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Parallel Computations of the Two-way Wave Equation
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Abstract

In this paper, several numerical schemes, such
as Leap Frog, MacCormack, and Runge Kutta of the
finite difference schemes, are implemented and applied
to solve a set of hyperbolic PDE’s under distinct
multiprocessor architectures: Sequent Symmetry and
Transputer. The PDE to be solved is a two-way wave
equation that is used to describe the propagation of
‘waves in a material with discontinuous sound speed.
The performance and the efficiency of parallel
computation are evaluated based on obtained parallel
speedup and serial speedup.

Keywords: Parallel computations; Multiprocessor
architecture; PDE; Two-way wave equations.
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1. Introduction
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In future scientific and engineering problems
which involve the solutions of PDE's, computational
resources and solution time spent in a traditional serial
computer will become extremely large due to the ever
growing size of problem scales and the needs of the
more accurate resolutions. Scholars with those needs
expect to require processing rate far in excess of the
limit of the traditional serial computer [1~4]. For the
past 30 years, the development of the multiprocessors
has motivated researchers’ interest in applying parallel
processing techniques to the solution of the very large
scientific and engineering problems [5,6]. Of course,
parallel computation for the PDE's solutions-has been
one of the fields seeking to take advantage of such
achievement. However, it is also true that most of the
published researches and results focuses on
implementing one or few numerical methods to solve a
certain PDE's on a specific parallel architecture may not
be commercially available [7~9].

To perform the parallel computations of PDE’s
in multiprocessor architectures, the Sequerit Symmetry
$27 [13] with 6 processors and the Transputer with 8
processors were employed and the two-way wave
equation of hyperbolic PDE was selected as problem to
be solved. Several numerical algorithms -were
implemented for the solutions of the PDE, including
Leap Frog, MacCormack, and Runge Kuita methods.
The parallel efficiency for each numerical algorithm
can be studied by analyzing the obtained speedup for
each case [14].

2. Mathematical Model

In this model, the propagation of waves in a
material with discontinuous sound speed will be studied.
This problem is actually a model of what the oil
companies do when they look for oil. They use the
vibration as signal pulse and transmit it undemeath. In
the surface of the earth, microphones are used to
measure the reflected signals. By analyzing the
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different arrivals they try to infer the underground
structure.
Consider the two-way wave equation problem

that can be expressed in a matrix form:
[u] = m [u} -zsx=sx (1)
Vi lpye® o |
initial conditions:

u(x,0)=v(x,0) =4(x)

¢ (x)—Gaussian function

—o2x?

{x)=e 2 , o0=10

where:

u(x,ty—transmitted pulse

v(x,t)—reflected pulse

p(x)—density of the material

c(x)—sound speed

whereu and v are periodicin x

The main reason of choosing above equation as

our model for parallel solution becomes clear once the
parameter of p(x) and c¢(x) are taken to be discontinuous
along [-m, n]. The propagation of waves in a material
with discontinuous sound speed can studied subject to
the following three different schemes:

(A) plx)=c(x)=10 -g=sxs1
In this case, where p(x) and ¢(x) are assumed

to be constant through all x, we should expect the pulse
propagates to the left and eventually on the right by
periodicity.

(_B) Ax)=c(x)=1.0 |x| <-;£

HKx)=1.0 |x| s
c(x)=1.01 4
In this case, when the pulse hits the interface at
X= I—’El there is a transmitted pulse and accompanied by
a reflected pulse. However, the reflecied is weak
because of the small ratio of the two sound speed and
this enable us to perform the test of accuracy.
Obviously more computations may be necessary for a

certain degree of accuracy and, eventually, the solution
time may be elongated.

© oy =cy=10 <2

Hx) =10 T
{c(x) =30 M=7

In this case, there is a sirong reflection when the
pulse hits the interface at x = I-;LI due to the larger ratio
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of the two sound speed, hence, we should know how
well can our numerical schemes handle the large
discontinuity in c(x). Actually this case is a test of
stability, to find the solution in parallel environment
while the compuiations and resulis become more
complicated.

3. Numerical Schemes

Various numerical algorithms, such as Leap Frog
(LF), MacCormack (Mac), and Runge Kutta (RK) of the
finite difference methods are implemented and their
performances are evaluated from the view point of
parallel efficiency [15,16]. Based on the levels of the
solution approximation on the discretized grids, they
can also be further categorized into several variants, as
was concluded in Table 1.

3.1 Leap-Frog Scheme (LF):

LF is a two-stage scheduling and it requires a
starting procedure to compute the value at r=At since
only initial condition is available at this particular case.
Based on the order taken for central difference in time
(f) and space (x), some variations, which are all
Neumann stable, in this scheme include LF22, LF24,
and LF24 with dissipation. Both LF22 and LF24 are
non-dissipation schemes, and in LF24 with dissipation,
the approximations in higher order derivatives are
enhanced to prevent high frequency oscillation in
solution which might be generated by the incorrect
solution at x=7.

3.2 MacCormack Scheme (Mac):

Variations in Mac scheme are made due io the
order taken for central difference in time and space,
however, they are all single level, Neumann stable, and
dissipation scheme. For each Mac22, Mac24, and
Mac26 scheme, two different forms are made for
forward predictor/backward corrector (FB) and
backward predictor/forward corrector (BF).

3.3 Runge Kutta Scheme (RK):

The multistage scheduling in time is the main
distinction for RK scheme with LF and Mac schemes,
which are both single-stage in time. Hence it takes more
memories to store extra data induced by this multistage
scheduling in time. Similar to LF scheme, RK is a
stable and non-dissipation method and is usually
employed with artificial dissipation.

The error criterion used for convergence check
can be shown as below:

N1 n n
z I“j 'uexact(ij ]

j=1

N (t =
3 el

Error =

@
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where uma(xj z"):;’ﬁ\:j +t") is shown as the exact

solution of case (A). Of course, the check for
convergence in case (B) or case (C) can also be formed
simply by replacing it with the corresponding exact
solution. It is clear that the error will naturally become

lesser with the increased grid points. This may become
necessary as a more accurate numerical solution is
requested in order to attain a better graphical resolution,
especially in case (B) where the reflection is
considerably weak.

Table I: Numerical schemes employed for solutions.

Methods Notation Variants Remarks .
LF22 2-2 2" order in time/2™ order in space
Leap Frog LF24 2-4 2" order in time/4" order in space
LF24a 2-4 with 2" order in time/4" order in space
rtificial dissipation
FB Forward predictor/Backward corrector
Mac22 2-2 BF Backward predictor/Forward corrector
FB Forward predictor/Backward corrector
MacCormack Mac24 2-4 BF Backward predictor/Forward corrector
FB Forward predictor/Backward corrector
Mac26 2-6 BF Backward predictor/Forward corrector
Runge-Kutta RK 4-stage Multistage in time

4. Parallel Computations

Among those parameters used to describe or
classify the wealth of parallel computers available, the
type of processor interconnection is a significant aspect
that provides a point of view on the mechanism by
which processors exchange information. Generally
speaking, there are two major classifications:

1. Share memory architecture,
2. Local memory architecture,

and a variety of hybrid designs lying in between. To
fully evaluate the parallel computation efficiency of the
numerical algorithms in distinct multiprocessor
architectures, the PDE’s numerical solution is
performed under both environments, including Sequent
of shared memory and Transputer of local memory.

4.1 Sequent Symmetry — Shared Memory Machine

This alternative uses a global shared memory that
can be accessed by all processors. While each processor
executes its own instruction on data in a shared memory,
a processor can communicate to another by writing to
the global memory, and then having the second
processor read the same location in the memory.
Apparently it solves the interprocessor communication
problem, but introduces the intricacy of simultaneous
accessing different locations of the memory by several
processors. Under such architecture, algorithm design is
simplified since the system behaves as if all the
processors were directly connected to each other. The
Sequent Symmeiry employed is a shared memory
machine with 6 processors access the required data
through a global memory space. Since the sysiem was
implemented in a time-sharing mode, it is difficult to
obtain the privilege of accessing all processors without
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disturbance. In current study, the parallel computations
were performed by using 4 processors at most.

- -
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interface

b. Interprocessor Communication

Figure 1: The CSA transputer, (a) interface with PC
host and hardware configuration, (b)
interprocessor communication links.

4.2 Transputer — Local Memory Machine

There is no common memory in this architecture,
but rather each processor has its own local memory.
Processors communicate through an interconnection
network  which  usually consists of  direct
communication links joining certain pairs of processors.
Hence, which processors are connected together is an
important design issue. Undoubtedly, it would be the
best if all processors were directly connected to each
other, but this is often not feasible because it would
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cause either an excessive number of links, which leads
to increased cost, or the processors would communicaie
through a shared bus, which leads to excessive delays
as the number of processors is large due to the
necessary bus contention.

The CSA transputer used in this study is known
as the inexpensive parallel processing tools and is PC
formatted which can be installed in PC-style expansion
cabinet. The transputer platform of current system
includes a PC 486 as a host which connects to the
processor board (Part 6) with 8 nodes through an
interface card (Part 0). The interprocessor connection is
rather flexible and can be performed by way of certain
hardwire links and software configuration. However,
for current study, the interprocessor links were
configured as was shown in Figure 1.

4.3 Performance Measurement

The algorithms of Table I are modified to fit the
characteristics of each specific ~multiprocessor
architecture. The parallel speedup and serial speedup,
as expressed in eq. (3) and eq. (4), are both examined to
relate how well a particular algorithm has been
parallelized and to describe the speed advantage of the
parallel algorithm in a multiprocessor computer,
respectively.

t,(1)
parallelspeedup S, (nproc) = > (nprod) 3)
serial speedup  Sg(nproc) = s @

t, (nproc)
where t, is the computation time of serial program with
1 processor; t(nproc) is the computation time of
parallel program with nproc processors for parallel
computation.

5, Performance Results

The speedups obtained from both parallel
computers will be discussed as both serial and parallel
speedup are included with available processor number
ranging from 1 to 4 for Sequent, and from 1 to 8 for
Transputer while the grid points (NX) is 1000.

5.1 Speedups on Sequent

It is found that the performance of each scheme
on Sequent did not change much for three distinct cases,

z
4
did not affect the parallel computation efficiency as far

as shared memory machine is concerned. For Leap Frog
algorithm, the 2-4 scheme with arifical dissipation

that is, the discontinuity of sound speed ¢(x) at x =
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(LF24a) appeared to have better performance to LF22
and LF24 in both speedup measuremeni. In
MacCormack algorithm, meanwhile, the advantage of
using 3 different variations (Mac22, Mac24, Mac 26)
was not clear from the view point of speedup
performance. However, the Runge Kutta algorithm
showed a superior performance in almost every
categories compared with every other algorithms.
Among three algorithms, it scems that RK has a better
performance as far as parallel speedup is concemed.
However, it must be known that RK also takes much
longer in computation time for the numerical results to
meet convergence criterion than LF does, and spent
comparable amount of time with MacCormack .

5.2 Speedups on Transputer

It is also noted that the MacCormack variations
show the best efficiency while the Leap Frogs pertain
the worst speedups among all the algorithms. Note also
that the performance of implemented algorithms on
three cases are similar except for Leap Frogs which
works more efficient on case C. As the Leap Frog
algorithms are concemned, LF24a generally performs
betier than the others. In Contrast to results of Leap
Frog schemes, the increased stages of MacCormack
scheme does not resuli in a better speedup although the
computation time was greatly elevated for Mac26 and
Mac24 about 5 and 4 times than Mac22. As was
suggested, Runge Kutta is superior fo all variations of
Leap Frog while provides less efficiency than every
schemes of MacCormack. '

5.3 Comparisons

The performance of each algorithm on Sequent is
comparable for three different cases, that is, the
computation for the discontinuity of sound speed C(x)

at x=§- did not affect the parallel computation

efficiency under shared memory machine. Similar
conclusions can also be made for MacCormack’s and
Runge Kutta on Transputer of local memory machine.
However, it was found that variances exist for Leap
Frogs on transputer for three distinct cases. The best
speedups were obtained on case C while case B seemed
to work inefficiently for LF22 and LF24. Interprocessor
communication is often one of the main obstacles to
increasing performance of parallel algorithms for local
memory machines. Among three algorithms, Leap
Frogs is expected to speni more interprocessor
communication than the others [18].
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Figure 6: Speedups of Leap Frog algorithms on different multiprocessor environments
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Figure 7: Speedups of MacCormack algorithms on different multiprocessor environments
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Figure &: Speedups of Runge Kuita algorithm on
different multiprocessor environmentis
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results of Leap Frog schemes, it is found that the gap
between parallel speedup and serial speedup on
Transputer is comparably large while difference of the
two in Sequent is not significant, as was depicted in Fig.
2. Transputer performs more efficieni than Sequent
does as parallel speedup is concemed although this
advantage gradually lessen for LF22 and LF24a.
However, it is also interesting to see that, in contrast o
the result of parallel speedup, Sequent is slighily
superior to Transputer in serial speedup. Observation of.
Fig. 3 shows that Transputer has better performance
than Sequent for both parallel and serial speedup on
three MacCormack . variations. On the - other hand,
Transpuier also exhibiis a consistent performance for
processor number ranging from 1 io 8 while Sequent
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seems to reveal the tendency of degrading with
increasing number of processors. It should be noticed
that Runge Kutta is not the most time-consuming
among all the numerical schemes under studied.
Nevertheless, the speedup results depicted in Fig. 4
suggest that RK performs steadily on both shared and
local memory machines although it does not present the
best performance overall.

6. Conclusions

In this paper, three algorithms and variants from
finite difference method were implemented- on two
distinct multiprocessor computers to solve a two-way
wave equation that is used to describe the propagation
of waves in a material with discontinuous sound speed.
The performance results were examined based on the
obtained speedups to determine how well the

algorithms  were  parallelized  under  certain

multiprocessor architecture environment. The results
indicated that Leap Frog, MacCormack, and Runge
Kutta methods all show fine efficiency in solving the
specified PDE’s in parallel.

While making a decision of what algorithms to
choose for the numerical solution of current PDE’s
application, some indices other than speedup
performance may have been considered, including the
accuracy, stability, and difficulties while the selected
algorithms is parallelized. Meanwhile, the advantage of
using one specific multiprocessor architecture over the
other is not clear without making a overall evaluation of
all factors, such as computation time, available number
of processors, and which index (serial or parallel
speedup) to be concerned. However, only LF24a and
MacCormacks have assured themselves to the level of
stability. On the other hand, Runge-Kutta and LF24
with dissipation are not easy to be parallelized from the
parallel computation’s viewpoint. Based on the
experiments and performance evaluations, it is not
unambiguous that the MacCormack is a good choice in
general ratings and local memory machine seems to
perform more efficient than shared memory machine
does while parallel computation becomes the main
issue of the case.
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