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Abstract

A double loop network G(n; s, 32) ts a digraph with
n nodes {0,1,...,n — 1} and 2n links of the form
i—i+s; (modn)andi— i+sy (modn) A
double loop network G(n; sy, s2) is LFT if there is a
hamiltonian cycle in every G(n;s1,32) — e where e
is any link in the network. Similarly, a double loop
network G(n; sy, 83) is NFT if there is a hamiltonian
cycle in every G(n;s1,52) — v where v is a node in
the network. In this paper, we present necessary
and sufficient conditions for LFT and NFT double
loop networks, respectively.
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1 Introduction

The architecture of a local area network is always
represented by a graph. We use graphs and net-
works interchangeably. In the design and imple-
mentation of local area networks, the ring topology
has been used frequently due to its good properties
such as simplicity, expandability, regularity and eas-
iness of implementation. However, the ring network
suffers drawbacks in low connectivity, low degree of
fault tolerance and relatively large diameter. The
performance of a ring network can be improved by
adding links to it, which results in a so-called loop
network. Among all loop networks, one may desire
adding in a homogeneous way as few links to the
ring structure as possible. Thus we are in particu-
lar interested in double loop networks.

A double loop network, denoted by G(n; sy, s2), is
a digraph with n nodes {0,1,...,n—1} and 2n links
of the form ¢ — i+s1 (mod n) and i — i+s; (mod
n), referred to as s1-links and ss-links, respectively.
The undirected version of G(n;,s1,s2) is given by
G(n; %81, s2) where each vertex ¢ is adjacent to 4
vertices ¢+ 5; and 7 & 5. Double loop networks are
extensions of ring networks and widely used in the
design and implementation of local area networks.

In this paper, we consider only directed version
of double loop networks, i.e., G(n;s;,82). To con-
struct an n-vertex double loop network, the choice
of 57 and s is a vital issue. In literature, differ-
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ent values of s; and s, are chosen to achieve some
desired properties. For example, Wong and Cop-
persmith [12] showed that choosing s; = 1 and sg
around /7 yields a small diameter, approximate to
2+/n, and a small average distance, approximate
to \/n. Readers can refer to [1, 8] for a survey on
double loop networks. In addition to small diame-
ter and small average distance, fault tolerance is an
important concern in the design of interconnection
networks.

We say that a graph G is hamiltonian if there is a
hamiltonian cycle in G. We say that a double loop
network G(n;s1,82) is LFT (1-link fault-tolerant)
if every G(n;s1,s2) — e is hamiltonian where e is
a link in G(n;s;,s2). Similarly, a double loop net-
work G(n;sy,82) is NFT (1-node fault-tolerant) if
every G(n;sq,s2) — v is hamiltonian where v is a
node in G(n; s1,57). It can be easily verified that
for i = 1,2, all of the s; links form a hamiltonian
cycle if ged(n,s;) = 1. Thus G(n;s1,s2) is LFT
if ged(s1,n) = 1 and ged(sg,n) = 1. However,
the converse is not necessarily true. For example,
G(12;5,2) is LFT but ged(12,2) # 1. Furthermore,
G(n;1,2)is NFT, but G(n;1,3) is not NFT when
n 1s even.

In this paper, we present necessary and sufficient
conditions for LFT and N F'T double loop networks,
respectively. In the design of a local area network
using double loop network architecture, we choose
the one which has a small diameter and is both LFT
and/or NFT. ,

Throughout this paper, we adopt the following
notation. We define s as s = 57 — s¢ (mod n) and
d = ged(n, s). Let C be a cycle in G(n;s1,s2). We
write for edge ¢ € C to mean that e is an edge in
C.

2 LFT double loop networks

When 53 = s, (mod n), it is obvious that
G(n;s1,82) is LFT if and only if ged(n,s1) = 1.
Thus we consider only the case s; # s2 (mod n) in
this section. For 0 <i< d,let ; ={j|0<j<n
and j i (mod d)}. Obviously, all T; with
0 < i < d form a partition of {0,1,...,n — 1},
and each T; contains n/d elements. For any inte-
ger 0 < m < n, we use [m] to denote the integer ¢
such that m € T;. Obviously, [m] = m (mod d).
Let C be a hamiltonian cycle of G(n;s1,s2). For
any vertex ¢ in G(n; s1, s2) we define a function f¢
as follows:

fe(®)= { zl

2

if (4,4 + 51 (mod n)) € C,
otherwise.

Lemma 1 Let C be any hamillonian cycle in
G(n;s1,82). For any two verlices j and k in T;
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with 0 < i < d, we have fc(j) = fe(k).

Proof Without loss of generality, we assume that
fc(@) = s1. Let m = i+ s (mod n). Suppose that
fe(m) = sq. It follows that (¢,i+ s; (modn)) € C
and (m,m + s; (mod n)) € C. Equivalently, both
(4,7 + 51 (mod n)) and (m,i + s; (mod n)) are
in C. There are two links in C entering the vertex
i+ 51 (mod n), which is contradictory to the fact
that C' is a hamiltonian cycle. Thus, fo(m) = s1.
Recursively, any vertex k = i+¢s (mxod n) for some
integer ¢ also satisfies fo(k) = s;. On the other
hand, the set {i + ts (mod n) | ¢, > 0 and integer}
constitutes T; for every 0 < ¢ < d. Therefore the
lemma is proved. a

For any hamiltonian cycle C, we define a function
gc from {0,1,...,n— 1} into {T; | 0 < ¢ < d} as
follows:

9¢(m) = Tt so(m)-

In other words, gc(m) denotes the set T; to which
the vertex next to m in C belongs. It follows from
Lemma 1 that

gc(T;') = T[i-l—fc(i)] for 0 <i<d, and
9c({0,1,...,d=1}) = {T: |[VO < i < d}.

Let H be a digraph with the vertex set {T; | V0 <
i < d} and link set {(T},9¢(T3)) | V0 < i < d}.
Obviously, H is a directed cycle with d elements.

Lemma 2 If G(n;s1,s2) is hamilionian, then

ged(d, s1) = ged(d, s9) = L.

Proof. Let r = ged(d,s1). Obviously, r is also
ged(d, s2). Suppose that G(n;s;,s2) has a hamil-
tonian cycle C and » > 1. Let H be defined as
above. It follows that H is a connected directed cy-
cle. However, gc maps the set {T; | ¢ is a multiple of
r} onto itself and thus, H is disconnected which is a
contradiction. Consequently, the lermma is proved.
a

Lemma 3 Let G(n; 51, s2) be a double loop network
with ged(d,s1) = 1. Let a,8,v, and & be non-
negative integers satisfying « < v, 3 < 6, and
a+fB<y+6<d Then Tias,48s,) F Tivsi+ssal-

Proof. Let G(n;s1,3s2) be a double loop network
with ged(d, s1) = 1, i.e., ged(d, s2) = 1 as well. Let
a, 3,7 and § be nonnegative integers satisfying o <
¥ B < 6, a4+ 8 < 7’+6 < d, and ,I]':crsl-i—ﬁsz] =
Thysy46s5)- Since Tias,+ps.] = Tiysy+8so), it follows
that as; + fsy (mod d) = vs; + 65, (mod d).
Therefore, (& — )51 + (8 — 8)s2 = 0 (mod d) and
equivalently, (a—7)(s2+8)+(8—6)s2 = 0 (mod d).
Since s = 0 (mod d), it follows that (a + F — v —
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6)s2 = 0 (mod d). Since ged(d, s2) = 1, it follows
that a+f—y—6 = 0 (mod d) which contradicts 0 <
o+ <y+8é < d Hence Tjus, 44, # ’It.,slH,Q],
and the lemma is proved.

Lemma 4 G(n; sy, s2) is hamiltonian if and only if
(i) ged(d, s1) = 1, and (i) there exists an integer k,
0 <k < d, satisfying ged((ks1+(d—k)s2)/d,n/d) =
1.

Proof. To prove the necessity, assume that
G(n; 81, 82) is hamiltonian. It follows from Lemma
2 that -ged(d,s1) = 1. Let C = (zo =
0,21,...,&,-1, &) be a hamiltonian cycle. We de-
fine a sequence of ordered pairs of nonnegative in-
tegers {(a;, 3i) | 0 < i < n — 1} as follows:

(o, Bo) = (0,0)

(G’i, :Bi) =
{ (@tie1,Bi-1) +(1,0) if z; = zi—1 + 51 (mod n),

(@i~1,8i-1) +(0,1) otherwise.

- It follows from the definition of (a;, 5;) that i =
a; + fB; and 2; = ;81 + f;s2 (mod n). Since any
two pairs (aj, 5;), (aj,05;) with 0 < 7 < j < d sat-
isfy 0 < a; + B; < aj + G;, it follows from Lemma
3 that Tjz,y # Tj;;)- By the pigeon-hole principle,
{T: |0<i<d} ={T;|0<i<d} Since
s = 0 (mod d) and z4 = ds; — Bas (mod d), we
have Tjz,) = Tjs,)- Furthermore, it follows from

Lemma 1 that Tjy,,,} = Ti;,). Recursively, we

have T[:c_,-] = T[a_.j (moda)]' Let £ = a4 :l {2 I

fe(d) = s1, 0 < i< d} |. Tt follows from Lemma
1 that z;q = t(ksy + (d — k)s2) (mod n) for all
1 <t < n/d. Suppose that ged(n/d,z4/d) =r > 1.
Then n/d = ar, z4/d = br for some integers a,b
with ged(a,b) = 1. Obviously, a < n/d. We note
that azg/d = abr = bn/d is a multiple of n/d.
That is, azs is a multiple of n which contradicts
21qg = teg # 0 (mod n) for all 1 < ¢ < n/d. Thus
ged(zg/d,n/d)y = ged((ks1 + (d — k)s2)/d,n/d) =1
for 0 <k <d.

On the other hand, suppose that ged(d,s;) =1
and ged((ksy + (d—k)s2)/d,n/d) = 1 for an integer
k where 0 < k < d. We construct a sequence D =
(¥o =0,91,...,Yn—1) as follows:

¥%=0

» ={ Yie1+ 51 (modn) if 1<i(modd) <k,

Yi—1 + 82 (mod n) otherwise.

In other words, y; = ¥; mod gy + 5] (ks + (d -
k)s;) (mod n). Obviously, (-1, ¥:) is a link of G.
In order to prove that D forms a hamiltonian cycle
in G(n;s1,52), we are required to show y; # y; for
all 0 < ¢ < j < n. Since ged(d, s;) = 1, it follows
from Lemma 3 that {T}y; | 0 < i < d} = {T3 |
0 < i< d}. Since ksy + (d — k)s; = 0 (mod d), it

follows that y; € Tj, s anod o) Hence y; # y; if i #
d

J (mod d). Since ged((ksy +(d—k)s2)/d,n/d) = 1,
it follows that y;q # O(mod n) for all 1 <t < n/d.
Then we have y; # y; for all ¢ = j (mod d) and
0 < i< j < n. Hence the theorem is proved. ]

Using the proof of the above lemma, we can easily
obtian the following corollaries.

Covollary 1 G(n;s1,52) contains a hamilionian
cycle with at least one sy -link and one so-link if and
only if (i) ged(d,s1) = 1, and (i) there ezists an
integer k, 1 < k < d, satisfying ged((ks; + (d—
k)sqg)/d,n/d) = 1.

Theorem 1 G(n;s1,82) is LFT if and only if al
least one of the following statements holds:

(a) ged(d,s1) = 1, and there ezists an inleger k
with 1 < k < d such that ged((ksy + (d —
k)ss)/d,n/d) = 1;

(b) ged(n,s;) =1 fori=1 and 2.

Proof. To prove the necessity, suppose
G(n;s1,82)is LFT. G(n; 1, s7) contains a hamilto-
nian cycle with at least one s;-link and one sy-link
or two hamiltonian cycles using only s1-links and
s9-links, respectively. It follows from Corollary 1
that Statement (a) holds in the former case. In the
latter case, it is trivial that Statement (b) holds.
On the other hand, Statement (a) implies the ex-
istence of a hamiltonian cycle with at one s;-link
and one so-link. Therefore, G(n;s;1,s2) is LFT
since G(n; 31, s9) is node-symmetric. When State-
ment (b) holds, it is trivial that G(n; sy, s2) is LFT.
Hence the theorem follows. ]

3 NFT double loop networks

When s; = 32 (mod n), G(n;s;,s;) cannot be
NPFT. In the following discussion, we assume s; #
sy (mod n). In G(n §1,82), we construct a se-
quence Ny = {d},d},...} as follows:

a} =n —s; (mod n),

al =n — sy +is (mod n) if is £ 0, s> (mod n).

The sequence terminates when s = 0 (mmod n) or
52 (mod n). It is obvious that n 4 Zs = 0 (mod n)
or is = s (mod n) for some integer ¢. Thus the se-
quence N; is finite. Similarly, construct a sequence
No = {a,d?,...} as follows:

a} = n — 5; (mod n),

a? =n—s,—is (mod n) if is # 0, —s1 (mod n).

The sequence terminates when 5 = 0(mod n) or
is = —35; (mod n). Nj is also finite. Note that the
vertex 0 is not in either N; or Na, ie., 0 & Ny UN;.
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Lemma 5 Let G(n; s1,52) be a double loop network
with ged(n,s) = 1. Let [N1| =  and [N} = y
Then & and y are the smallest positive iniegers sat-
isfying s = s7 (mod n) and —ys = 51 (mod n),
respectively. Morecover, z+y=n-1, NyN N, = 0,
and NU Ny = {1,2,...,71— 1}.

Proof. Since ged(n,s) =1, N; and N, terminate
when zs = sp (mod n) and ys = —s; (mod n)
are satisfied. Therefore, z is the smallest posi-
tive integer with zs = s, (mod n) and y is the
smallest positive integer with —ys = s; (mod n).
Obviously, 1 €< ¢ < nand 1 < y < n. Since
(z + y)s = s2 — 51 (mmod n) and ged(n,s) = 1,
we have z +y = —1 (mod n). Thus, z+y=n—-1
followsfrom 2 < z+4+y < 2n—2.

Suppose N1 NNz # 0. Let o} = o}, where 0 < i <
z—1,0<j <y-—1. It follows that n— sy +is = n—
s1—js (mod n) and (1+i+j)s = 0 (mod n). Since
ged(s,n) =1, it follows that 1+ ¢+ j = 0 (mod n).
It implies i + j = n — 1 which contradicts i + j <
z+y—2andz+y=n—1. Thus Ny NN, = 0.
Since z+y=n—1, NyN Ny =B and 0 € Ny UN-, it
follows that NyUN, = {1,2,...,n—1}. The lemma
follows. O

Let G(n; 51, 82) be an NFT double loop network.
There exists a hamiltonian cycle in G(n; sy, s2) — v
for every vertex v € {0,1,...,n — 1}. Since
G(n; 51, s2) is node-symmetric, we can assume with-
out loss of generality that v = 0 in the follow-
ing analysis. Let C be a hamiltonian cycle in
G(n;s1,82)—0. For any vertex ¢ € {1,2,...,n—1},
define a function h¢ as follows:

he(i) = { o

Lemma 6 Let G(n;sy,s2) be an NFT double
loop network, and C be a hamiltonian cycle in
G(n;81,82) — 0. Then

[i] he(3) = sy for all vertices i € Ny,

if (¢, + s; (mod n)) € C,
otherwise.

[ii] he(i) = s for all veritces i € No.

Proof. Since a} + s2 = 0 (mod n), it fol-
lows that (a},al + s2 (mod n)) € C. Thus,
(ad,a} + 5, (mod n)) € C and he(al) =

Assume that hc(al_;) = s1 where £ < |Ny,
ie, (al_j,a}_; + s1 (mod n)) € C. Note that
ai + 52 = (a}_; + )+ 52 = ai_; + 51 (mod n).
Thus, (a},a} + s2 (mod n)) ¢ C. Consequently,
(a},at+s (mod n)) € C and hc(a}) = s1. There-
fore, ho(d) = sy for all ¢ € N;. Similarly, we can
prove hg(i) = sg for all vertices ¢ € No. o

Lemma 7 If G(n;s1,32) is an NFT double loop
network, then ged(n,s) = 1. :
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Proof. Suppose to the contrary that ged(n,s) =
d > 1. We first consider the case d | s1. It follows
that d | s; also holds. Then all of the vertices in
{i | d | i} are adjacent to vertices in the same set.
Thus G(n; s1,s2) is disconnected and furthermore,
G(n; s1,82) is not NFT which is a contradiction.
Now, we consider the case d /s;. It follows that
d [s,. Since s but not s, is a multiple of d, it follows
that is = s» (mod n) has no solution. We also note
that is =0 (mod n) if and only if ¢ = 0 (mod Z).
Thus, n—s1 — (5 —1)s (mod n) is in Np. However,
n—8 —(%-—l)s = n — s (mod n) is also an
element in N;. It follows from Lemmna 6 that we
have s; = he(n — s2) = s2 which is contradictory
to 51 # s2. Hence ged(n,s) = 1. i

Theorem 2 G(n;s1,s82) is NFT if and only if the
following conditions hold:

(a) s1# 52,
(b) ged(n,s) =1,
(¢) ged(z,n—1) = 1 where z is the smallest positive

integer satisfying zs = s» (mod n).

Proof. To prove the necessity, let G(n;s1,s2) be
NFT. It follows from Lemma 7 that ged(n,s) = 1.
It follows from Lemma 5 that we can construct a
sequence B = {bg, b1, ...,bn—2} as follows:

b; =
a} =n-—s+is(modn)if0<i<z—1,
a_; o =n-—s —(n—2—1i)s (modn)
ife<i<n-2,

where z is the smallest integer satisfying zs =
s2 (mod n).

Let C be a hamiltonian cycle in G(n;sy,82) —
0. Let y be the smallest positive integer satisfying
—ys = s; (mod n). We claim that for all 0 <
i<n-—1, b+ hc(b;) = b; (mod n) where j =
i+« (mod n — 1). To prove the claim, we assume
without loss of generality that 2 < y for ease of
exposition.

First consider 0 < 7 < 2z — 1.
Lemma 6 that hc(d;) = s1. Thus

It follows from

b; +hc(b Y=n+(i+1l)s=n—s;—ys+(i+1)s
al_;_y = bj (mod n),
where j =i+ z (mmod n — 1).
Consider z < i < n—2—z. It follows from Lemma
6 that hc(b;) = sp. Thus, we have

bg+hc(b,-)=n—(n—-1—i)s
=n-5n-(n—-2—-i—23z)s

=a;_ 5, =b; (modn),
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where j =i+ z (mod n - 1).
Forn—-1-z<i<n-—1,wehaveb;=al_, ;=
n— s ~(n—2-1i)s (mod n) and he(b;) = s2.
Thus,

b; +he(bi)=n—(n—1-=1i)s
=n=-s3+(i+z—n+1)s
= a%+z—(n—1) = bj (mOd Tl),

where j = i+ 2 (mod n—1). The case > y can
be similarly treated.
From the above discussion, C is uniquely deter-

mined by the sequence D = {b,_ (mod n-1) |0< -

j < mn—1}. In this case, {jz (mod n - 1) |
0<j<n-1}={0,1,...,n —2}. Therefore,
ged(z,n—1)=1. :

On the other hand, assume that ged(n,s) = 1
and ged(z,» — 1) = 1, where z is the smallest
positive integer satisfying zs = s; (mod n). To
prove G(n; 51, s3) being N FT', we need to construct
a hamiltonian cycle in G(n;s1,82) — 0. Let Ny
{a},al,...,al_,} and N = {ad,d},...,a2_,_,}.
Since ged(n,s) = 1, it follows from Lemma 5
that Ny UN; = {1,2,...,n — 1}. We define a
new sequence B = {bg,b1,...,bn—2} by setting
by = a} if 0 < i < z—1and b = a2_,_,
if 2 < i < n—2. We claim that the se-
quence {b(gy, b(z), b(az), - - -1 O((n—2)c), (o)} forms a
hamiltonian cycle in G(n;s1,52) — 0, where (a)
a (mod n — 1). For ease of exposition, we assume
without loss of generality that ¢ < y. Then for
0<i<uz,

b = af =n — sz + is (mod n),
bigo)y = @iy =n—s1—(y—1—1i)s
=n+ (i + 1)s (mod n).

Thus, b(iyz) — biy = 51 (mod n) for 0< i< z.
Forz<i<n-1-gz,

buy =al_o_;=n—s1 —(n—2—1i)s (mod n),
biva) = Gnsis

=n—-5-(n—-2-i—-2)s

=n—(n—1-1i)s (mod n).

&

Thus, bi;4s) — by) = 82 (mod n) for z < i <
n—1l-z Forn-1-z<i<n-1,

by =a2_p_; =n—s —(n—2-i)s (modn),
blita) = az;-{—x—(n-l) =n—-s+(i+z-n+1)s
=n—(n—1-1i)s (mod n).

Thus, bi4e) — byg) = 52 (mod n) for n — 1 -
z < ¢ < n— 1. Therefore, (bjz),b((j+1)c)) i8
a link for all 0 < i < n — 1. Since ged(z,n —
1) = 1, we have {(jz) | 0 < j < n-1} =
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{0,1,...,n =2}, Thus {bjjo) | 0 < j < n -
1} = {1,2,...,n — 1}. Therefore, the sequence
{b(o), b(z), b(zx) yeeny b((n_g)z), b(o)} formis a hamilto-
nian cycle in G(n;s1,s2) — 0. Hence, the theorem
follows. ' 0

4 Discussion

For any positive integer n, the number of all pos-
sible (s1,s2) pairs is C(n,2). In this paper, we
present necessary and sufficient ¢conditions for LFT
and NFT double loop networks. Using these condi-
tions, we write a program to calculate the number
of (s1,s2) pairs of G(n;s1,52) to achieve the de-
sire properties of hamiltonicity, LFT, NFT, and
LN FT which means both NFT and LFT. We list
results for all 51 < n < 70 in Table 1.

Let n be even, and let s; and sy have the same
parity. Then ged(n,s) # 1. Therefore, when n is
even and s; — 52 = 0(mod 2), G(n;s1,s2) is not
NFT following from Theorem 2. Let n be even,
and let s; and s, have different parity. Without
loss of generality, we assume that s; is even and s
is odd. Consider G(n;s1,82) is NFT. It follows
from Theorem 2 that d = ged(n,s) = 1. In this
case, gcd(n,s;) # 1 and there is no integer k with
1 <k < d, not to mention satisfying ged((ks; +(d—
k)s2)/d,n/d) = 1. Thus, when G(n; s1, s2) is NFT,
G(n; s1,52) is not LFT. Therefore, when n is even,
there is no LN FT double loop network, which can
also be observed from Table 1.

It is also observed that when n is odd, the number
of double loop networks G(n; s1, s9) that are LNFT
is not small. Tt is possible to choose a double loop
network that is LNFT. Moreover, when n is prime,
every N FT double loop network G(n; s1, s2) is also
LFT.

In addition to fault tolerance, diameter is another
performance measure of interconnection networks.
Let d(n; 51, 52) denote the diameter of G(n; sy, s2).
Let d(n) denote the minimum diameter among all
double loop networks having n vertices. Among
those G(n;si1,s3) achieving d(n), is there always
one also NFT or LFT or LNFT? The answer
is no. For example, with the aid of a computer
program we know that d(12) = 5, in particular,
d(12;1,8) = 5. However, G(12;1,8) is NFT but
not LFT. There is no G(12; 51, 53) which is LNFT.
Let n = 21. We know that d(21) = 6. In particular
d(21;1,9) = d(21;1,13) = 6. However, G(21;1,13)
is LFT but not NFT, whereas G(21; 1,9) is nei-
ther LFT nor NFT. We also find that there is no
G(21; 51, 33) with diameter 6 which is also LNFT.
Consider a prime number n = 59. We find that
d(59;1,27) = d(59;1,35) = 12 and that G(59;1,27)
and G(59;1,35) ate LNFT. Suppose that p is a
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prime number such that p # 2 (mod 3). Con-
sider a double loop network H = G(p?;p + 2,1).
It follows from Theorem 1 that H is LFT. Let ¢
be the smallest positive integer satisfying z(p+1) =
1 (mod p?). Note that (p+1)(p—1) = —1 (mod p?)
implies + = p?> — p + 1. It is observed that
ged(p® —p+1,p* = 1) = ged(p* —p+1,p-2) =
ged(p+1,p—2) = ged(3, p — 2) = 1. Therefore, we
obtain ged(p? —p+1,p* —1) = ged(p?, p+1) = 1. Tt
follows from Theorem 2 that H is NFT. Note that
p+ 2 is close to 1/p?. Applying the result of Wong
and Coppersmith [12], both the diameter and the
average distance of H are O(p). In other words, H
is LNFT and has a small diameter.

n | C(n,2) | Hamiltonian | LFT | NFT | LNFT
50 1225 790 410 | 420 | O
51 1275 1104 592 | 320 128
52 1326 948 372 | 384 0
53 1378 1378 1378 | 624 624
54 1431 801 441 | 468 0
55 | 1485 1380 900 | 360 | 200
56 | 1540 1044 444 | 480 0
57 | 1596 1386 738 | 432 108
58 | 1653 1218 462 | 504 0
59 | 1711 1711 1711 | 812 812
60 | 1770 824 552 | 464 0
61 | 1830 1830 1830 | 480 | 480
62 | 1891 1395 525 | 900 0
63 | 1953 1602 882 | 540 108
64 | 2016 1520 528 | 576 0
65 | 2080 1944 1272 | 768 | 432
66 2145 1110 730 | 480 0
67 2211 2211 2211 | 660 660
68 | 2278 1648 624 | 1056 0
69 2346 2046 1078 | 704 264
70 2415 1380 852 | 528 0

Table 1. A comparison on the numbers of
hamiltonian, LFT, NFT and
LNFT double loop netwworks.

REFERENCES

[1] J-C. Bermond, F. Comellas, and D. F. Hsu,
Distributed loop computer networks: a survey,
J. Parallel Distributed Comput., vol. 24, pp. 2~
10, 1995.

[2] F. T. Boesch and R. Tindell, Circulants and
their connectivities, J. Graph Theory, vol. 8,
pp- 487-499, 1984.

[3] F. T. Boesch and J. F. Wang, Reliable circu-
lant networks and minimum transmission de-
lay, Networks, vol. 20, pp. 173-180, 1990.

F-186

[4] P. J. Davis, Circulant mairices, New York;
John Wiley and Son, 1979.

[5] D.Z. Du and D.F. Hsu, De Bruijn digraphs,
Kautz digraphs and their generalization, in
D.Z. Du and D.F. Hsu (eds.) Combinato-
rial Network Theory, 65-105, Kluwer Academic
Publishers, Netherlands, 1996.

[6] M. A. Fiol, J. L. A. Yebra, 1. Algebre, and M.
Varero, A discrete optimization problem in lo-
cal networks and data alignment, IEEE Trans.
Comput., C-36:702-713, 1987.

[7] A. Grnarov, L. Kleinrock, and M. Gerla, A
highly reliable distributed loop network ar-
chitecture, In Proc. Ini. Symp. Fauli-Tolerant
Computing, pp. 319-324, Kyoto, Japan, 1980.

[8] F. K. Hwang, A survey on double loop net-
works, DIMACS Series in Discreie Mathemai-
ics and Theoretical Computer Science, vol. 5,
pp. 143-151, 1991.

[9] O. C. Ibe, Reliability comparison of token ring
network schemes, IEEE Trans. Rel., 41:288-
293, 1992. '

[10] M. T. Liu, Disiribuied Loop Computer Net-
works, J. Algorithms Volume 17 of Advance
in Compulers, page 163-221. Academic Press,
New York, 1981.

[11] C. S. Raghavendra, M. Gerla, and A. Avizie-
nis, Reliable loop topologies for large local
computer networks, IEEE Trans. Comput., C-
34:46-55, 1985.

[12] C. K. Wong and D. Coppersmith, A combi-
natorial problem relate to multimode memory
organizations, J. Assoc. Comput. Mach., vol .
21, pp. 392-402, 1974.



