TERENTAFEEHERGS

EERRTE LERASR R B ERE

An Embedded Visual Programming Interface for Intelligent Information
Retrieval on the Web

R
Chungnan Lee

BISZRILIREE EATIEMSAT
Institute of Computer and Information
Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan, ROC

EE

FEAFRZL P, B ERESRET NS LHRR—
ESEEUNERIE C BEUHEERR - KRREST
G - 2IREEFRERITES « TR - 5
H5(% - B EARSZERERZEE G ARHEER
& -

FRses: EEMHEE - S8l - 2REFHE

Abstract
This paper describes an embedded visual
programming interface for intelligent information
retrieval built on the top of the Web.
Keywords:Visual programming, Distributed system, WWW

1. Introduction

As the amount of information in databases has
rapidly grown in the past few years. It is a practical need
to extract the high-level information, such as the trend of
stock and commodity, diagnosis of finance, market
planning, etc., from low-level data, such as stock index,
finance report [1-4], etc.

The demand for user-friendly programming systems
for nonprogrammers and professionals alike is also
increasing tremendously. One of successful approaches
to this demand is to use visual information in the man-
machine interface [5-7]. A number of commercial
packages, such Visual Basic, Visual C++, Delphi, etc. are
the typical utilization of the visual programming concept.
Visual programming is the process of reasoning and
making inferences, based upon visual clue or presentation.
Typically, the human draws a picture, a structured

Yao-tsung Chen

BIILPIUARSE WREEW SRR
Department of Management Information
System
National Sun Yat-Sen University
Kaohsiung, Taiwan, ROC

diagram, or a visual example, and the computer interprets
the visual expression to understand the user’s intention.

With the popularity of the WWW it is natural to use
the WWW to access the database server. Some of such
systems can be found in [8-10]. However, to exiract the
knowledge from the low level data over the WWW is just
a beginning of focus. To access a Web database server, a
user can issue a query through a Web browser to HTTP
server. Upon receiving the user request, the HTTP server
activates the Common Gate Interface program to handle
the user requests and then returns the query results
through the HTTP server to the Web browser. This is just
a simple database search with a static HTML-based
interface. As the Web gives a convenient, uniform user
interface, most of the queries are still through the text
mode. Since the visual expression is an effective
communication between human and machine. To enhance
the functionality of the Web browser, it is definitely
worthwhile to incorporate the visual programming into
the browser., In this paper we present a visual
programming interface for information retrieval system
on the top of the Web.

2. System Design Concepts

In this section we will give the basic design
concepts, building blocks, and the basic theory for the
system,
2.1. Design Principles
An embedded module

It is important not to change the current Web clients and
database servers. Hence, the system is developed as an

F-69

FEREN AR EH R ES

embedded module to serve as a gateway between the Web
client and servers. Meanwhile, it can provide the required
functions to let users extract the required knowledge.

Visual programming

One of key idea behind the system is to provide a visual
programming ability to the existing Web client. As most
of the Web clients still send queries through text or
template inputs to the Web server or database servers. A
visual programming interface gives users another
dimension to explore the information on the network
through some pictorial and symbol icons.

Distributed communication.

Though using the Java technology can prevent the
bottleneck imposed by Common Gate Interface on the
HTTP server [15] through the sockets connection. When a
large number of the Web clients connect to database

servers through a single gateway, the bottleneck can occur.

To prevent communication traffic to increase speed and
reliability, the system uses a distributed communication
model.

2.2. Building Blocks
Active Icons

The principal of visual component in the visual
programming interface is an active icon. An active icon

has image, information, behavior, constraint, knowledge .

base, and reasoning mechanism. For the information
retrieval, the characteristics of active icons are classified
into several types including reasoning, decision,
computation, basic concept data, etc. Icons of same types
have a similar set of properties.

Visual Grammar and Parser
The visual grammar for information retrieval is a context-
free grammar that is a four-tuple, G={N, % P, S}, where,
N is the non-terminal symbols, X is the terminal symbols,
P represents the production rules, S is the start symbol.
Each grammar symbol is associated with an icon. The
product rule P is the relationship of grammar symbols and
is represented as function of non-terminal and terminal
symbols, rel (N, £). The form of production rules can be
written as, Sen = rel (N, Z), where Sen can be terminal,
non-terminal, start symbol or composite of them. The
relationships can be a connection, a sequence of
computations, a sequence of decisions, a parallel
processing of computations, a parallel processing of
decisions, etc.

One of most important characteristic of active icons
is the ability to validate the connection between two

active icons. However, the whole visual sentence cannot
be validated by the neighboring icons only. Hence, a
parser, which is based on context-free grammar
mentioned above, is used to parse and analyze the
relationships of visual components in the visual sentences.
The components in the parser include visual program,
icon dictionary, non-terminal icon dictionary, and iconic
inference rules.

3. System Overview

The overall working system as shown in Figure 1
contains a number of Web clients, Web server, message
handling agents, inference agents, and database servers
that can distributely locate over the Internet. The system
is intended to be used as an embedded mediator between
the Web browser and database servers to support
information retrieval. As long as the database server
supports the standard SQL and ODBC or related protocols,
the system can be tightly coupled to database servers.
Hence, the system can be added to serve its purpose
without changing the Web client and the existing database
SErvers.

The Web clients can be located anywhere in the
network. It uses a standard HTTP to load the HTML, Java
classes, image files, and related functions from the Web
server agent. Once the Java applets migrate to the Web
client, the connection between the Web clients and Web
server will be no longer existed. The rest of connections
are among the Web clients, database servers and rule base
servers. This kind of connection is a three-tier architecture
[14], in which a standalone server is used as a gateway,
passing the request and response messages between the
applet and the remote server. It communicates with the
Java applet at one end by protocols defined by the system,
while accessing database servers at the other end by
original client/server protocols.

3.1. Visual Programming Interface Agent

The visual programming interface agent is actually an
agent for users to interactively make inference and
information retrieval. The visual programming interface
receives messages from users’ inputs such as drag and
draw, mouse clicking, and text editing, then activates
corresponding messages and active icons. It may ask
other agents to provide service on behalf of users’ -
requests. ‘

To add the visual programming interface agent,to the
Web client, a user can send a quest to the Web server
agent to load all related functions wrapped in Java applets.
The system provides a visual component editor to allow
users to input parameters.

F-70

PERENTAFZEERGH

The visual sentence is parsed by a parser embedded
in the visual programming interface agent, then is sent the
parsing results to the message handling agent. The
message handling takes the requests from the visual,
programming interface agent through the Internet, passes
the requests to the inference agent to do inference or to
the database server to retrieve the facts. The requests
include parameters, data or execution commands that are
accepted by the inference agent.

Maching €
Machine A Machine B Machine C =

Hachine D

nsvll saionn |

. A»- ubrhma)

1+ Protocot Moswle
t 1 o

t

| {Proiocol Prctocal !

. ’MDQVIQ r“b:ub i

}Werasge Hending Agent

e

Files Read

Machine®
Machine Boundar
Web Component
Othet Pre-existing Component

. Qur Component
Connection through Protocol

Machine |

Figure 1 The overall architecture of the proposed system.

3.2. Distributed Communication Model

The information retrieval process involves
communication among those agents and database servers,
reasoning process on the inference agent and computation
task on the MHA(Message Handling Agent). To avoid the
communication traffic in the system, we use a
CORBA(Common Object Request Broker Architecture)-
like architecture as the communication model as shown in
Figure 2 (a). The model consisting of 3 kinds of
components — service providers, service brokers, and
service requester gives a better communication speed and
more reliable distributed connection compared to the
models in Figures 2 (b) and (c). In the proposed model,
service brokers act as the ORB(Object Request Broker) in
CORBA, inserted into the client/server system to hide the
server dependent protocols and to increase speed and
reliability of the communication.

The reason to use such model is made clearly as

follows. In Figure 2 (b) is a common client server model
with service requesters and service providers. In case the
communication protocols for the service providers are
different, and then each service requester has to keep all
protocols and address of various service providers in
order to make a connection to request each service. To
add a new service provider that needs a new protocol
would be difficult. To solve the problem we add a service
broker to handle address and protocols as shown in Figure
2 (¢). If a mew service provider with a new protocol is
added to the system, only the new protocol module needs
to be added into the service broker. Thus the service
requesters are not affected by the new service provider.
To further increase a reliable, fault tolerant and
distributed connection, more service brokers have to be
added as shown in Figure 2 (a).

—— " — i e
i | i

Setwes ||
{Recuesir | Roqussiar 1 Racurtier, Reqorsie! Sorvica Requosier
i H

e g e o e
TN i N/
: \ RN

Servico Roquesior Service Requaster Service Requester
H . !

N
it b ol el /)\ Sorvies Broker
- ' /N,
| \\\ . -—r——-T
VA WD SN
: Servico Provider : Servica Provaiet Servico Provider Service Provier
S
(a) (b) (c)

Figure 2 Broker-like distributed communication model.

For the security reason Java applet can only establish
a socket connection to the address where the applet comes
from. If we only put one copy of the Visual Reasoning
Interface Bytecode on the Web Server, then the running
applets will always connect to one service broker. In the
implementation, the service broker is implemented as an
MHA(Message Handling Agent). To realize the
communication model mentioned above, we setup the
system as the following steps. We duplicate each
service provider such as inference agent and database
server and then setup the connection between each pair of
the MHA and the service provider to avoid load
imbalancing in one kind of service providers. Then,
users can send an HTTP request to browse the Web page,
The Web server will send a Web page with a script to
randomly assign the URL of an MHA from which the
visual reasoning interface agent bytecode is retrieved.
The random assignment is based on the built-in routing
table in the script to prevent load imbalancing among
MHAs. Finally, the visual reasoning interface agent
running in the Web client sets up the connection to the
MHA based on the assigned URL. Since the random
assignment mechanism is used, the running applets will

F-T1

PR\ FAEEEHERES

randomly connect to the different MHA.
3.3. Message Handling Agent

The message handling agent (MHA) composing of
many protocol modules is also a mediator for the
communication among agents. The MHA accepts
messages from the client and routes them to the
destination. In the current system, the MHA contains
DDE for communication with the inference agent, ODBC
for communication with database server, and TCP/IP
module for communication with the visual programming
agent.

3.4. Distributed Data Storage Management

The data used for the system are distributed over the

network. Hence, a special care for the data management is
needed. The Web pages and images are stored in the web
server. Java classes can be replicated in many
workstations which message handling agent runs to serve
a vast number of clients. The database server only
‘provides the raw data and can be replicated in many
workstations to serve a vast number of clients, too. These
data cannot be changed by users and are maintained by
the system manager.

It is important to allow users to save and load their
inference rules on the Web client. Unfortunately, a Java
applet running on the Web client is not allowed to access
any files on the local file system due to the security
reason. To solve the problem we first store the file of
inference rules on the message handling agent as the
centralized management and allow users to transfer the
file back to the Web client through the URL. The
centralized files management provides a possible
corporation of the clients under the circumstance that Java

-applets run on different clients cannot communicate
directly. However, the cooperation can be achieved by
accessing the files on the Web server.

3.5. Knowledge Representation & Reasoning
Mechanism

We use the decision tree to represent the inference
structure because it can be transformed to if-then rule
format directly. Similarly, the decision table is used to
describe the decision strategy for each node in the
decision iree. In the proposed system, we use a
commercial inference engine product called M.4 for the
inference agent. The reasoning mechanism in M.4 is the
backward chaining, and supports uncertain inference. The
communication between the inference agemt and the
MHA is Dynamic Data Exchange (DDE). It is 2 method

of interprocess communication (IPC) on Microsoft
Windows plaiform. DDE uses shared memory to
exchange data between applications and a protocol to
synchronize the passing data.

4. A Technical Analysis Application

To illustrate the system we use a technical analysis
example. First we give a background of the application.
Then we focus on the design of active icons, inference
rules, concrete of context-free grammar, and fuzzy
functions. Finally we show the results.

4.1. The domain knowledge of the application

Technical analysis [11] is a term with complicated-
sounding name for a very basic approach to investing.
Generally speaking, technical analysis is the study of
prices, with charts being the primary tool. It is an
important knowledge for the investors. The Dow Theory,
developed around 1900 by Charles Dow 1is the root of
modern-day technical analysis. This root includes many
principles such as the trending nature of prices, prices
discounting all known information, confirmation and-
divergence, volume mirroring changes in price, and
support/resistance.

The Relative Strength Index (RSI) is one of popular
technical analysis index. It was first introduced by Welles
Wilder in June 1978. As stated in [19], “The RSI is a
price-following oscillator that ranges between 0 and 100.
A popular method of analyzing the RSI is to look for
divergence in which the security is making a new high,
but the RSI is failing to surpass its previous high. This
divergent is an indication of an impending reversal.
When the RSI then turns down and falls below its most
recent trough, it is said to have completed a failure swing.
The failure swing is considered a confirmation of the
impending reversal.”

We use the failure swing of RSI as an example to
illustrate our system. We assume RSI is a field of our
database. The inference structure is shown in Figure 3.
The definitions for active icons used in the financial
diagnosis can be used in this application again. Only the
parameters have to be changed. The RSI zone shows that
yesterday’s RSI tops above 70 or bottoms below 30 or lies
between tops and bottoms. The wrend direction shows
that RSI turns down or tums up. The stock operation
suggests that investor should buy or sell the stock or
neither.

F-72

PEREN AR AR eH

RS diflerence

between today ———e ot
and yestorday trend direction

today's RS1

yesterday's RS) RS| zone

Figure 3 Inference structure for technical analysis

Active Icons Creation.

First, we create an active icon class inherited by other
active icons, and then we create five types of active icon
classes as follows.

1. Basic concept icon class: represents the basic
concept, like RSI, MACD etc. The fact retrieving
algorithm embedded in the icon is a couple of the SQL
statements defined by users, we create instances to reuse
each accounting concept.

2. Computation icon class: computes the basic
concepts that are linked to it based on the operation
defined by users.

3. Fuzzy icon class: divides the basic concept or
computation result into several intervals given by users.

4. Decision icon class: the intermediate goal through
the inference process, and user can define the decision
table.

5. Goal icon class: similar to the decision icon class,
just the final goal.

6. The images of five types of icons are shown in
Figure The properties of the icons are added through
the icon editor.

basic

compute fuzzy decision
e

alEakes

Figure 4 The images of basic concept, Computation,
fuzzy, decision, and goal icons.

4.2, Interaction with the System

4.2.1. Designing the visual inference structure

User can design her/his own application in the
Visual Programming Area by dragging the visual
component from the Visual Component Box and
instances of BasicConceptlcon, and arranging and
connecting them to create the inference structure of an
application. The steps to create such application are
shown in Figures 5-7. First, we arrange active icons
to form an inference structure as shown in Figure 3.
Second, we customize the active icon by filling in the
parameters. In the RSI zone icons, we fill in the
parameter value as 30 and 70 in the if side, and the
parameter valnes as top, internal and bottom in the then
side as shown in Figure 5. In the stock operation

T

F-73

icons, as shown in Figure 6, we fill in the parameter
value as buy in the then side, if RSI zone is bottom and
trend direction is up; or as sell, if RSI zone is top and
trend direction is down; or as wait-to-see, if RSI zone
and trend direction are other combinations. As shown
in Figure 7, the suggest operation in this inference is to
buy with 81% confidence based on the RSI data of an

arbitrary company from Taiwan Stock Exchange
Market on Dec 14, 1996.

:
5

o e

1.

P e s

X coordinate SCL Stingin Chan

Figure 6 The stock operation icons and its
parameters.

FERENTAFREHEBRGS

Figure 7 The inference results and text report
generated from the system. The suggestion is to buy the
stock with 81% confidence.

5. Conclusions

We have developed a distributed visual programming
system for information retrieval. The system acts as a
mediator between the existing Web client and database
servers. It adds a visual programming functionality on the
top of Web browser to provide a user another dimension
of programming in addition to the traditional textual and
template inputs. The system adopts a distributed
communication model to increase the flexibility,
reliability, and load balancing. Based on the domain of
applications the user can design his own active icons,
inference rules, fuzzy function, and computation. To
maintain the flexibility of applications users have to fill in
certain parameters. From the result of inferences the
system performs very well over the Web.

References

(1] T. Anand, “Opportunity explorer: navigating large
databases using knowledge discovery templates,” J. of
Intelligent Information Systems, Vol. 4, pp. 27-37, 1995.
[2] M. R. Klein & L. B. Methlie, Knowledge-based
Decision Support Systems With Applications in Business,
John Wiley & Sons, 1993,

[3] M. Frolick & N. K. Ramarapu, “Hypermedia: the
future of EIS,” J. of Systems Management, Vol. 44, pp.
32-36, 1993.

[4] R. T. Chi & E. Turban, “Distributed intelligent
executive information systems,” Decision Support
Systems, Vol. 14, pp. 117-130, 1995.

| [5] A.L. Ambler & M. M. Burnett, “Influence of visual

technology on the evolution of language
environments,” Computer, Vol. 22, pp. 9-22, 1989.

[6] S. K. Chang, “A visual language compiler for
information retrieval by visual reasoning,” IEEE
Transactions on Software Engineering, Vol. 16, pp. 1136~
1149, 1990.

[71 N. C. Shu, Visual Programming, Van Nostrand
Reinhold, 1989.

[8] S.E. Dossick & G.E. Kaiser, “WWW Access to
Legacy Client/Server Applications,” in: Proc. 5"
International World Wide Web Conference, 1996.

[9] N. N. Duan, “Distributed database access in a
corporate environment using Java,” in: Proc. 5"
International World Wide Web Conference, 1996.

[10] J. E. Pitkow & R. K. Jones, “Supporting the Web: A
Distributed Hyperlink Database System,” in: Proc. 5
International World Wide Web Conference, 1996.

[11] S. B. Achelis, Technical Analysis from 4 to Z,
Probus Publishing, 1995.

F-74

