FEREANTAFEENERESR

FERBEAFHEZEBH_AETE
Non-Deterministic Binary Search of Mobile Agents

"E R
Jang, Hung-Chin
BEd
Lien, Yao-Nan

BEw
Liu, Fu-Han

HEAREERAAER
Dept. of Computer Science
National Cheng-Chi University
Taipei, Taiwan, R.O.C.

e

#— E 7B A FEA(mobile agent V3783t B
MBIRIE T 0 P Tk — (Tl R EAE GBS
FEF AL LBIIIRE o B T ERBFHHEAERF
s E B9 7T » AL B BY BRI B — BRI
FEL o Lien[6] 4 4038 % 69 F 4 A FFF & Lo
FEB AT E 0 AT I A E R R AL
B IBA 2 fT By 5572 5 FATAAGIGRT » 12
HE|RBAGG U E o ERERL T BITRLTFE
AR 49 = 44 F s+ (Non-Deterministic Binary
Search * NDBS) » NDBS F % EMBEZSGRH »

NDBS 4648 Frt i s B O(m+zog(%)) AP

m o> n BB AEAL AL R P Z
FHEGHBURAFF R GZ BB -

Mats: FHRBA FEUMFR

Abstract

In a mobile computing environment that supports
mobile agents, a client is able to send an agent to visit
a sequence of servers in the network. Tracking the
locations of agents becomes a critical problem in
managing a mobile agent service network. In [6], Lien
proposed several blind and intelligent search methods
and studied their performances. Since all these search

This work is partly supported by the National Science
Council of the Republic of China under the grant NSC-87-
2213-B-004-009.

F-89

#5 %
Huang, Jyh-Shyan

HERBEAHER
Dept. of Applied Mathematics
National Cheng-Chi University

Taipei, Taiwan, R.O.C,

strategies are under an assumption that the agent to be
searched moves along a pre-deterministic path. In this
paper, we propose a search strategy called Non-
Deterministic Binary Search (NDBS) which will
release this assumption and locate an agent through a
non-deterministic path. The time complexity of our

NDBS is O(m+log(f—)), where m and n are the
m

numbers of visited non-deterministic nodes and all the
nodes to be visited by the target agent during its
lifetime, respectively.

Keywords : mobile agent, intelligent search

1. Introduction

1.1 Agent and Agent Mobility

The goal of an ubiquitous information service
network is to provide information to the users anytime
and anywhere [8]. Thus, a service network must be
provided with a wireless communication network and
be able to easily access to various information
resources [10].

Due to the immaturity of distributed computing
technology, clients have to access network resources in
a prescriptive fashion by interacting with individual
servers, However, in most mobile computing
environments, the nature of communications is
intermittent and the battery energy is limited. Thus, it
becomes more difficult to accomplish a complicated
task that requires intensive interactions among its client
and multiple servers. A non-traditional computing
paradigm, intelligent messaging, allows clients to
interact with multiple servers in a dynamic fashion has
been brought up to cope with this problem [1,2,3,8,10].

FEREN+AFREGEEES

Simply speaking, an intelligent message is an
electronic message carrying a computer program, either
procedural or declarative, that can be executed by the
receiving servers on behalf of the originating client.
The program in the message can also instruct a
receiving server to automatically forward the message
to another server, upon which the program is executed
continuously in a pipeline fashion. We would use the
term, mobile agent, as a substitution for intelligent
message through the paper. Good examples are referred
to [3].

Since an agent moves along a service network, the
originating client may not be able to track or control its
operation directly. A service network must provide
some mechanisms allowing its clients to track and
control these messages. This problem is referred to as
agent mobility management.

1.2 Mobile Agent Service Networks
1.2.1 Open Service Network Architecture

Traditional telecommunication networks such as
PSTN and 800 Toll-Free service used to take
considerable resources and long deployment duration
to establish. One major resource drain in such networks
is OA&M (Operation, Administration, and
Maintenance). It will be impractical to demand the
comparable resources to support OA&M functionalities
in many prospective information services. Thus, the
computing community have to develop and deploy
demanded functionalities by themselves. All
infrastructures and solutions must not require any
change to the existing telecommunication network. To
achieve this, we employ an open service network
architecture [3] to separate service networks from
transport networks. Under this architecture, it allows
services of varied scales and qualities to be introduced
into the network easily. Readers are referred to [3] for
details. A

On top of this open architecture, Lien proposed a
hybrid operation model [2] that allows a service
provider to offer both centralized and distributed
operation models to its subscribers. Subscribers can
choose to use their own Internet facility, e.g., Home
Base Node (HBN), to share the OA&M functionalities.
Ar their own expense, subscribers have alternatives to
designate some OA&M functionalities to the
centralized facility managed by the service providers.
In this paper, we assume that a service network that
supports mobile agents is based on the proposed open
architecture and managed using that operation
infrastructure.

1.2.2 Search a Mobile Agent

After an agent is submitted into a service network,
the client or the network manager may want to know its

F-90

current location for either inquiring its status or
controlling its execution, etc. An obvious solution is to
send another agent, called search agent, to track the
original agent along the original path, or to broadcast a
message to all the servers that the agent may choose to
g0 to. A couple of problems might arouse with this
solution:

(1) The cost of sending many messages over a
wireless network is high,

(2) The path that an agent moves along might be non-
deterministic and this is hard to trace.

(3) A sequential search consumes lots of time.

Lien [4] proposed several search strategies to cope

with these problems. However, all these strategies
assume that the path of the target agent is deterministic.
In this paper, we introduce a Non-Deterministic Binary
Search (NDBS) method to release this assumption and
make it non-deterministic. The rest of the paper is
organized as follows: :
In section 2, we review those search strategies given in
[4,6]. The proposed Non-Deterministic Binary Search
method is included in section 3. At least, we have
conclusion and future research in section 4 and 5,
respectively.

2. Previous Work

The searching strategies proposed in [4,6] can be
classified into two groups: blind searches and
intelligent searches. The intelligent search strategy
makes use of prior knowledge about the execution of
all tasks, while blind search strategy doesn't.

The following denotations will be used in the rest of the

paper :

§=1{S,.5,,...8, } : the set of distinct servers visited by
an agent.

T : the elapsed time since the target agent was

originated.

T, : the service time at server S,, it is the time

duration that the target agent stayed at server S, .

We assume that the target agent visits { S,,S,,...,S, }

sequentially and non-recursively ; and the time for the
target agent moving from one server to another is
considered nominal and is thus ignored.

2.1 Chase-From-Holder Algorithm

In the hybrid operational infrastructure proposed by
Lien [2], users are encouraged to use their own Home
Base Node (HBN) to participate in the management of
their agents. One possible usage of HBNs is to store the
current status of agents including agents' locations.

ERE\ AR EH RO

Thus, the reported current location of an agent can be
obtained in the status holder (i.e. HBN) of its
originating user. If the exactly current location at this
moment is needed, the search agent will visit the
reported location first and proceed with a sequential
search from there if the target agent had passed that
server. This agent search algorithm is called chase-
from-holder algorithm.

One major problem with chase-from-holder
algorithm is that it requires extra cost to update status
periodically. This cost consists of that induced by
network traffic and resource consumed in the status
holder. The system resources could be very expensive
if the status holder is designated to the network
management center. Thus, the trade-off between update
cost and the status availability must be carefully
balanced. Depending on its status inquiry frequency, a
client may choose to command an agent reporting its
status either completely or selectively. The following
search strategies are useful when the current location of
an agent is not available in its status holder.

2.2 Basic Binary Search (BBS) and Extend
Binary Search (EBS)

The Basic Binary Search (BBS) algorithm is similar
to the binary search in searching a data object in a
sorted list. The search agent probes the middle server in
the search list and excludes half of the servers out of
search list at a time. The search is performed
recursively until the target agent is found or the list is
exhausted. On average, the number of probes required
to find the target agent is in the order of log(n), where n
is the number of servers in the search list. BBS might
be a very good search strategy for blind search.
However, BBS may fail to find the target agent if it
continues to move during the search. During the course
of search, some unvisited servers may be excluded out
of the search list after a server is probed. This may
cause a slip through problem, which means the target
agent slips through the search window so that the
servers to be visited are not included in the search list.
As a result, the search agent fails to find the target
agent,

The Extended Binary Search algorithm resolves this
problem by not excluding any unvisited server at the
cost of demanding more search probes. Fortunately, the
average number of probes required to find the target
agent remains in the order of log(n) with a larger
coefficiency.

Without prior knowledge' about the status of the
target agent and servers, the binary search might be the
optimal solution to search an agent. When the prior
knowledge is considered, other algorithms would have
better performance over binary search algorithm.

2.3 Intelligent Binary Search (IBS)

F-91

If a client has a better estimation on the service time
in each probe, he may have a more precise prediction
on the current location of an agent. With this
information, we will be able to reduce the search time
significantly. The intelligent search algorithms thag
make use of service time statistics distinct themselves
from blind search algorithms.

We assume that an agent visits a set of servers,
$»5,...,5, , in sequence, and it stays at each server,

say §,,for atime duration, T, . At any elapsed time T,
the current location of the agent, S_, can be determined
by the following formula:

a

=1 <

ITSTSYT,

i=} =)

In real world, it is hard to predict in advance exactly
how long the target agent will stay at each server. The
service time in each server is most likely probabilistic
and can be pre-estimated through either samples
collection or experiments. As a result, the location of
the agent is also probabilistic. To minimize the number
of search probes, it is essential to calculate the location
of the target agent with the highest probability, less
high probability, etc., so that a search agent can locate
the target agent with the minimum number of probes.
Assuming that the service time of each task is
uniformly distributed, Lien [4] derived a formula to
calculate the (residing) probability for each server that
a target agent might reside. In their Intelligent Binary
Search algorithm (IBS), the search list is presorted
according to the calculated probabilities. The search
agent probes the servers in the list sequentially. During
a search, the list is maintained in the following way:

(1) If a target agent has visited and left the currently
probed server, all servers ahead -of it are
removed from the search list. The original search
order remains unchanged and the search agent
continues the search following the shrunken list.

(2) If a target agent has not visited the currently
probed server yet, the search list won't be
changed. The search agent will probe the server
that precedes the current server with the highest
residing probability.

3. Non-Deterministic

Binary Search
(NDBS) '

The search agent algorithms presented so far all
assuming that the agent to be searched is along a pre-
deterministic path. We would like to further release this
assumption by using a Non-Deterministic Binary
Search (NDBS) which is applicable to the case when
the path of the target agent is non-deterministic.

3.1 Deterministic Path vs.

Non-Deterministic Path

TERENTAF2EHERES

The path of a target agent may be either
deterministic or non-deterministic. In the case of
deterministic, the agent can be found by using BBS,
EBS, IBS and ABS. If every step of the agent is
deterministic, the sequence of servers to be visited by
the agent can be determined beforehand. In case of
non-deterministic, some steps of an agent are non-
deterministic. It means that when an agent goes to one
server, say server A, there are multiple alternatives to
be its next stop. The next stop won’t be clear only if the
agent completes the task in server A.

For example, if someone plans to go form Peking to
Taipei. He needs his agent to confirm the flight time
and book a room for him. So, the agent goes to the
airport to confirm the flight time and communicates
with the information service agent in the airport to get
information about the hotels in Taipei. After interacting
with all hotels, it chooses one of the hotels and books a
room. Here, the path of the agent is non-deterministic
since all hotels in Taipei are possible candidates. This
path is thus no more a sequential list of servers but a
spanning tree of all alternative servers. An example is
shown in Fig 1.

Fig. 1 A non-deterministic path represented by a spanning
tree.

Definition 1 : A node S, is called a deterministic node

if and only if the next stop of target agent is
deterministic when it stays at S,.

Definition 2 : A node S, is called a non-deterministic

node if and only if the next stop of target agent is non-
deterministic when it stays at §,.

Defipition 3 : A node S, is called a first non-

deterministic node (FN node) if and only if it is the
first non-deterministic node to be visited by target
agent.

F-92

Simply speaking, a node in the spanning tree that
has more than one child is a non-deterministic node, eg.
node S, inFig. 1. Otherwise, it is a deterministic node,

eg. node §,. Both non-deterministic and deterministie

nodes have exactly one parent node ; and deterministic
is a special case of non-deterministic. By Definition 1,
in the case of deterministic, every step of the target
agent is deterministic and every node in the spanning
tree is a deterministic node. The iree looks like a linear
list of nodes. Therefore, the spanning tree spanned as a
linear list of nodes if and only if the components of the
tree are all deterministic nodes.

Theorem 1 : The spanning tree spanned as a linear list
of nodes if and only if the components of the tree are
all deterministic nodes.

By Definition 3, we conclude that every node between
the FIN node and the root is deterministic node.

Theorem 2 : Every node between the FN node and the
root is a deterministic node.

3.2 NDBS Algorithm

Here we propose a Non-Deterministic Binary Search
(NDBS) to search the target agent when the path is
non-deterministic. It takes two steps to complete this
search.

Stepl: Search agent traces the first non-deterministic
node (FN node) from the root of the spanning
tree and comes to the following two alternatives:

Case 1 : If the target agent has visited the FN
node, we will be able to know which child
node is the next to be visited from the log
information recorded in server. Then we
prune off all the ancestor nodes and all
those child nodes that won't be visited. Go
to stepl.

Case2 : If the target agent hasn’t visited the FN
node then we can make sure that the agent
must stay in one of the nodes that between
the root and the FN node. We then prune
off all child nodes of the FN node. Since
all the nodes between the root and the FN
node are deterministic, the pruned tree
becomes a list of nodes. An example of
the reduced spanning tree is referred to
Fig. 2. Go to step2.

Step2 : We use intelligent binary search, IBS, o find
the target agent. In order to prevent target agent
from passing the end node of the list before the
search agent caiches it, we leave the search agent
at the end node waiting for target agent and fork

PERENTAFZEAHESRGS

a child agent using IBS method to continue the
search. This induces two alternatives:

Case 1 : The child agent found the target agent and
reported the location of the target agent to
the search agent and terminates the search.
The search agent then reports the result and
terminates the whole searching process.
The search agent found the target agent. It
means-that the target agent arrives at the end
node before the child agent finds it. The
search agent then reports the location of
target agent. Neither the search agent nor
child agent will terminate until the search
agent receives the search result of the child

agent.

Fig. 2 A deterministic path represented by a list of nodes.

Case 2 :

3.3 Verification of NDBS Algorithm

The original spanning tree is reduced in stepl and it
won't stop until the tree becomes a linear list of nodes.
The head of the linear list is the last non-deterministic
node that the target agent has visited and the end is the
next non-deterministic node to be visited. In this
section, we use the two theorems in section 3.1 to
verify our NDBS algorithm.

Let S, be the last non-deterministic node the target

agent has visited and S, the next non-deterministic

last

node to be visited. There is no other non-deterministic

nodes in between. Let there be n nodes S,,5,,...,S, to
be visited sequentially ahead of §

last *

In stepl, we send out a search agent to locate the
target agent. In the beginning, S, is the first non-
deterministic node, i.e. FN node, to be visited by target
agent. The search agent comes to visit S, first and
finds that the target agent has visited S, . S, is the next

non-deterministic node to be visited. The search agent
then prunes off both the path between S, and its

ancestor and all the paths between other child nodes
that won't be visited.
After the pruning, S, and S, becomes the root and

FN node of the tree, respectively. Repeating this step
until §, becomes the root of the tree. Since §,, is the

next non-deterministic node to be visited after §_, at
the time when §, becomes the root of the tree, S

becomes the FN node of the tree. Continuing with this
process until search agent visits 5, and finds that S,

has been visited. Then it prunes off the path between
8, and other nodes except the one between S, and

S, At this time,

last

tust

last

S, becomes the rooi of the tree.

lust

Since there is no other non-deterministic nodes between
Sus and S, . According to Theorem 2, S is the FN

node of the tree. The search agent goes to visit S, and
finds that S, has not been visited yet. It prunes off the
path between S__ and its children.)

At this time, S, becomes the root of the tree and
§ ..o 18 the bottom node of the tree. Both S, and S,

are deterministic nodes and there is no other non-
deterministic nodes in between. Now, all nodes are
deterministic nodes and the tree is reduced to a linear
list of nodes. The head of the listis §,_ and the end is

S

lust

After step1, the original spanning tree is reduced to -
a linear list of nodes and any of BBS, EBS or IBS is
applicable to locate the target agent in step2.

3.4 Analysis of Time Complexity

Let m and n be the numbers of non-deterministic
nodes and nodes to be visited by the target agent during
its lifetime, respectively. The worst case of stepl is that
the target agent has visited the msh non-deterministic
node while the search agent is still searching for it. The
search agent won't take step2 after it traced these m
non-deterministic nodes. So, the time complexity of
stepl in the worst case is O(mn).

After stepl, the original spanning tree becomes a
linear list of nodes. Besides, the head and the end of the
linear list of nodes are non-deterministic nodes. Since,
there are n nodes to be visited and m nodes of them are
non-deterministic. The average length of nodes

.. . R
between two non-deterministic nodes is — . In other
m

words, the average length of the linear list of nodes is

n .
— . Therefore, if we use BBS to locate the target agent
m :

in step2. The time complexity of step2 is O(log(z)).
m
Summing up the time complexity of step1 and step2,
the time complexity of our NDBS is O(m+log(s)).
m

Similarly, if we adopt any one of EBS and IBS to
locate the target agent in step2, we will have the same
time complexity.

4. Conclusion

In a mobile computing environment that supports
mobile agent, a client is able to send an agent to visit a
sequence of servers in a network. To track the locations
of agents becomes a critical issue in managing a mobile
agent service network.

Lien proposed a number of intelligent search

strategies in [6]. However, all those strategies base on

F-93

TERENAFZEHERGH

an assumption that the agent to be searched moving
along a pre-deterministic path. In this paper, we also
propose a search strategy called NDBS to release this
assumption and the time complexity of NDBS is O(m+

log(%)).

5, Future Research

We enumerate a number of other issues to be
covered in this research.

5.1 Exact Search vs. Approximate Search

Due to the execution of an target agent is kept going,
the exact current location of an agent might be changed
when the client receives the acknowledge sent back by
search agent. To make sure the location unchanged
after it is found, a freeze agent is required to be sent
together with search agent as explained in [2].
Otherwise, what we get is only an approximate location
rather than a exact location.

5.2 Recursive Execution

The search algorithms presented so far all assume
that the target agent to be searched moving along a
non-recursive path, i.e., none of the servers will be
revisited by the target agent. Our search algorithms
exclude those servers once they are visited, it will cause
problem when a server is to be visited a second time.
We have to release this assumption in next version of
our algorithms,

5.3 Lost Agent

An agent might be lost because of failures. The
reasons could be the agent itself, the server it resides,
or the network it moves along. Agent lost might be
significant or not. In a real time control system or a
business transaction system, agent lost may cause
catastrophe. It becomes more complicated when
concurrent executions are allowed.

5.4 Concurrent Search

Sequential search is simple but consumes time. If a
client is allowed to submit more than one search agent
to a network, search time may be saved to some degree.
We also may consider to have a search agent create
child search agents to cover all possible paths in a non-
deterministic situation such as in making an if-then-else
decision. The derived issues are as follows:

(1) How to converge forked agents?
(2) What to do if either child agents or parent search
agent get lost?

F-94

(3) How to terminate all child agents?

References

[1] Imielinski and B. R. Badrinath, “Mobile Wireless
Computing: Challenges in Data Management,”
Communication of ACM, August 1994,
Yao-Nan Lien, “Client and Agent Mobility
Management,” Proc. of the Second Workshop on
Mobile Computing, Hsing-Chu, Taiwan, March 1996,
pp. 141-152,
[3] Yao-Nan Lien, “An Open Intelligent Messaging Network
Infrastructure for Ubiquitous Information Service,” Proc.
of the First Workshop on Mobile Computing, Hsing-
Chu, Taiwan, April 1995, pp. 2-9.
Yao-Nan Lien and Chun-Wu Leng, “On the Search of
Mobile Agents,” Proc. of the IEEE Personal, Indoor,
and Mobile Radio Conference, Taiwan, Oct. 1996, pp.
703-707.
Yao-Nan Lien, et. al., “FlyingCloud: A Mobile Agent
Service Network™, Proceedings of the International
Conference on Distributed Systems, Software
Engineering, and Database Systems, Dec. 1996, pp.
177-183.
Yao-Nan Lien, Fuhan Lin, Chun-Wu Leng and Wen-
Shyan Chen, ““Intelligent Search of Mobile Agents",
1997 International Conference on Computer System
Technology for Industrial Applications, April, 1997, pp.
110-116.
Yao-Nan Lien, Fuhan Liu, Wen-Shyen Chen and Chun-
Wu Leng, “Asymmetric Binary Search of Mobile Agents
“, Submitted to the 1997 International Symposium on
Multimedia Information Processing.
Maes, “Agents that reduce work and information
overload”, CACM, July 1994, pp. 30-41.
Weiser, “The computer for the 21st century”, Scientific
America, 1992, pp. 94-104.
[10] TIA/EIA IS-41, “Cellular Radio Telecommunications
Intersystem Operations”, Telecommunications Industry
Association, Dec. 1991.

(21

(4

(51

(6]

{7

[8]
(91

