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Abstract

A 2-star on a metric space is a spanning tree with
at most 2 internal nodes. The total path length of a
spanning tree T is defined to be 3 y; ; d(T\, i, j), where
d(T, i, 7) is the distance between ¢ and j on T'. Given
an n by n metric, we show an algorithm to find the
the- shortest total path length 2-star in O(n®logn)
time.

KEYWORDS: ALGORITHM, SPANNING TREE, NET-
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1 Introduction

A k-star is a spanning tree with no more than & in-
ternal nodes. Given n nodes in a metric space, the
shortest total path length k-star (minimum k-star in
short) problem is to find a k-star such that the sum-
mation of the path lengths over all pairs of nodes
is minimum. The problem is interseting because of
its relation to the shortest total path length spanning
tree (SPST) problem. The shortest total path length
spanning tree problem is a special case of the opti-
mum communication spenning tree problem ([4]) and
was proved to be NP-hard in [5] (aslo listed in [3]).
Recently, the SPST problem becomes more attrac-
tive not only in network design but also in multiple
sequence alignments, which is an important problem
in computational biology (e.g. see [7]). Exact and
heuristic algorithms of the SPST problem were pro-
posed in [1], and a 2-approximation algorithm was
presented in [6]. Recently, a PTAS for the SPST prob-
lem was presented in [7]. The PTAS is based on (1)
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the minimum k-star is a good approximation solution
and (2) the minimum k-star can be found in polyno-
mial (with respect to n) time. So, any improvement
on the time complexity of finding minimum k-star re-
sults in a more efficient approximation algorithm for
the SPST problem.

In this paper, we restrict the problem to 2-star and
give a more efficient algorithm. The minimum 2-star
problem is different from the 2-median problem be-
cause of the cost definition. Given a set of vertices
V, the 2-median problem is to find a,b € V such
that 3, oy min{w(v,a),w(v,b)} is minimum, where
w(a,v) is the edge length between a and v. In addi-
tion to the two vertices (a and &), the minimum 2-star
problem also want to find a set partition V, and V;
such that (r — 1) (¥,ey, w(v,0) + 2 ,ey, w(v,0)) +
|Ve|lVs|lw(a, b) is minimum. Note that the solution of
the 2-median problem is not necessary a solution of
the minimum 2-star problem. Furthermore, when the
two vertices a and b are fixed, a vertex v may belong
to V; even for w(v,a) < w(v,b). The above two points
make the problem not trivial.

In this paper, we first present a naive algorithm
with time complexity O(n®®), which is also presented
in [7]. Then we show that the algorithm can be im-
proved to O(n*) by dynamic programming. Although
the time complexity is same as the one in [7], the dy-
namic programming algorithm is simpler. Finally, we
give an O(n®logn) time algorithm.

The remaining sections are organized as follows: In
Section 2, some definitions and notation are given.
We present the three algorithms in Section 3 and give
a concluding remark in Section 4.

2 Prelimiaris
In this paper, a graph G = (V, E, w) is a simple, con-

nected, undirected graph, in which w is the nonneg-
ative edge weight. Any metric M can be represented
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by a complete graph in which the weight of edge (4, j)
equals M[i, j]. We first give some definitions below:

Definition 1: A metric graph G = (V,E,w) is a
complete graph in which (L)w(i,j) > 0 Vi 75 7, (2)
w(i,§) + w(d, k) = w(i, k) Vi, g, k.

Definition 2: Let G = (V,E,w) be a metric
graph and z,y € V. A 2star T = (V,E;,w) =
2star(z,y,X,Y) is a spanning tree of G in which
By = {(z,0)[Vv € X} U {(y,v)[Vv € Y} U {(2,9)}.

Definition 3: Let G = (V,E,w) be a graph.
w(G) = 3 .cpw(e). Let T be a tree and i, j be two
nodes of T'. P(T, ¢, j) denotes the unique path between
i and j on T and d(T,14, j)=w(P(T,%,5)). The total
path length of T' is define as ¢(T) = 3, d(T),4,5).

vi,jev
Definition 4: Minimum 2-Star Problem (M2S)
Given a metric graph G = (V, E,w), find a 2-star T
of G such that ¢(T') is minimum.

The following lemma, is trivial, and we omit the
proof.

Lemma 1: If T = 2star(z,y, X,Y),
(T) 21X+ )Y+ Dw(z,y)

+2(n-1) (Z w(z,v) + E w(y, v))

veX veY .

3 Algorithms

Clearly, the M2S is to find z,y,X, and Y. For any
z,y, if we can find the optimal partition in O(f(n))
time, we can solve the problem in O(f(n)n?) time by
trying all possible node pairs. We fist present a naive
algorithm in the following subsection.

3.1 A naive algorithm
For specified z and g, if | X|=k,0<k<n -2,
e(T) = 2(k+1)(n-k-w(,y)

+2(n-1) (Z w(z,v) + E w(y,v))
vEX veY
. S0 our goal is to find a partition X,Y such that
IX| = kY] = n—k -2, and ) xw(z,v) +
Tovey W(Y,v) is minimum. We now show that such a
partition can be solved by matching.

Definition 5: Let G = (VU {z,y},F,w) be a com-
plete bipartite graph with edge weight w, |V]| = n.
0< k < n. Given G and k, the U-partition(G,k) prob-
lem is to partition V into X and Y such that |X| =
and 3o, ex w(2,v) + 2 ey w(y, v) is minimum.

Lemma 2:  The U-partition(G,k) problem can
be solved in O(n?®) by solving a minimum perfect
matching problem on a complete bipartite graph.

Proof: Assume G = (V U {z,y}, E,w;). Construct
a complete bipartite graph H = ( V UU*, E*,uw) in
which U* = {w;]1 < i < n}, and wse(v,u;) = wi1(v,2)
Vi < k, and wa(v,u;) = wi(v,y) Vi > k That is, U*
contains k copies of z and (n — k) copies of y. It is
easy to see that every feasible solution of the orig-
inal problem corresponds to a perfect matching on
H. For solving the minimum perfect matching on H,
since the perfect matching contains exactly n edges,
we can solve it by an algorithm for maximum match-
ing. Let b = max{ws(e)[Ve € E*}. Consider the
complete bipartite graph H* = ( V UU*,E*,w3), in
which ws(e) = b — wa(e), Ve € E*. If A is the maxi-
mum matching in H*, since H* is complete bipartite
and the edge weights are nonnegative, A must con-
tains n edges. So, A is also a perfect matching and
wz(4) = nb — wy(A4), which implies ws(A4) is min-
imum if and only if w3(A4) is maximum. The time
complexity then depends on the algorithm for maxi-
mum matching, which is O(n2 %) for a graph with n
vertices [2].

Here comes our first algorithm:

Algorithm I
Input: An n by n metric M
Output: The minimum 2-star
For each vertex pair (z,y) do
Fork=0ton-2do
By solving U-partition problem, find the mini-
mum 2-star under the constraints that (z,y)
are centers and k leaves hanged at
Keep the best solution found so far

We have the following lemma:

Lemma 3: Algorithm I solves the M2S problem in
O(n%®) time.

3.2 A dynamic programming algo-
rithm

In this section, we show that the U-partition(G, k) can
be solved by dynamic programming for all0 < k < n.
That is, we solve the inner loop of Algorithm I with
dynamic programming. Let G = (V U {z,y}, E,w)
be a complete bipartite graph and the solutions of U-
partition(G, k) are (X}, Y;) for all 0 < k < n. Assume
H be the super graph of G with vertex set V;,U{z,y}
and Vj, = V U {u}. It is not hard to prove the solu-
tion of U-partition(H, k) is either (Xp-1 U {u},¥z—1)
or (X;,Yi U {u}). Using this property, we can in-
sert the vertices one by one (in any order) and find
the solutions of the U-partition(G, k) problem for all
0 < k < n. The algorithm is as follows:
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Algorithm II
TInput: An n by n metric M
QOutput: The minimum 2-star
For each vertex pair (z,y) do
/* Assume the vertex set is {z,¥,1,2,...,n - 2}.
Ali, j] denotes the cost of the best 2-star with
leaf set {1..i} and there are j leaves adjacent to
z. B[k] denotes the best solution with exactly
k leaves adjacent to z */
Ali,~1] = oo for all 4; A[¢, 5] = oo for j > i.
A[1,0] = M(y,1};A[1,1) = Mz, 1};
Fori=2ton—-2do

Forj=0to¢do
. Afi=1,§ = 1]+ M(z,q]
Alhd] Afi - 1,7] + My,
Blk] = 2(n - 1)A[n - 2,k + 2(k + )(n - 1 ~
kYMz,y), V0< k<n =2
Keep the best solution fouh'd so far

= min

We get the following lemma.

Lemma 4: Algorithm II solves the M2S problem in
O(n?) time.

3.3 An efficient algorithm

To derived a more efﬁment algorithm, we found the ..

following property.

Lemma 5 Let Y be the minimum 2-Star of a metric
graph G = (V,E,w) with internal nodes a and b.
Assume S; = {v|(v,?) € Y,v ¢ {a,b}}, for i € {a,b}.
For any v, € 5, and vz € Sy, w(a,vy) — w(b,v1) <
w(a, v2) — w(b, va).

Proof: If the inequality does not hold, we can
chang the two vertices and get a solution with less
cost. (]

Based on the above property, we can obtain an
efficient algorithm. Let f,(v) = w(a,v) — w(b,v),
Va,b,v € V. For any specified a and b, relabel the ver-
tices such that V = {a,b,1,2,...n - 2} and fou(i -
1) < fop(?). This can be done by sorting the value
fap(v) and takes O(nlogn) time. Let Y, ; be the
minimum 2-Star with internal nodes a and b. Assume
S, and Sp be the set of vertices hanged at a and b on
Y, respectively. Then, from Lemma 5, there exists
an integer k € {1.n—1} such that S, = {i|]1 <i <k}
and S, = {ilk < ¢ < n ~ 2}. Let Afk] denote the
cost of the 2-star in which S, = {i|]1 < ¢ < k} and
Sy = {i|k < i < n—2}. Clearly,

Ali = 1]+ 2(n — 1) fa,0(4)
+2(n = 2 — 1)M][a,b).Vi > 1

Afi] =

. 8o, the array A can be compuied in O(n) iime, and
" Y, can be found by searching the minimum among

Ali]. The algorithm is listed below and the main re-
sult of this paper is in the following theorem.

Algorithm JIT
Input: An n by n metric M
QOutput: The minimum 2-star
For each vertex pair (a,b) do
/* Assume the vertex set is {a,b,1, 2,
%
Jop(v) = w(a,v) — w(b,v) for all v € {1..n - 2}
Sorting and relabel the vertices such that f,,5(i—
1) </ a,b(i)
Al0] = 2(n = 1) 35 Mb,v] + 2(n — 1) M{a, d]
Fori=1lton-2do
Ali] = Ali = 1) + 2(n — 1) fo,5(6) + 2(n — 2 —
1)M{a, b]
Keep the best solution found so far

ey = 2}

Theorem 6: The minimum 2-star problem can
be solved by Algorithm III with time complexity
O(n®logn).

4 Concluding remark

In [7], there is an O(n?*) algorithm for the minimum
k-star. Algorithm II can be also generalized to k-star
with the same time complexity. The most interesting
question;is how to generalize Algorithm III to k-star
and resilts in a more efficient PTAS for the SPST
problem. However, we have not found such a gener-
alization with a more efficient time complexity.
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