
A Dynamic Different Threshold Strategy to Data
Replication in Data Grids

Ye-In Chang
National Sun Yat-Sen University,

Taiwan, R.O.C.
Email:changyi@cse.nsysu.edu.tw

Lee-Wen Huang
National Sun Yat-Sen University,

Taiwan, R.O.C.
and

Far East University,
Taiwan, R.O.C.

Email:huanglw@gmail.com

Yen-Wei Huang
National Sun Yat-Sen University,

Taiwan, R.O.C.
Email:huangyw@db.cse.nsysu.edu.tw

Abstract—In the context of data grid technology, data
replication is mostly used to reduce access latency and
bandwidth consumption. Two of well-known replication
strategies are

�������
- �	��

� ��� and � �������������	� , which work

well for different kinds of access patterns individually.
Later, Chang � ������� propose the static different threshold
(���) strategy, which can work for any kind of access
patterns. However, among a large number of different
data files, there may exist some hot data files which have
been most requested. To reduce the number of requests
for the hot files, we should replicate those hot files as
soon as possible. Therefore, in this paper, we propose the
dynamic DT strategy. In the dynamic DT strategy, data
replication of hot files occurs earlier than others because
the thresholds of hot files are decreased earlier than
thresholds of the normal files. From our simulation results,
we have shown that the performance of the dynamic DT
strategy is better than the previous strategies.

Index Terms—Access pattern, Data Grid, Data replica-
tion, Dynamic different threshold, Grid

I. INTRODUCTION

The world of Grid computing is continuously grow-
ing, and new projects are founded in an increas-
ing rate. These projects range from dedicated grid
computing infrastructures to public infrastructures,
from academic to commercial, from pilot projects
to production systems, and from proof-of-concept
to traditional science applications [7], [13].

Grid systems are inter connected collections of
heterogeneous and geographically distributed re-
sources harnessed together to satisfy various needs
of the users. Resource management is the central
component of a grid system. It involves managing

resources in the system. Its basic responsibility is to
accept requests from users, match user requests to
available resources for which the user has accessed
and scheduled the matched resources [12].

Initially, the Grid was envisioned as a way to
share large computing facilities, sending jobs to
be executed at remote computational sites. For this
reason, the Grid was referred to as a Computational
Grid. However, very large jobs are often data in-
tensive, and in such cases, it may be necessary to
move the job to where the data sites are in order to
achieve better efficiency. Thus, the term Data Grid
was used to emphasize applications that produce and
consume large volumes of data [1], [5].

Because of the distribution and large amount of
data, even more than Petabytes (!#" Gigabytes),
there would be several kinds of access patterns. The
access pattern which is generated randomly is the
worst-case scenario, while most of realistic access
patterns contain varying amounts of temporal and
geographical locality. Temporal Locality means that
the files recently accessed are likely to be accessed
again. Geographical locality (Client locality) means
that the files recently accessed by a client are likely
to be accessed by nearby clients.

When a user generates a request for a file,
large amounts of bandwidth would be consumed to
transfer the large data file from the server to the
client. Furthermore, the latency involved could be
significant considering the size of the files involved.
Ranganathan and Foster [9] have investigated the
usefulness of creating replicas to distribute these

huge data sets among the various scientists in Data
Grids. So, the replication strategies are used to
reduce the cost in Data Grids. The main aims of
using replication are to reduce access latency and
bandwidth consumption. The other advantages of
replication are that it helps in load balancing and im-
proves reliability by creating multiple copies of the
same data. Static replication can be used to achieve
some of the above-mentioned gains, but the draw-
back with static replication is that it cannot adapt
to changes of the user behavior. The replicas have
to be manually created and managed, if one were
to use static replication. In their scenario, where
the data amounts to petabytes (!#" Gigabytes), and
the user community is in the order of thousands
around the world, static replication does not sound
feasible [9]. Such a system needs dynamic replica-
tion strategies, where replica creation, deletion and
management are done dynamically depending on
the situations of the requests and the capacity of
each node. The data in this scenario is read-only,
and so there are no consistency issues involved.
Dynamic strategies have the ability to adapt to
changes in user behavior. Ranganathan and Foster
have proposed several different dynamic replication
strategies for Data Grids [9], [10], which can work
well under different access patterns individually,
including

���������
	���
��
and � ����� - ������� �
	 . If the grid

users exhibit total randomness in accessing data,
then the � ����� - ������� �
	 strategy can work best among
their proposed strategies. If, however, there were
sufficient amount of geographical locality in the
access patterns, the

���������
	���
��
strategy can work

better than the others [9], [10].
However, in the real world, there are many un-

predictable access patterns. Therefore, Chang et
al. [2] propose to use only one strategy which
can work for any kind of access patterns. They
propose a static Different Threshold (DT) strategy
for data replication in Data Grids, which could
be dynamically adapted to several kinds of access
patterns and achieve different replication effects.
In the static ��� strategy, each layer has its own
threshold, whereas the threshold in each layer of
Ranganathan and Foster’s strategies is always the
same. When the number of requests for the files
from a node reaches the threshold of its layer, the
file will be replicated to the node. For the same

logic network topology, they can use only one way
to achieve different replication effects. Moreover,
the static ��� strategy can provide even better
performance than the

���������
	���
��
and � ����� - ������� �
	

strategies by setting the threshold ��� suitably, where
��� is the threshold of

�
th layer of the tree.

However, among a large number of different data
files, there may exist some hot data files. That is,
the difference in the number of requests between
each data file may be very large. Those files which
have been requested most often are hot data files.
Therefore, in this paper, we propose a dynamic DT
strategy. In the static DT strategy, we set different
threshold ��� at each layer

�
before replicating, and

the thresholds at each layer
�

are fixed. In the
dynamic DT strategy, besides the static thresholds at
each layer, we set an offset to the threshold of each
data file; that is, each data file has its own threshold,
and it may be adjusted while the replication of
the data file is occurring. To reduce the number of
requests for the hot files, we let data replication of
hot files occur earlier than others by decreasing the
thresholds of hot files earlier than the normal ones.
Therefore, in the simulation study, we show that the
performance of the dynamic DT strategy is better
than that of the static DT strategy.

The rest of the paper is organized as follows. In
Section 2, we give a survey of some well-known
Data Grids strategies and architectures. In Section
3, we present the dynamic Different Threshold (DT)
strategy. In Section 4, we compare the performance
of our strategy with the previous strategies. Finally,
we give a conclusion in Section 5.

II. BACKGROUND

Data replication has been studied extensively, and
different distributed replica management strategies
have been proposed in the literature [3], [11]. The
techniques of Data Grids facilitate the distribution of
such data to geographically remote places. Dynamic
replication can be used as a technique to reduce
response time, bandwidth consumption and access
latency in accessing these huge amounts of data.
Ranganathan and Foster [9] evaluate the perfor-
mance of six different replication strategies for three
different kinds of access patterns.

Furthermore, Ranganathan and Foster have pro-
posed several strategies [10] which can work

B

replicated node

A

C

D
 E
 F
 G

Fig. 1. The Cascading strategy

B

replicated node

A

D
 E
 F

C

G

Fig. 2. The Fast Spread strategy

well under different access patterns individually,
including

���������
	���
��
and � ����� - ������� �
	 . In the���������
	���
��

strategy, once the threshold for a file
is exceeded at the root, a replica is created at the
next level, as shown in Figure 1. Using the � ����� -
������� �
	 strategy, a replica of the file is stored at
each node along its path to the client, as shown in
Figure 2. If the grid users exhibit total randomness
in accessing data, the � ����� - ������� �
	 strategy can
work best. If, however, there were sufficient amount
of geographical locality in the access patterns, the���������
	���
��

strategy can work better than the others.
However, in the real world, there are many un-

predictable access patterns. Therefore, Chang et
al. [2] propose to use only one strategy which
can work for any kind of access patterns. They
propose a static Different Threshold (DT) strategy
for data replication in Data Grids, which could
be dynamically adapted to several kinds of access
patterns and achieve different replication effects.
In the static ��� strategy, each layer has its own
threshold, whereas the threshold in each layer of
Ranganathan and Foster’s strategies is always the
same. When the number of requests for the files

B
 C

D
 E
 F
 G

X

F
 G

20
 35
 55
X

D
 E

15
 20
 35

T
1
 = 90

T
2
 = 60

T
3
 = 40

A

X

B
 C

35
 55
 90
X

Y

Z

A

0

*server

Fig. 3. The similar effect of the Cascading strategy

B

D
 E
 F

X

D
 E

5
 10
 15

T
1
 = 45

T
2
 = 30

T
3
 = 20

X

Y

Z

A

0

*server

*

*

*

A

X

B
 C

15
 0
 15

C

X

F
 G

10
 0
 10

G

Fig. 4. The similar effect of the Fast-Spread strategy

from a node reach the threshold of its layer, the
file will be replicated to the node. For the same
logic network topology, they can use only one way
to achieve different replication effects as shown in
Figure 3 and Figure 4, respectively, where ��� is the
threshold of

�
th layer of the tree.

Moreover, the static ��� strategy can even pro-
vide better performance than the

���������
	���
��
and

� ����� - ������� �
	 strategies by setting the threshold ���
suitably. Figure 5 and Figure 6 show the comparison
of three strategies: Fast-Spread, Cascading, and ���
on the P–random and P–gt access patterns. In these
figures, we assume that the leaf nodes can send the
requests for data. Then we account and record the
number of requests from each leaf node until the
replication is done. The number recorded at each
node means the number of requests from the node.
The number which is underlined means that it will
not be increased any more. So we can see that the
number of requests needed in the strategy ��� is
less than that needed in the other two strategies. It
means that the ��� strategy can provide the better
performance than the

���������
	���
��
and � ����� - ������� �
	

strategies.

B

A

D
 E
 F

T=30

G:
30

F:5

D:15

15
 30
5

C

G

(a)

B

A

C

D
 E
 F
 G

T=30

G:
30

F:5

D:15

15
 30
5

(b)

<
node
:
n
>,
n
 is the number of requests

B

G

C

E
 F

A

D

T
1
=40

T
2
=25

T
3
=15

G:
15

F:5

D:
15

15
 15
5

(c)

Fig. 5. A comparison on the random access pattern: (a) the Fast-
Spread strategy with � = 30; (b) the Cascading strategy with � =
30; (c) the DT strategy with ��� = 40, ��� = 25, ��� = 15.

B

A

D
 E
 F

T=30

G:
30
(+I/O)

F:25

E:2

D:5

30
25

C

G

2

(a)

B

A

D
 E
 F

T=30

G:
30
(+I/O)

F:25

E:2

D:5

30
25

C

G

2

(b)

B

A

D
 E
 F

T=30

G:
30
(+I/O)

F:25

E:2

D:5

30
25

C

G

2

(c)

Fig. 6. A comparison on the � - �
	 pattern: (a) the Fast-Spread
strategy with � = 30; (b) the Cascading strategy with � = 30; (c)
the DT strategy with ��� = 40, ��� = 25, ��� = 15.

III. THE DYNAMIC DT STRATEGY

In this section, we present how to replicate data
with different thresholds in Data Grids. First, we
describe the details of our data structure. Next, we
present the dynamic DT strategy.

B
 C

D
 E
 F
 G

A

T
1
 = 40

T
2
 = 25

T
3
 = 15

Fig. 7. Different thresholds of layers

DataF

CountT(DataF, SendID)

SendID

B
 C

X

Total
 Offset

45
 45
 90
 0

total number of requests for file-x

Offset to threshold of file-x

Fig. 8. The requesting record

A. Data Structure

In [2], Chang et al. assume that the clients consist
of a binary tree structure. Once the root of the
tree gets the request for a file, the root sends the
file to the client. The tree structure of the grid
implies that there is only one shortest path by
which the messages and files can travel to get to
their destination. Moreover, they set the different
threshold ��� to the

�
-th layer of the tree structure,

where ����� ��������� 0,
�

is the
�
-th layer of the tree.

We also assume that the layer of the root is 1, and
the layer of the leaf node is � , where � is the height
of the tree structure.

Figure 7 shows an example of the tree structure
of the dynamic ��� strategy. In this example, each
node, except for the leaf nodes, keeps a record of
requests for file � � � � � when each file � � � � � is
requested from the child node � �
�		� � . We name
the record CountT, and the related content is shown
in Figure 8, where the

��

�
�� ��� � � � � ��� � �
�		� ��� at
the node � � ��� � means that the number of requests
for � � � � � from node � �
�		� � .

B. The Algorithm

Among large amount of different data files, there
may exist some hot data files. That is, the difference

procedure � ��
�	�� ��� ��� � � ��� ����� �
�		� ����� � ��� ��� � � � � ���
begin

if (data � � � � � does not exist at node � � ��� �)
then

begin
Let � � be � � ��� � ’s parent node;
Send a RequestF(RecID, PID, DataF) message

to � � ��� � ’s parent node � � ;
if (node � � ��� � is not a leaf node) then

CountT(DataF, SendID) := CountT(DataF,
SendID) + 1;

end
else /*file � � � � � exists at node � � ��� � */

ReplicateD(DataF, SendID, RecID);
end;

Fig. 9. Procedure !#"�$
%�&('*)+'-,/.�'/0 	21

of the number of requests for each data file may
be very large. Those files which have been mostly
requested are hot data files. In the static DT strategy,
they set different threshold ��� at each layer

�
before

replicating. In the dynamic DT strategy, besides the
static thresholds at each layer, we set an offset to
the threshold for each file, which may be adjusted
while the replication of the file occurs. This allows
data replication of hot files to occur earlier than
for others by decreasing the thresholds of hot files
earlier than the normal ones. We assume that each
file can have its own threshold. If the number of
requests for the file is more than half the number of
total requests, the offset to the threshold of the file
will be reduced.

The procedure � ��
�	�� ��� ��� � � ��� � , as shown in
Figure 9, handles the action when node � � ��� �
receives a RequestF request message for data file
� � � � � from its child node � �
�		� � . If the re-
quested file � � � � � does not exist at node � � ��� � ,
node � � ��� � will forward the request to node
� � ��� � ’s parent node, and CountT(DataF, SendID)
is increased by one. While the node � � ��� � having
file � � � � � receives a request from node � �
�		� � ,
procedure ReplicateD is executed, as shown in Fig-
ure 10.

The procedure � � � � � ��� � ��� handles the action
when node � � ��� � having file � � � � � receives a
request from node � �
�		� � . If the node � � ��� � is
not a leaf node, it will check the record

��

�
�� �

procedure � � � � � ��� � ��� � � � � � ��� � �
�		� ����� � ��� ���
begin

if (node � � ��� � is not a leaf node) then
begin

check record(DataF, SendID);
Send a SendF(SendID, FileF, FlagR) message to

� � ��� � ’s child node � �
�		� � ;
end;

end;

Fig. 10. Procedure)+' � & ��� "
	2'��

and send a message � �
�	 � to � � ��� � ’s child node
� �
�		� � .

Figure 8 shows the requesting record of the
dynamic DT strategy. In the requesting record��

�
�� � , we record the number of requests for each
data file and also count the summation. Moreover,
we add a column

�	�
��� � � for each data file. In
the dynamic DT strategy, each data file � � � � � has
its own offset

� � ���

���
�� to the threshold which
belongs to its layer. Initially, we set the offset� � ���

���
�� = 0. While replicating, the node cal-
culates the number of requests for the data file
� � � � � . If the number of requests for the file is
more than half the number of total requests, we
assume that the file is hot, and decrease the offset� � ���

���
�� of the data file � � � � � by � . As shown in
Figure 11, we check the record

��

�
�� � to find the
number of previous requests from node � �
�		� � . If
the count of CountT(DataF, SendID) is larger than
the summation of the threshold ������������� ��
����� and
the offset

� � ���

���
�� , the node will calculate the
number !��"�

���
�� , the summation of the number of
requests for the data file � � � � � , and �#!�� , the
total number of all requests at node � � ��� � . Then,
it compares !��$�

���
�� with �#!�� . If !��"�

���
�� is
more than half of �#!�� , the offset

� � ���

���
�� of
the data file � � � � � will be decreased by � , where
� is a constant. Then, we transfer the replica of
the data file with the offset

� � ���

���
�� . The child
node which receives the offset

� � ���

���
�� updates
the offset of the file on its own record.

We illustrate the dynamic DT strategy in Figure
12. First, as shown in Figure 12–(a), after node G
requests file % , file % is replicated at node A. We
assume that node & already has file % , and the

procedure
� ��� �(' ��� �
 � 	 � � � � � ��� � �
�		� ���

begin

if (CountT(DataF, SendID)) (��*,+ �.- ����
����� +� � ���

���
��)) then
begin

!��"�

���
�� := the summation of the number of
requests for the data file;

�#!�� := the total number of all requests at
node � � ��� � ;

if (!��"�

���
��/) �
! �#!��)then� � ���

���
�� =
� � ���

���
�� - � ;

Let
��

�
�� � (� � � � � ,

�	�
��� � � �

���
��) be the� � ���

���
�� from its parent;
CountT(DataF, SendID) := CountT(DataF,

SendID) - �
*,+ �.- ����
����� ;
� � � � � := 1; /*A flag to indicate whether

� � � � � should be replicated*/
end;

end;

Fig. 11. Procedure �10�'2�13 4 '2�65�4/%87�� "
	 " 1,9;:	'-$
%=<>�@?

offset of file % is -10. Then, the requests for the
data files are continually generated from the client
nodes. In Figure 12–(b), the number of requests
on the records of node A and B reach each own
threshold. While node & receives the request for
file % from node A through node B , node & checks
the record

��

�
�� � to find the number of previous
requests for file % . It will compare CountT(X, B)
with the threshold � ! and then check whether the
summation of the number of requests for file % ,
such as 95, is more than half of the total number of
all requests for file % at node & or not, and if yes,
the offset

� � ���

���
�� of file % will be decreased
by a constant � , where � is 10. Now the count of
requests for file % reaches the threshold � ! , and file
% will be replicated at node B . Then, node & will
send file % to node & and update the offset of file
% . Finally, as shown in Figure 12–(c), the replica of
file % is replicated at node B and node A , and the
offsets of file % at node B and node A are updated
by -20.

IV. PERFORMANCE

In this section, we compare the performance of our
dynamic DT strategy with the static ��� strategy

B
 C

0
60
40
20
Y

-
10
90
45
45
X

Total
 Offset
C
B

0
60
40
20
Y

90
45
45
X

C
B

60

0

Total

0
60
Y

-
10
0
X

Offset
A

60

Total

0
60
Y

X

Offset
A

D
 E
 F
 G

T
1
 = 90

T
2
 = 60

T
3
 = 40

server

A

0
40
25
15
Y

-
10
45
25
20
X

Total
 Offset
G
F

0
Y

X

0
20
15
5
Y

45
25
20
X

Total
 Offset
E
D

0
Y

X
 -
10

(a)

B
 C

0
60
40
20
Y

-
10
95
45
50
X

Total
 Offset
C
B

0
60
40
20
Y

45
X

C
B

60

0

Total

0
60
Y

-
10
0
X

Offset
A

60

Total

0
60
Y

X

Offset
A

D
 E
 F
 G

T
1
 = 90

T
2
 = 60

T
3
 = 40

server

A

0
40
25
15
Y

-
10
45
25
20
X

Total
 Offset
G
F

0
Y

X

0
20
15
5
Y

50
30
20
X

Total
 Offset
E
D

0
Y

X
 -
10

2

1
60+(-10)=50, 95 > *(95+60)

(b)

B
 C

0
60
40
20
Y

-
20
45
45
0
X

Total
 Offset
C
B

0
60
40
20
Y

45
X

C
B

60

0

Total

0
60
Y

-
10
0
X

Offset
A

60

Total

0
60
Y

X

Offset
A

D
 E
 F
 G

T
1
 = 90

T
2
 = 60

T
3
 = 40

server

A

0
40
25
15
Y

-
10
45
25
20
X

Total
 Offset
G
F

0
Y

X

0
20
15
5
Y

20
0
20
X

Total
 Offset
E
D

0
Y

X
 -
20

(c)

Fig. 12. An example of the dynamic DT strategy: (a) file X is
replicated at node A; (b) the number of requests on the records of
node A and B reach each own threshold; (c) the file X is replicated
at nodes B and E, and the offsets are changed.

[2], the � ����� - ������� �
	 strategy, and the
���������
	���
��

strategy [10].

A. The Performance Model

In our simulation study for the distributed en-
vironment, we use the simulator � ��� � �
�('�� [8].
� ��� �
�('���� � is the

� ����� � � � � � � and
� �����

ver-
sion of � ��� �
�(' , which means that � ��� �
�('���� �
is a collection of

� ����� � � � � � � and
� �����

libraries
and executable programs for computer simulations.
� ��� �
�(' is a general simulation toolkit for creating

discrete event or continuous simulations. It is event-
oriented, and its key point is that it supports a
wide variety of event scheduling and continuous-
time simulation models [4]. Our strategy is carried
out based on the three-tier Data Grid topology [6].

We generate the requests for the files from the
client nodes according to the
 � � ��

 distribution
with a parameter ���
	 . That is, �

����
��������
� ��� is the
number of requests per second, where ����� is an ex-
ponential distribution function. The parameter ���
	
is the rate of requests, and ! is the number of nodes.
We specify different types of nodes: client, server,
and cache nodes, which are described as follows.

� Server Node: It represents the main storage
sites, where all or some parts of the data are
stored. The sites represent the root of the grid
hierarchy.

� Cache Node: It represents an intermediate stor-
age site, for example, a regional storage site.
Such sites would have high storage capacity
and would replicate part of the data stored at
the main storage site.

� Client Node: It represents the sites where data
access requests originate and are generated.
The client nodes are always placed at the leaf
layer of the Grid hierarchy.

In our simulation study, the number of server
node is 1, the client nodes are all in the lowest layer,
and the cache nodes can be in several layers. Be-
cause the topology is a binary tree, the total number
of sites can be calculated as " + � + �! +...+ � , where�

is the number of layers. So, in our simulation, the
total number of nodes is " + � + �! + �� = 15.

Table I shows the parameters used in our strategy.
! means the number of nodes. Due to the property
of the binary tree, ! is fixed, if the number of layers
of the tree is chosen. ! &� means the total number
of access patterns in the system. � � � � � means the
file which is requested. ��� is the threshold of

�
-

th layer, and it will be set at the beginning of the
simulation.

Initially, all files are placed at the Main Storage
Site (root). Moreover, we set the different threshold
��� at the

�
-th layer of the tree structure. On each

node, except for the leaf nodes, there is a record of
requests for some � � � � � files, which each record
is requested from its child nodes. The offset of each
file will be decreased by a constant � , where � is

TABLE I
THE SIMULATION PARAMETERS

Parameter Description�
The number of nodes��� � The total number of access patterns

� "
	 " 1 The data file
��� The threshold of each layer �� ��� Probabilities of the locality of access patterns� The constant used to reduce the offset

10. Two types of access patterns are considered in
our simulation study, the random and the localized
access patterns. The random access patterns are
generated at the client nodes randomly. The locality
of access patterns means that the files recently
accessed are likely to be accessed again, or the
files recently accessed by a client are likely to be
accessed by nearby clients.

B. Simulation Results

In this section, we compare our ��� strategy
with the

���������
	���
��
strategy and the � ����� - ������� �
	

strategy [10]. Here, the access costs in Data Grids
which we use are response time and the bandwidth
consumption.

Given that the number of files are 100, we take
measurements for two different access patterns, ran-
dom and localized. We assume that the data which
is initially stored in the server has the same size
of 2 gigabytes each. The clients which all requests
come from are assigned to be 8. Our strategy is
carried out based on the three-tier Data Grid topol-
ogy [6]. Then, we calculate the response time and
bandwidth consumption of these three strategies,
��� ,

���������
	���
��
, and � ����� - ������� �
	 . In Figure 13

and Figure 14, we set � � = 160, � ! = 80, and � � =
40 in ��� , and � = 60 in the

���������
	���
��
strategy

and the � ����� - ������� �
	 strategy.
Because the amount of data in the actual Data

Grids is in the order of petabytes, to simulate such
large data values, a scale of 1 file to 10,000 files is
used [10]. Therefore, the storage capacity at each
layer is also reduced. Table II shows the result of
scaling.

Figure 13 shows the response time (in terms of
the number of requests and transfers) of our ���
strategy and the � ����� - ������� �
	 strategy under the
case of the random access patterns. In the � ����� -

TABLE II
THE SCALE OF DATA GRID ENVIRONMENT PARAMETERS

Actual Size After Scaling
Number of files 1,000,000 100
Storage at layer 1 2200 Terabytes 220 Gigabytes
Storage at layer 2 1000 Terabytes 100 Gigabytes
Storage at layer 3 120 Terabytes 12 Gigabytes

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

0

500

1000

1500

2000

2500

3000

3500

4000

Fast-Spread
 static DT

access pattern - random

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Fig. 13. A comparison of the response time between the 1+" 0 	 -
: � 4 '-"�% strategy and the � � strategy

������� �
	 strategy, there is only one threshold, and
the record of the number of requests for a file
is stored at the client which the requests initially
come from. Hence, when the number of requests
reaches the threshold, the file is replicated along
the path to the client. In our ��� strategy, we set a
different threshold at each layer. When the number
of requests reaches the threshold of some layer, the
file is replicated to the cache node or the client
of that layer. From Figure 13, we show that our
strategy needs the less response time than the � ����� -
������� �
	 strategy.

Figure 14 shows the response time of our strategy
and the

���������
	���
��
strategy based on the local

access patterns. In the
���������
	���
��

strategy, there
is only one threshold. Hence, when the number of
requests reaches the threshold, the file is replicated
to the cache node which is below the server and on
the path to the client. From Figure 13, we show that
our strategy needs the less response time than the���������
	���
��

strategy.
Next, we compare bandwidth consumption in our

strategy with that of the previous strategies, as
shown in Figure 15. In this case, we take mea-
surements of the random access patterns. When a
node requests a file, and then the replica of the

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

0

500

1000

1500

2000

2500

3000

Cascading
 static DT

access pattern - locality

re
sp

on
se

 ti
m

e
(s

ec
on

ds
)

Fig. 14. A comparison of the response time between the � " 01� "�%=��$ �
strategy and the � � strategy

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

0

200

400

600

800

1000

1200

1400

1600

Fast-Spread
 static DT

access pattern - random

ba
nd

w
id

th
 c

on
su

m
pt

io
n

(G
ig

ab
yt

es
)

Fig. 15. A comparison of the bandwidth consumption between the1+" 0 	 - : � 4 '-"�% strategy and the � � strategy

file is replicated and transferred to another node,
we assume that the occurrence of the bandwidth
consumption is the amounts of the transference of
data. Figure 16 shows the bandwidth consumption
of our strategy and the previous strategies. In this
case, we take measurements of the locality access
patterns.

V. CONCLUSION

In this paper, we have proposed a dynamic dif-
ferent threshold strategy for data replication in Data
Grids to reduce the number of requests for the hot
files. In the dynamic DT strategy, each data file
has its own threshold which may be adjusted while
the replication of the file is occurring. This allows
data replication of hot files to occur earlier than
the replication of others by setting an offset to the
threshold of each file and decreasing the thresholds
of hot files earlier than the normal ones. In the sim-
ulation study, we have shown that the performance

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Cascading
 static DT

access pattern - locality

ba
nd

w
id

th
 c

on
su

m
pt

io
n

(G
ig

ab
yt

es
)

Fig. 16. A comparison of the bandwidth consumption between the� " 01� "�%=��$ � strategy and the � � strategy

of the dynamic DT strategy is better than that of
the static DT strategy. How to handle the case of
the movement of the code of application program
that is one possible future research direction.

VI. ACKNOWLEDGEMENT

The authors also like to thank “Aim for Top
University Plan” project of NSYSU and Ministry
of Education, Taiwan, for partially supporting the
research.

REFERENCES

[1] R. S. Chang, J. S. Chang, and S. Y. Lin, “Job Scheduling and
Data Replication on Data Grids,” Future Generation Computer
System, Vol. 23, No. 7, pp. 846–860, 2007.

[2] Y. I. Chang, L. W. Huang, W. H. Yeh, and Y. W. Huang,
“A Different Threshold Strategy to Data Replication in Data
Grids,” Proc. of the 4th Workshop on Grid Technologies and
Applications, pp. 21–28, 2007.

[3] G. Coulouris, J. Dollimore, and T. Kindberg, “Distributed
Systems, concepts and designs,” third Edition, Addisson Wesley,
2001.

[4] P. A. Fishwick, “SimPack: getting started with simulation
programming in C and C++,” Proc. of the 24th Conf. on Winter
Simulation, pp. 154–162, 1992.

[5] H. Jin, J. Huang, X. Xie, and Q. Zhang, “Using Classification
Techniques to Improve Replica Selection in Data Grid,” OTM
Conferences, pp. 1376–1387, 2006.

[6] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman,
“Simulation of Dynamic Data Replication Strategies in Data
Grids,” Proc. of the 17th Int. Symp. on Parallel and Distributed
Processing, pp. 1–10, 2003.

[7] J. Nabrzyski, J. M. Schopf, and J. Weglarz, “Grid Resource
Management: State of the Art and Future Trends,” Springer
Publishers, 2003.

[8] M. Park, and P. A. Fishwick, “SimPackJ/S: A Web-Oriented
Toolkit for Discrete Event Simulation,” Proc. of SPIE Vol. 4716,
pp. 348–358, 2002.

[9] K. Ranganathan, and I. Foster, “Design and Evaluation of
Dynamic Replication Strategies for a High-Performance Data
Grid,” Proc. of the Int. Conf. on Computing in High Energy
and Nuclear Physics, pp. 106–118, 2001.

[10] K. Ranganathan, and I. Foster, “Identifying Dynamic Replica-
tion Strategies for a High-Performance Data Grid,” Proc. of the
Int. Workshop on Grid Computing, pp. 75–86, 2002.

[11] Y. Saito, and H. Levy, “Optimistic Replication for Internet
Data Services,” In Proc. of the 14th Int. Conf. on Distributed
Computing, pp. 297–314, 2000.

[12] J. Smith, and M. Jones, “Survey and Taxonomy of Grid
Resource Management Systems,” Chaitanya Kandagatla Uni-
versity, 2003.

[13] M. Tang, B. S. Lee, C. K. Yeo and X. Tang, “Dynamic
Replication Algorithms for the Multi-tier Data Grid,” Future
Generation Computer System, Vol. 21, No. 5, pp. 775–790,
2005.

