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Abstract

To improve the ineffectiveness of the priority
scheme in DQDB networks, we propose a Dynamic
Priority Transmission Mechanism. The mechanism
implements preemptive priorities. The higher
priority node preempts lower priority node
whenever necessary.
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1. Introduction

The Distributed Queue Dual Bus (DQDB) is
the IEEE 802.6 standard [3] for metropolitan area
network (MAN). DQDB intends to integrate data,
voice and video traffic on a single platform. The
DQDB network is based on a pair of unidirectional
buses that transmit in opposite direction as shown
in Fig. 1. To send in one bus, a node must make
request first in another bus. For example, in Fig. 1,
if node 2 wants to send to node N, then the upper
bus will be the data bus and the lower bus will be
the reservation bus for making requests. However,
the DQDB protocol has several problems in the
transmission of prioritized, time-critical data.

4 - Terminator
[ed 0
©® - @

-

Terminator < [3l51]

Fig. 1. Basic architecture on DQDB

One shortcoming in DQDB is that the
current multiple priority mechanism is not able to
provide guaranteed real time performance. This is
due to the fact that DQDB protocol does not
provide individual station with a global view of
priority operations. Each station decides the
priority of its own generated message according to
the local queue status. Actually, it does not care
about and is unable to see the situations of other
stations. This leads to improper priority mapping in
the global distributed queue. A proper priority
assignment scheme is important in DQDB to
guarantee the required data be arrived in real time
and the delay be bounded.

Another shortcoming in basic DQDB is that
the nodes with higher priority cannot satisfy all
their bandwidth requirements. If a high priority
node is located downstream and a low priority node
is located upstream in the reservation bus, the
upstream node has more chance to get bandwidth
of the network because it can request first. This
leads to unfairness problem since in commmon sense
all nodes have to leave as much available
bandwidth as possible to the highest priority nodes
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in the network.

Bisdiskian and Tantany [1] addressed three
factors that result in the unfairness of high priority
traffic. The first one is the natural ordering of the
nodes on the unidirectional buses. The node closer
to head of bus has better chance to get the
bandwidth. Second, a node must send a request for
each segment to be sent. No matter how many
segments the node would like to send it has to send
them one by one after each successful request. The
last one is that traffic from all priority levels (but
from different nodes) can be allowed to access the
network at the same time. Instead of allowing all
priorities to present in the network simultaneously,
they proposed a new method to allow the higher
priority node to use the network as long as it needs.
The new idea is called priority hold. However, the
paper did not specify the way for the low priority
node to renew its request after its low priority
traffic is preempted by the high priority traffic.

Kamal and Bissonauth [5] proposed another
priority mechanism by introducing the concept of a
virtually empty slot. Virtually empty slots are
defined as those slots that are either empty or
occupied by a lower priority segment. This
mechanism enables higher priority nodes with
heavy load to use virtually empty slots and shut out
lower priority nodes completely. However, to
implement it, three queues for each priority in one
node are needed. Each node must be equipped with
two additional counters, and a pointer to each
queue is required. Besides this data structure
overhead, the nodes located downstream still suffer
a penalty because of their location. The priority
mechanism is a minor modification to the DQDB
protocol and its finite state machine is similar to
that of the standard DQDB.

Huang and Wu [3] used priority promotion
scheme to solve the unfairness problem in DQDB
network. To prevent the downstream nodes in the
reservation bus from starvation in another bus, the
downstream nodes promote their priority when the
number of passing empty slots exceeds some
certain value. When a node has promoted its
priority to the highest, it is allowed to send out its
buffered packet on the first empty slot.
Notwithstanding, there are drawbacks in this
scheme, First, it did not consider about the basic
DQDB priority mechanism. The format of Access
Control Field (ACF) and the different priority
levels of request counters and countdown counters
were not mentioned. Second, the authors did not
describe the detailed operations of segment
transmission in each node.

An important problem in supporting high
priority service over computer neiwork is Quality
of Service (QoS) management. QoS management
strategy refers to allocation of network resources so
as to guarantee good performance for time-critical
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data. To improve the ineffectiveness of the priority
scheme in DQDB networks, we propose a
mechanism to implement preemptive priorities.
This mechanism provides efficient QoS guarantee
for high priority service. The high priority service
will be served immediately. The low priority
service uses -the remaining bandwidth as is
available. To improve the shoricomings of previous
papers mentioned above, combined techniques such
as priority preemption and priority promotion are
used to achieve better performance. Moreover, the
detailed design of node architecture is also
provided.

The rest of the paper is organized as follows.
In Section 2, the basic DQDB protocol is described.
Cell format and the key ideas behind the proposed
mechanism are explained in Section 3. The analysis
and simulation results of comparison between the
existing priority mechanisms and the new priority
mechanism are shown in Section 4. Finally, Section
5 concludes this paper.

2. Basic DODB protocol for priority mechanism

A DQDB network of size N consists of N
nodes. These nodes, numbered 0 to N-1, are evenly
distributed over the network. The head of bus
(HOB) generates empty slots periodically. Each
slot has 53 bytes and consists of a segment payload
and one byte of access control field (ACF) (Fig. 2).
Each node has three sets of reg_ctr (request counter)
and cd_ctr (countdown counter) for three priority
levels respectively. Operation of req_ctr and cd_ctr
[4] involves read operations on Busy bit and
SL_TYPE (slot type) bit in ACF on data bus and
read operations on the Request field in ACF on
reservation bus. A request for access to data bus at
priority level i is signaled to other nodes by a write
operation into the reg_i bit in the ACF in one of the
slots passing on the reservation bus. The write
operation succeeds and stops after it set to one the
first zero req_i bit on the reservation bus.

DQDB Standard
Busy [SL_TYPE | PSR Reserved Request
m [1}] 1] 2 3
Proposed

4]

Busy
i n (] 3

SL_TYPE |precmpt I Priority | Request |

. Fig. 2 ACF format
Each node with outstanding segmenis to
send requests one at a time by writing reg_i in ACF
on request bus. When a slot arrives in request bus,
a node read the non-zero reg_i in the Request field

- of ACF and compares it with its own priority j.

req_ctr(j) incrementis by one for any reg_i bit on
the reservation bus whose priority i is greater than
or equal 1o j. reg_cir(j) decreases by one for an
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empty slot passing on data bus.

When a node is ready to send, it enters
Countdown State. The node copies the value of
req_ctr(j) to cd_ctr(j) and reset req_ctr(j) to zero.
cd_ctr(j) increments by one on seeing any reg_i bit
on the reservation bus whose priority i is greater
than j. cd_ctr(j) decrements by one for an empty
slot passing on data bus. The node has the right to
access the empty slot when cd_cti(j) reaches zero.

3. New priority mechanism

To improve the shortcoming of ([3]
mentioned in Section 1, the ACF format and
detailed node architecture of new mechanism are
proposed in Subsection 3.1 and Subsection 3.2,
Subsection 3.3 proposes a new priority mechanism
to ameliorate the weakness of non-retransmission
for the preempted low priority node in [1].

3.1 ACF Format

The ACF in basic DQDB protocol currently
contains three request bits and two bits reserved for
future use. These two reserved bits are used in the
proposed scheme and are called priority field (PF)
(Fig. 2). 00 represents the lowest priority. 10 or 11
is the highest priority and 01 is the second highest
priority. Three request bits correspond to three
priority levels. In the basic DQDB protocol, the
Previous Slot Read (PSR) bit indicates whether the
previous slot has been read or not. When a segment
arrives at the destination, the destination node sets
PSR bit in the following slot. An erasure node
buffers an entire slot and the following slot for
reading the PSR bit. If the PSR bit is set, the
previous slot is erased. The downstream nodes,
therefore, may reuse this empty slot. In our
proposed scheme, each node may preempt a slot if
necessary. The erasure node is not needed.. PSR bit,
therefore, is modified to be Preempt bit. Preempt
bit is used to inform the node status, preempt (1) or
idle (0), to the nodes located upstream in the data
bus. When a higher priority node positioned
downsiream executes preemption operation, it
sends Preempt bit (1) and priority field upstream by
the reservation bus. Whenever a lower priority
node positioned upstream in the data bus sees the
Preempt bit (1) and higher priority bits, it increases
a counter, called preempi_ctr, by one. On seeing an
empty slot in the data bus, the node decreases
preempi_ctr by one. After preempr_cir reaches zero,
the node follows the basic DQDB protocol to get
the right to transmit.

3.2 Node Architecture

Each node is assigned a fixed priority level
k, where k = 0, 1 or 2. There are iwo processing

functions in each node: reception processing and
transmission processing (Fig. 3). Reception
processing is in charge of the handling of arriving
slots. This function first delineates the arriving slot
type (data and/or request) by reading out the ACF
format. It passes request slot to transmission
processing function and executes preemption to

- alter data when necessary. By the preemption
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operation, the higher priority node has more chance
to access the empty slots and avoid the penalty due
to positioning [1]. This preemption condition will
be described below. A request counter (reg_cir) and
a countdown counter (cd_ctr) are in charge of the
operation for accessing empty slot in the node,
Only one set of request counter (req_ctr) and
countdown counter (cd_ctr), rather than three sets
of counters [5], is needed in each node. Preempt
counter is used to count the number of slots which
are preempted downstream in the data bus.
Transmission processing updates request counter
and countdown counter when receiving higher or
equivalent priority request slots. It also deals with
the injection of slot into bus. In Fig. 3, there are
two types of queues in each node: input queues and
an output queue. Input queues hold its own
outstanding segments and the arriving segments
from other lower priority nodes that have not
reached their -destination. Input queues are
composed of k+1 priority queues for storing k+1
priority levels outstanding segments for a node with
priority k, where k# 0. Since priority 0 nodes do
not store any segments from other nodes, the
queue(0) in the priority O node is not required.
Denote the ith priority queue as guewe(i) for
0<i<2.

......

For instance, a node with priority 2 has three
priority queues in input queues. The queue(2)
stores the outstanding segments for itself while
quene(l) and gueue(0) hold the lower priority
segments from others. Each priority queue has a
queue length counter, queune_ctr(i). Two successive
priority queues ((queue(i) and queune(i-1)) are
connected by a switch, which is controlled by the
queue length counter queue_cir(i-1). queue_cir(i-1)
records how many segmenits are in the (i-1)th queue.

‘Whenever queue_cir(i-1) value reaches 2 maximum

value, the swiich between quene(i-1) and gueue(i)
is connecied to queue(i) (Fig. 4). Then, all the
segments in quewe(i-1) are moved forward io
queue(i) until gueue_ctr(i) reaches iis maximum
value or gueue_cir(i-1) is equal o zero. Afier the



TERE\ A E R AR

operation of movement is completed, the link is
disconnected and the switch goes back to the
original position. The characteristics of maximum
length value of a queue will be discussed in
Property 1. Depending on the positions of the
nodes. each node may be configured with a
different value.

Fig. 4 is an example for a priority 2 node.
Whenever queue_ctr(0) reaches its maximum value,
the switch of queue(0) is connected to queue(l).
All the segments in queue(0), therefore, are moved
to gqueue(l) till the queue_ctr(l) reaches its
maximum value or queue(0) is empty. The same
procedure is applied to the switch between guene(1)
and queue(2). When there are any segmenis in
queue(2), those segments will be moved forward to
output queue one by one. Output queue holds only
one segment for moving to the transmission
processing one at a time.

————Tm

queue(0)_ctr

- :!ID_?"’ ——t —p T
queue(l)_c]
=—1m

O quene(2)_ctr
Input Queues Output Queue

Fig. 4 Example of input queue and output queue

Property I: Let D(p,q) be the maximum
distance from a priority p node to priority ¢ node,
where priority p node is positioned upstream with
respect to priority ¢ node in the data bus and p<gq.
Distance between nodes is estimated in slot time.
Then the maximum possible length of queue(p) in
node g is 2*D(p,q).

Proof: After D(p,q) time, the first data slot
of p arrives at ¢, which is then preempted and
stored in queue(p) and a preempt signal is sent.
After D(p,q) time, this preempt signal arrives at p,
which then stops sending. Therefore, the number of
slots sent by p is 2*D(p,g), which must be queued
atq. QED.

3.3 Priority Implementation
3.3.1 Reception Processing Function in Data Bus

Suppose a busy slot that contains a segment

of priority m arrives at a node with priority k,

which is not the destination in the data bus.

Comparison of m and k in the reception processing

function, there are two cases:

Case (1): k>m. The node executes preemption
mechanism. The node first copies the
segment of priority m into gueue(m) and
then quene_ctr(m) is increased by one. The
slot is then emptied. Suppose the maximum
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length for each priority queue is L.
Whenever queue_ctr(m) reaches "L, it
promotes its priority by moving segments
from queue(m) to queue(m+1) untl
queue_ctr(m+1) is equal to L (Fig. 4).

Case (2): k< m. The node with priority k realizes
that there is higher priority m traffic in the
network. The node reacts by ceasing its own
transmission procedures. Reception
processing function lets the busy slot pass to
transmission processing function. The slot
then goes forward to the bus.

3.3.2 Transmission Processing Function in Data
Bus

Now consider the transmission processing
function in the node of priority k for the data bus.
When an empty slot arrives, the transmission
processing function first checks the value of
preempt_ctr. If the preempt_ctr is greater than zero,
the node lets empty slot pass and preempt_ctr is
decreased by one. When preempt_ctr reaches zero,
the node follows the basic DQDB protocol to get
the right to transmit. The segment in queue(k) is
moved forward to output queue one at a time. After
that, the segment in the output queue is injected
into the bus by the transmission processing and
heads for its destination. Whenever one segment
from queue(k) enters the output queue, gueune_ctr(k)
is decreased by one. The switch changes its
connection to queue(k-1) when queue_ctr(k)
reaches zero. If a new priority k segment arrives,

the connection will be switched back to
queue(k)(Fig. 5).
reg_ctr  cd_cir
g :‘/"L
L e | o
Input Queues Qutput Queue
Fig. 5 Switching mechanism for input queues and sending mechanism
for output qucue
3.3.3_ Reception Processing _Function _in

Reservation Bus

Suppose a busy slot arrives at the node
(priority k) in the reservation bus. The reception
processing function first determines whether the
slot contains a Request bit of priority m (reg_m) or
a Preempt bit. If the slot contains Preempt bit and
with higher priority bits, preempi_ctr is increased
by one. This node knows that a higher priority node
positioned downstream in the data bus wants to
transmit. The node stops transmission. If the slot
contains a Request bit (reg_m), reception
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processing compares m and k and there are two
cases: ’

Case (1): k> m. The node ignores the lower priority
request bit according to priority mechanism.
It does not update the request counter and
countdown counter.

(2): k< m. Basically, this case follows
standard DQDB protocol. There are only one
set of req_ctr and cd_ctr in the node. In the
idle state, the node increments reg_ctr by one
on seeing an incoming slot with reg_m.
While req_ctr is greater than zero and one
empty slot arrives on data bus, the value of
req_ctr is decreased by one. When a node
begins the countdown, the value of the
req_ctr is copied to cd_ctr and the value of
req_ctr is reset to zero. cd_ctr is decreased
by one on seeing each passing empty slot.

Case

When cd_ctr is zero, the node gets the right

to send a segment.

3.3.4 Transmission Processing Function in
Reservation Bus ‘

Consider the transmission processing
function in the node of priority & for the reservation
bus. The transmission processing function checks
whether the reception processing function executes
preemptive operation. As long as this node executes
preemption, it sets preempt bit to 1 and sets priority
bits. The slot carrying preempt bit is sent upstream
by the reservation bus. Otherwise, the transmission
processing function set the corresponding request
to 1 when the node wants to transmit. The slot is
then injected to the reservation bus and passed
upstream.

4. Simulation and Performance Evaluation

In this section, we scrutinize an analytical
model and study the delay as well as throughput
characteristics of the proposed protocol by
simulation. For each case considered, we also
provide the simulation results according to methods
in standard DQDB and Kamal and Bissonauth’s [5]
for comparison.

The simulation result of Fig. 6 illustrates the
network throughput property. We evaluate these
three schemes’ throughput based on the different
message length. The proposed one has larger
average throughput than the others do. When the
message length increases, the average throughput
of the proposed scheme is still better than those of
the other two.

The average message delay for each node
under different network load is shown from Fig. 7-
1 to Fig. 7-3 for these three schemes, respectively.
The message delay of low priority traffic in the
proposed scheme is close to those of the other two
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in the light load. On the other hand, the message
delay of high priority traffic does not increase as
the network load increases. However, the message
delay of lower priority traffic increases
dramatically as the network load increases.

In Fig. 8, the average throughput for the
three schemes have no difference in light load.
However, the proposed scheme outperforms the
other two as the workload increases.

To conclude from the simulation results; the
proposed scheme and [5] permits the highest
priority class to be better serviced under heavy load.
Lower priority classes get to transmit only when the
higher priority class is inactive. However, the
performance of [5] shows longer delay and lower
throughput when compared with that of the
proposed scheme under heavy load. The
complicated mechanism and three sets of queue for
each priority in one node are the major reason.

5. Conclusions

We presented a new Dynamic Priority
Transmission Mechanism for DQDB. By
modifying the nodal structure and hardware of
basic DQDB, the system performance is improved
compared to other schemes. We have the preempt
field in place of PSR field and use two reserved
bits for the priority bits. We also study the delay
and throughput characteristics via simulation,
compared to the standard IEEE 802.6 DQDB and
[5]. The new mechanism provides higher
throughput efficiency and lower delay required for
the higher priority class traffic.

It is widely acknowledged that the support
of multi priority level is required to provide a
variable quality of service to the network. Support
of high-priority traffic is also needed for network
control and management. The new generation of
computer applications, such as multimedia
conferencing and remote video, have widely
varying QoS requirements. ATM, another
integrated service network, are designed to support
various applications. In the case of interworking
between these two kinds of networks, a QoS
mapping must be defined to meet the requirements
of all the application. The defining of QoS metric
between networks is complicated. However, it is an
important issue in the future.
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