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Abstract
In this paper, two recursive and one-pass
algorithms are presented to evaluate source-to-sink
blocking probability, and hence reliability, in a
distributed computer system (DCS). Algorithm 1 employs
negative conservative policy (NCP) while algorithm 2

employs positive conservative policy (PCP) to generate -

exclusive and mutually disjoint decomposing events. A
lot of experiments demonstrate that algorithm 2 using
PCP performs better.

Key words: source-to-sink blocking probability, negative
(positive) conservative policy.

1. Introduction

Advances in computer technology and the need to
have the computers communicating with each other have
led to an increased demand for a reliable distributed
computer system (DCS). In the DCS network, one
important performance measure is the congestion
(blocking) probability for computer communications
originated at the source node s and destined for the
terminal node r. Blocking occurs when the computer
traffic activated from s can not reach 1. In this paper, the
evaluation of exact node-to-node blocking probability or
s-t terminal unreliability in the DCS is addressed. Such
system unreliability refers to the probability that there
exists ai least one s-7 cutset whose removal disconnects #
from s in the DCS.

The terminal unreliability (reliability) problem is
proven to be NP-hard [18] and has been studied by many
algorithms [1-17]. These algorithms can be classified into
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two-pass [1-4] and one-pass [5-17] methods. In two-pass
methods, all mincuts/minpaths from s to ¢ must be
derived at first, and then a complex disjoint process is
applied to convert them into disjoint unreliability
(reliability)  expression. The  enumeration of
mincuts/minpaths is also NP-hard [18]. Hence, they
grows exponentially with the size of network, yielding a
burdensome computation in the case of large network.
Besides this, since all outputs of the first pass must be
saved as inputs to the second pass, the large temporary
space must be allocated for them.

All the drawbacks of two-pass algorithms can be
avoided by one-pass algorithms for the fact that no prior
knowledge of all mincuts/minpaths are needed. In one-
pass algorithms, mincuts/minpaths are generated in a way
such that they are all disjoint with the previous ones,
thereby the unreliability (reliability) expression of the
network can be obtained by taking the direct sum of them.
A famous one-pass method is known as pivotal
decomposition [10-16] that, using the factoring theorem,
the network is expressed in terms of a network with one
fewer vertex and another with one fewer edge. The
factoring theorem is applied recursively on the reduced
networks without knowing any mincut/minpath. In this
paper, another more efficient one-pass approach, based
on a special state space decomposition theorem, extended
from the factoring theorem, is derived to decompose the
network into several subnetworks recursively, insiead of
only two by pivotal decomposition. The rationale under
this approach is to choose a set of keystone elements of
the network, instead of only one pivotal element in
pivotal decomposition, to generate a set of exclusive
mutually disjoint (EMD) events and decompose the
network into successive smaller and disjoint subnetworks.
Since all subnetworks are made smaller and disjoint,
whose unreliabilities (reliabilities) are readily evaluated
and then directly summed to get the system reliability.

Two variations of decomposing policy to generate
a set of EMD events are discussed in [9], the first policy
called negative conservative policy (NCP), which has
been employed by Rai and Kumar [17] to compute
system unreliability, and the second one named positive
conservative policy (PCP), both policies are introduced
and carried out in this paper by two decomposing
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algorithms, referred as algorithm 1 and 2, respectively. A
lot of experiments are performed to measure and
compare the efficiency between these two algorithms. It
is shown that algorithm 2 with PCP outperforms
algorithm 1 with NCP in terms of the less computation
time as well as total number of generated disjoint terms.

2. Preliminaries

Assumptions

1. A DCS 1is modeled by graph G with no self loops,
where nodes denoting computer sites and edges
representing communication links.

2. The nodes in G are considered to be perfectly reliable
and the links are either in working or failed states.

3. Blocking of all links are s-independent.

Notations

s,t the source node, the terminal node in the DCS.

X, N; Link 7, node j in the DCS.

Xi, x_iBoolean variable representing working, failed of

link X,‘. .
DP;» g, the probability that X; is working, failed; where
pi+q; =1

BP(G) the blocking probability for graph G.

Other notations are summarized in Section 4 for readily

reference.

Nomenclature

minpath: * a path with no proper subset is also a path in

the DCS.

mincut;

in the DCS.

exclusive and mutually disjoint (EMD): a set of product
terms is EMD when they are disjoint each
other.

negative conservative policy (NCP): Given a set of r
Boolean variables {x;, x3, ..., x;}, the policy
yielding a set of r+1 EMD events
(o, xxy, oy, ox L x,, xx,x, )

positive conservative policy (PCP): The dual policy of
NCP; the policy yielding a set of r+1 EMD
events

a cutset with no proper subset is also a cutset

Lo, X%, ey X2y 02,1, , Xy, 0 X, )

node to node blocking (terminal unreliability): the
probability that the traffic originated at s can
not reach r.

3. Background
3.1 State Space Decomposition Approach

-The basic concept of the proposed algorithms is to
decompose the state space which can be thought as an
enumeration of the states in which the communication
between s and ¢ in the DCS is either working or blocked.
The states of G can be partitioned into two sets with
respect to the working or blocked state of link I, and
consequently, the blocking probability for G can be

expressed as [13]: .
BP(G)= p,BP(Gl) + ¢q,BP(GI]), ¢)]
where Gll denotes G with I working or contracted, while

Gll denotes G with I failed or cut. Eq. (1) is called the
factoring theorem, and iterative substitution of it to
compute the blocking probability yields the following
theorem, which is the subject of this paper.

Theorem I: Assuming that there are links X;, X5, ..., X,
adjacent from s, BP(G) can be computed as:

BP(G) = ¢,BP(GI1) + p,g,BP(G12) +---

PPy Peaq. BP(GIL2--e)+ pyp, -+ p, BP(GII2--¢),
@)

where GN2.--i—1i denotes G with X1, X,
working but X; failed.

proof: Eq. (2) is easily obtained by iterative
substitution of Eq. (1). Q. E.D.

Theorem 1 is used as the rationale of algorithm 1
described in Section 4. The probability space for BP(G)
is decomposed into e+l subspaces that are further
decomposed into several smaller probability space
recursively. Since the computation problem is divided
into e+1 subproblems, other than two, each subproblem
are made smaller and converge to the termination
condition more rapidly than by traditional pivotal
decomposition methods. The coefficients in the right side
of Eq. (2) corresponding to a set of EMD events
Xps Xy Xpy ooy Xy Xy "‘xe-xz’ XXy -x, are used to
decompose the graph into a set of disjoint subgraphs.
Such decomposition is named negative conservative
policy (NCP) by Fratta and Montanari [9]. Rai and
Kumar [17] also adopts it to decompose and reduce the
directed network.

For the generated subgraph Gl12.-.i—1i, it

indicates that G is reduced by a series contractions of
links X;, X, ..., and X, and a deletion of X;. Since the
contraction of any link / will result in the endnodes of !
collapsed into a single node, named fused or coalescence
node; hence s in conjunction with other endnodes of links
X1, Xs, ..., Xy are fused to form a new source node. The
incident links of this new node are then computed to
recursively decompose the subgraph. In the proposed
algorithms, the incident links can simply be computed
from the union of the adjacent links from endnodes of Xy,
X2, ..y Xi1, but excluding the failure link X;. Moreover, it
is necessary to delete the loop link forming a loop in
conjunction with some links of X;, X5, ..., X1, because, in
coalescing endnodes of Xy, X,, .., X.;, such link is
contracted into the new source node. The fusion and
decomposing process is recursively applied until the
terminating conditions occur that the generated subgraph
fuses ¢ or no incident links can be further found. In
computing the blocking probability, fusing ¢ implies a
failure case wherein there exisis a path reaching 1,
whereas no finding incident links indicates a success case
wherein a cuiset has been found.

ooy X;_]
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All the computations involved in the recursion are
carried out by a multi-ary state space tree whose internal
nodes correspond to the reduced subgraphs while leaves
represent success or failure ones. A four-node example
along with the state space tree is shown in Fig. 1 to
illuminate the stated concepts. First, G is decomposed
into Gi1, GI13 and GI13 using incident links X; and X;.
The tree edges noted with 1, 13 and 13 represent three

EMD events of Eq. (2); the event that X, failed, the event
that X, working but X; failed, and the event that both X;
and X3 working. For Gl , since X, is cut, only adjacent

link X; from s is used to decompose it, yielding GI13 and
Gi13. Since no incident links from s can be found in
GI13, acutset x—I ;c: has been found; thus we terminate

it and add the probability term ¢,g; to BP(G). For Gl1 3,
the failure link X3 is removed and the working link X,
yields the fusion of nodes N; and N, to generate a new
source node; thus X, and X;s are incident links with it. In
our algorithms, X, and X5 are directly computed by the
adjacent links from N; and N,, while excluding failure
link X3. Both X, and X; are then used to decompose Gli 3

into Gi123, Gi1235, and GI1235. Since the working
link X, yields the fusion of #, Gl1235and G235 are

determined failed and marked with ‘F’. At last, for Gl13,
since X; and X3 are working, Ny, N», and Nj are fused into
a new source node whose incident links are determined to
be X» and X,. Note that although X; is a incident link, yet
it is excluded because a loop is formed by it in
conjunction with X; and X;.

The expansion order for the state space tree can
either breadth first (BF) or depth first (DF). However,
since BF order yields prohibitive memory requirement
for the deeper tree with high branching factor in the large
network, we employs DF order so that the space usage is
only a linear function of the depth of the tree. Proceeding
in the manner, there are six success leaves of twenty-five

order of

Xy Xy Xy Xg, X)Xy Xy XyXs,

nodes in the

Xy Xy X3 X, Xs, X X, X3 X,

generated. These success cases, in fact, representing
disjoint cutsets, are converted into corresponding
probability terms that are directly summed to get the
node-to-node blocking as:

BP(G)= 4,95 +4,P349495 + 0192 P394 Ps
+D19:9395 + P19:9394 Ps + P92 P34

X, X3,

Xy Xy Xy Xss

3.2 The Dual Approach

In the previous decomposition approach, if there
are n incident links found in the intermediate node of the
state space tree, then the cutset with these links failed
will be determined after successive n DF order
expansions. As can be seen from Fig. 1, finding X; and
X5 incident with s in the root node, we can determine

x_,;; to be a cuiset; however, this is delayed until two
more deeper level expansions. Similar situation with .
Gi13, once incident links X, and Xs are computed, the

disjoint  cutset xlx_2 X, x; ¢can be determined
immediately and it is not necessary to wait until two
consecutive DF order expansions. Hence, the disjoint
cutset must be determined as soon as the incident links
are known. This fact motivates the proposition of the
following theorem, which is regarded as the dual theorem
of Theorem 1, and can avoid such clumsiness,

Theorem 2: With the same assumptions as Theorem 1,
BP(G) is computed as:

BP(G)= p,BP(Gl) +¢,p,BP(G12) + -+

+4i9; 4P BP(GII2 - e~1e) +q,q, g, ()

proof: With the same deduction of Eq. (2), from
the factoring theorem, the following equation is obtained:

BP(G)= p,BP(GI)+gq,p,BP(GI12) +---

+0\q, qc-]PeBP(Glﬁ re—le)
+q,9, 4, BP(GI12:--¢).

Since, in Gl12---¢, all incident links with the source
node have been failed, the source node is isolated;
therefore, BP(GI12---¢) = 1 and then Eg. (3) is
obviously obtained. Q.E.D.

In comparison with Theorem 1, two differences are
found. First, the set of EMD  events
Xpy XXy s eeey Xy Xy oo Xy X,y Xy Xy 00 %, in Eq. (3) i
adopted to decompose the network, which is the dual
policy of NCP, named positive conservative policy (PCP)
[9]. This policy explains that Theorem 2 can be regarded
as the dual theorem of Theorem 1. Secondly, it should be
noted that the term g,g, ---g,, implying a cutset with all
incident links failed, is given at each decomposition step,
without any delay for further decomposition; hence, the
drawback of Theorem 1 is removed. Moreover, with this
property, the number of generated subgraphs as well as
the size of the state space tree both can be reduced.

Theorem 2 is the rationale of the proposed
algorithm 2. Like Theorem 1, a state space tree is
constructed by it and whose nodes are generated also in
DF order. Fig. 2 takes the example in Fig. 1. At first,
incident links X, and X; with s are found to decompose G
into GlII and Gli3, yielding a cutset ¥, x, . For Gl1, since

incident links X», X3 and X;s are derived, another disjoint

cutset x, X, X; x; and the decomposition of Gl into

G2, G123 and Gl1235 are obtained. Gli2 is
determined failed because of the fusion of . Only one

incident link X, is found in GI12 3 and G112 35, yielding
two disjoint cutseis X, -gxg, ;4- and X; x_2 ;c:xs E
and two subgraphs Gl1234 and Gl12345 that are
determined failed due to comprising ¢. Proceeding in the
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same manner as Gll, Glj; is processed and another two
disjoint cutsets x, x,x, x, and Xx, x, x,x, x; will be
obtained. Ultimately, six terms of eleven nodes, less than
twenty-five in Fig. 1, are generated. In the last section, a
lot of experiments reveal that using Theorem 2 is capable
of reducing considerably the number of generated
disjoint cutsets as well as the computation time as
compared to Theorem 1.

Using Theorem 2, the expansion may terminate
either on the failure condition that the reduced graph
comprises ¢ or success condition that no incident links
can be further found. Fig. 3 is an example that gives two
rectangular leaves where no incident links can be derived,

indicating two cutsets 1234 and 12335 are found.

Since the computation cost is exponential with the
network size, the size of the state space tree needs to be
as small as possible. This can be accomplished by two
techniques. First, if the expansion chooses all links that
immediately form a termination condition to expand first,
the tree size can be reduced [19]. Secondly, a set of
graph reduction methods, such as serial, parallel, and
polygon-to-chain reductions can be applied in every
intermediate stage of the state space tree to dramatically
reduce the size of the subgraphs and hence, the tree size
[16, 20]. However, both techniques are not implemented
in the proposed algorithms for simplification.

4. Algorithm Development

Notations

RS reduction status; a set of working or failure
links stating the status of the reduced graph.

TN traversed nodes; a set of nodes traversed by

the working links of RS.

IL incident links; a set of links incident with the

soutce node. .

L failure set of IL; for example, if IL = {1,3},

then IL = {1, 3}.

ME a set of mutually exclusive events generated

by IL.

DC disjoint cutset; a disjoint product term in the

expansion of BP(G).

In this section, we first try to formulate algorithm 2.
To carry out the state space tree for algorithm 2, each
node is devised to contain five sets RS, TN, IL, ME and
DC, which must be updated at every stage to reflect the
status of the new generated subgraph. RS is updaied by
the union of the decomposing event, say ¢, TN is then
updated by the new expanded node incident with the
working link of e, IL is compuied by the adjacent links
from TN but excluding the failure, working links of RS,
and furthermore the loop links, while both ME and DC
are directly derived from IL. We present the details of
algorithm 2 in the following.
Algorithm 2
Input: graph G with (s, ?) pair;

Output: the blocking probability BP(G);
BEGIN )
1. Initialize RS to be empty and TN to be node s;
2. Find IL to be the incident links with node s;
3. Generate a set of mutually exclusive event ME
from IL;

4. Compute DC = IL, covert it into the
corresponding probability value, and add the
value to BP(G);

5. Generate the root node of the state space tree
and perform Procedure BP_Computing for it;

END
Procedure BP_Computing
BEGIN

FOR each event e in ME DO

BEGIN

1. Update RS = RS U {e};

2. Find the new expanded node incident on the

working link of e;

3. IF the new expanded node is : THEN

Continue; :

ELSE update TN = TNU {the new
expanded node};

4. Compute IL by the union of the adjacent
links from nodes in TN while excluding the
loop links and the working and failure links
of RS;

5.IF IL = J THEN convert RS into the
corresponding probability value, add it-to
BP(G), and Continue;

6. Generate a set of mutually exclusive events

ME from IL; ‘

7. Update DC = RSU IL, convert it into the
corresponding probability value, and add
the value to BP(G); ‘

8. Generate a new node of the state space tree
and perform Procedure BP_Computing for
it;

END
END :
Fig. 4 demonstrates the snapshot of Fig. 2 to
illuminate the proposed algorithm. At first, links X;, X;
incident with N}, i.e., s are set to IL and TN, yielding the

disjoint cutset 13 in DC and two events 1 and 13 in
ME. Two nodes, i.e., GIl and GI13 in Fig. 2, are then

expanded and whose RS are updated to be 1 and 13,
respectively. For the left node Gl1, since X; is working,
the new expanded node is N,; hence, TN={N,, N,}, and
the incident links are determined as X,, X5, and X5 from

TN, yielding another cutset DC=RS\U IL =12 35 and
three events 2,723,235 in ME to generate GI12, G123

and G123 5. Since the expansion of link X, yields the
new expanded node N, i.e., 1, Gl12 terminates. For the
right node Gl13, since X; is expanded, TN is updated as

{N, N3} whose adjacent links X,, X; yields the disjoint

E-111



FERBENTAEZEREREH

cutset 1345 and two events in ME, 4 and 75, to get
Gli34 and Gl1335.

Since algorithm 1 is the dual method of algorithm 2,
_they present almost the same. However, minor
modifications must be done to get algorithm 1. First, ME
must be generated according to NCP instead of PCP.
Secondly, in algorithm 1, since all disjoint cutsets are
equal to the RS of the leave nodes whose IL = (J, thus
set DC is not necessary. Therefore, to formulate
algorithm 1, step 4 in the main program and step 7 in
Procedure BP_Computing should be removed.

5. Experimental Results

We have run algorithm 1 and 2 over various
benchmark networks on a SUN SPARC 10 machine.
TABLE 1 presents the experimental results for

benchmark networks Gij (j £ i), where subscript i

represents the number of nodes in the network, while
superscript j denotes G. with Ny to Nj are completely
connected. For all networks, s is located at N} whereas ¢
, is at Ny Fig. 5 shows an example of benchmark

network, GBS . In TABLE 1, [ represents the number of

links, m; provides the total number of disjoint cutsets for
algorithm i, and # denotes the computation time in
seconds. Assuming that each link has equal blocking
probability of 0.2, the node-to-node blocking probability
is also computed and illustrated in the field BP.

Making a comparison between algorithm 1 and 2
with respect to m; and #; reveals the superiority of
algorithm 2 over algorithm 1. As far as m; is concerned, it
shows that m, is much less than m,, indicating less
numerical computation and smaller rounding error for the
numerical computation of the blocking probability using
algorithm 2. On the other hand, the computation time for
networks (}86 to G are plotted in Fig. 6, showing there

is a gradual increasing time for algorithm 2 as compared
to algorithm 1.

6. Conclusions

In this paper, the proposed siate space
decomposing algorithms outperform traditional pivotal
decomposition algorithms because they use the concept
of keystone elements decomposition and conservative
policy. Moreover, we find that the algorithm using PCP
performs better than other algorithms using NCP such as
algorithm 1 in this paper and Rai and Kumar’s algorithm
[17). Therefore, we strongly recommended that it is
efficient and effective to calculate the blocking
probability of the DCS using the proposed second
algorithm.
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Fig. 1 The state space tree for a four-node DCS using Theorem 1.

Fig. 3 Another DCS example and its state space tree
constructed by Theorem 2.

G234 Gl12345 Gi2345
F F F

Fig.2 A state space trree constructed by Theorem 2, Fig. 5 The benchmark network Gy
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Fig. 6 Plots of computation time for six networks G to Go.
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RS=
- TN=MN,
IL=X,X%
ME=1, 13
/ DC=13 &
RS=1 RS= 13
TN =N, N, TN=N, N,
oL =X, X5, Xs IL =X, Xs
ME=2, 23, 235 ME =4, 45
DC= 1235 DC = 1345
[ NIF VAR
RS=12 $=123 RS=1235 ||[RS=134 RS = 1345
TN =Ny, Nao, Ny =Nj, Ny, N3 || TN = Ny, No, Ns||TN = Ny, Ny, NJJITN = Ny, N2, N,
L= — =X, IL=X, = — IL=X,
ME= — E=4 ME=4 = — ME =2
DC= — C=1234 ||IDC=12345 |lpc= — DC =132335
/ : /
RS = 1234 RS = 12345 RS = 12345
TN =Ny, Ny, N3, N;| [ TN =Ny, No, N3, Ny TN =N, N, N3, N,
EL= — EL= — EL= —
ME= — ME= — ME= —
DC= — DC= — DC=—
~Fig. 4 The snapshot of the state space tree of Fig. 2.
TABLE 1: The experimental results by running Algorithm 1 and 2.
Network 1 mny my n 1 BP
G 9 36 33 0.013 0.005 0.0134026
G 12 110 94 0.061 0.019 0.0023763
G? 15 270 212 0.223 0.064 0.0006582
G: 14 287 267 0.140 0.068 0.0027708
G 18 1657 1266 1171 0.372 0.0004901
GS 20 3398 2971 2317 0.992 0.0005506
G! 23 11170 6828 11.723 2.638 0.0000877
G}, 25 28620 20587 27.179 8.693 0.0001025
G? 28 53091 26830 84.792 14.701 0.0000256
G}, 31 286306 162182 382.003 86.658 0.0000191
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