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Abstract

- We consider small depth boolean circuits with basis
{AND, OR, NOT}. We obtain lower bounds for the
parity function with a relatively simple method. We
prove that for any depth 3 circuit with top fan-in t
computing the n-variable parity function must have at

least 1227 wires. Similarly, we obtain a lower bound
for computing the depth 4 circuits.

Keywords: Computational complexity; Circuit com-
plexity; Boolean function complexity

1 Introduction

The goal of computational complexity is to mea-~
sure the amount of resources needed to perform cer-
tain computations. There have been great progress in
finding upper bounds (algorithms) for many problems.
However, it is still very difficult to find lower bounds
for problems over general computational models, such
as Turing machine, circuit model with a complete ba-
sis, etc. Many key open problems in computer sci-
ence and related areas hinge on finding strong lower
bounds. For example, the P v.s. NP problem would be
resolved, if we could prove an exponential lower bound
for any NP-complete problem. While no method to
prove lower bounds for general computational models

in sight , there are some results for simpler and more
restrictive computational models, such as small depth
circuits, monotone circuits, etc. Restricted models
may enable us to constrain the problem and have a
clear analysis and derivation of strong lower bounds.
We hope that by studying the lower bounds for re-
stricted models will help develop useful tools on at-
tacking the problems for more general models.
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Fig. 1: Depth 3 circuit for PARITY with n = 4.

In this paper we consider the depth 3 boolean
circuit with basis {AND, OR, NOT} where each
level consists of the same type of gate, which can be
achieved by adding a small number of extra gates.
Without loss of generality, we can push the negation
to the input variables. Let AND, OR, AND be the
top, middle and bottom gates. For convenience I3 is
used to denote this type of depth-3 circuits. Fig. 1
shows a II3 circuit that computes the 4-variable par-
ity function. Here we measure the number of edges
that connect the gates. The measurement on edges is
well justified in VLSI design, since the communication
edges consume a significant portion of the chip area.
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We prove that the parity function requires at least

22 edges, where t is_the top fan-in. This bound is
interesting when ¢t < /. It is known that the depth-
3 circuit size lower bound for PARITY is ((20618v7)
[4]. In the case of ¢ < \/7, we get a large lower bound
for the number of edges. The proof is deterministic
and very simple. Hopefully with some extension of
this method, we can obtain more general lower bound.
Small depth circuits have been studied by Ajtai [1},
Furst et al. [2], Yao [7], Hastad [3], Razborov [5],
Somlensky [6], and Hastad et al. [4], where super-
polynomial and exponential lower bounds on circuit
size have been proved for parity and majority func-
tions. Qur approach is different from the above. The
result is based on the property of the parity function.
One major difference is that we prove exponential edge
lower bounds by a simple counting argument, instead
of size lower bounds and the probabilistic argument.

2 Edge lower bound for depth 3 circuit

Before we discuss depth 3 circuit, we warm up by
looking at the complexity of depth 2 circuit for the
parity function. Suppose the output is an OR-gate,
which takes the outputs of AND-gates as inputs. We
claim that the number of AND-gate for the depth 2
circuit is 277!, which gives the exact bound for %{%
depth 2 circuit. For the n-variable parity functi
there are 2"~! inputs with odd parity. In the depth
2 circuit, each AND-gate must have all the variables,
negated or not, as inputs, i.e. each AND-gate has n
inputs; otherwise, there will be an even parity input
that makes the AND-gate and the output gate out-
put 1. In the other words, each AND-gate recognizes
exactly one odd parity input. Therefore we need ex-
actly 271 AND-gates in the depth 2 circuit for the
n-variable parity function. Analogously, it is clear for
the case AND-OR depth 2 circuit. Next we consider
the depth 3 case.

Theorem 1 Any depth 3 circuit computing the parity
function with top fan-in t has at least 25 edges.

Proof. Consider a IT3 circuit that computes the par-
ity function of n variables, where we label the OR-
gates from 1 to ¢t and let s; be the fan-in of the i-th
OR-gate. Thus the third level AND-gates can be
labeled with (¢,j) for 1 < i < tand 1 £ j < 3.
Moreover, let 4;;,1 < ¢ < ¢ be the set of 0-1 as-
signments that satisfies the (7, j)-th AND-gate. Note
that different 4, ;'s may represent an identical set.
This means the fan-out of a bottom level AND-gate
can be greater than 1. Clearly 4;; is determined
by its input literals. For instance, as in figure 1,
Ay 2 = {0000,0001,0010,0011}. Also each sub-circuit
rooted by an OR-gate must have all variables, in nega-
tion or not, appear as input; otherwise the circuit
would reject an input with odd parity. Observe that
Uj; j is the set of 0-1 assignments satisfying the i-th
OR sub-circuit. Therefore Ni_, UjL, 4; ; is the set of
0-1 assignments with odd parity. By the distributive
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rule, we know | N; A; (], where 1 < ¢; < s;, can be 0,
1 or an even number. Since if all the (7, ¢;)-th AND
gates have all the n variables as inputs, then | N; 4z,
must be 0 or 1; else if these AND gates do not have
all variables as their inputs, then | N; 4;,] is even.
In the else case, if the size of intersection is non-zero,
then M;A; ¢, contains a 0-1 assignment of even parity.

Let & be an assignment with odd parity. Then for
each 1 < i < t, there must be at least one A;y,
such that ¥ € 4;;,. Thus £ € Myd;y,. By the
above observation, we have that | N; 4;¢,;| £ 1, where
1 < ¢; < s;. In total we have at most sys2--- 5 in-
tersections of 4;;'s, which must be at least 2"7! to
guarantee that the circuit computes the parity func-
tion correctly. It is clear that the number of edges is at
least s + 83 + ... + 5¢, which is at least t(s182-- st)%,
since the arithmetic mean is greater or equal to the
geometric mean. Therefore the number of edges is at

least $2°7". This completes the proof. O

The above also holds for any depth 3 AND-OR-
AND circuit that computes the parity function cor-
rectly on at least ¢2"~! odd parity inputs, where € is
a constant and 0 < € < 1. We can summarize it as
following.

Corollary 2 Any depth 3 circuit with top fan-in t
computing the parity function correctly on at least

€2""1 odd parity inputs has at least et 2% edges.

By applying a result by Hastad [3], we know that the
top fan-in for the optimal depth 3 cricuit must be at
least v/n, which is proved as following.

Corollary 3 The optimal Il3 circuit for the parity
function must have the top fan-in Q(y/n).

Proof. It is known that PARITY can be computed
by a depth d circuit of size O(y/n2Y™), which has
O(y/n23V") edges (taking d = 3) [3]. With the above
theorem, we have £2°7 < /n22V%, It follows that
VR <1< RV, o

Next we extend depth 3 edge lower bound to depth
4 OR-AND-OR-AND circuit. For such a depth 4 cir-
cuit that computes the parity function correctly with
top fan-in m, we know at least one of the m subcir-
cuits rooted with OR-gate must compute correctly on
at least 2*~!/m odd parity inputs. This gives an im-
mediate lower bound for the depth 4 circuit. By Corol-
lary 2, the lower bound is (%)%t’ 2% where ¢’ is the
smallest top fan-in among the depth 3 subcircuits.

3 Conclusions

In this note we have proved that any depth 3 circuit

computing the parity function with top fan-in ¢ has at
n~1 . * .

least 12°7 edges. The proof technique is by a simple

counting argument. An obvious open question is: cen
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we apply this technique to depth d(> 4) circuits and
other boolean functions? According to our experience,
we don’t know how to apply this technique to the ma-
jority function and it is also not clear how to keep the
bound from diminishing as the depth increases.
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