructed great vessel are shown in
the Figure 2. The number of triangles is 10000
The time to reconstruct a case is about an
hour. However, the time required can be re-
duced by improvement of the software. The
bottle neck will be the process of determine
the corresponding contours.

B-485

Figure 2: Two rendered result of a recon-
structed great vessel.
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