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Abstract

1n this paper, we propose a new technique to
transform non-uniform dependence loops efficiently,
based on their irregularity, by which more parallelism
can be explored directly and effectively. Compared
with other existing methods, our new approach gives
better performance.
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1. Introduction

According to its cross-iteration dependence re-
lations, a nested loop can be characterized as a uni-
form or non-uniform dependence loop [6]. Coupled
array subscripts in nested loops generate non-uniform
data dependence vectors [8]. According to an empiri-
cal study on array subscripts and data dependence by
Shen et.al. [8], almost 45% of the loops are non-
uniform dependence loops in real programs. As a re-
sult, parallelization of those non-uniform dependence
loops effectively plays an important role in paralleliz-
ing compiler design.
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However, extracting parallelism of non-uniform
dependence loops is very difficult for current parallel
compilation techniques. Current techniques can be
grouped into two main categories. The first uses the
concept of minimum dependence distance to tile non-
uniform loops. The other one transforms non-uniform
dependence loops into uniform ones. Based on classical
convex theory and linear programming techniques [5]-
(7], a number of methods have been proposed. One of
the method is minimum dependence distance tiling [7].
In this method, the iterations are grouped into tiles
which can be executed in parallel. And the tiles can be
executed with proper synchronization. A serious disad-
vantage of this technique is that it tiles iterations on one
specific dimension and later on the other dimension in .
two level nested loops. But the parallelism may be
greater if other dimension is tiled first. Minimum de-
pendence vector set [5] also have such disadvantages
and may have high complexity. Other approaches based
on vector decomposition techniques [6, 9, 10] have also
been presented. Those techniques used a set of basic
dependence vectors to compose all dependence vectors.
They may suffer from extra unnecessary dependences.
Hence, all existing approaches have their weakness in
parallelizing non-uniform dependence nested loops.

In this paper, we develop a new technique to
parallelize non-uniform dependence loops more effec-
tive than those of existing non-uniform dependence
parallelization methods. Based on the concept of con-
vex spaces[5]-[7], we proposed a new algorithm to
extract more parallelisms from the nested loops. Fur-
thermore, our algorithm can enhance not only mini-
mum dependence distance tiling techniques, but it can
also enhance other parallelization mechanisms such as
minimum dependence vector set methods or uniformi-
zation methods. The experiment results show that the
performance of our method is better than any previous
approach and give very positive insights for furthe
development, ‘

The rest of the paper is organized as follows.
In section 2, we introduce the program model consid-
ered and review the related work adopted by our
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techniques including the dependence analysis process
and IDCH computation process. Section 3 discusses
our policy for deciding the parallelization mecha-
nisms. The transformed models for effective mecha-
nisms are also given in this section. In section 4, some
preliminary performance results collected from our
simulation system are presented, and also compared
with other similar methods. Finally, some conclusions
and future work will be given'at the end of the paper.

2. Fundamental background and re-
lated work

2.1 Basic concepts[6, 7]

The program model for the loop nest under
consideration in this paper is shown in Fig. 1. The di-
mensions of these arrays are assumed to be equal to
the nested loop dimensions. For the simplicity of tech-
nique presentation we consider only tightly coupled
doubly nested loops. Among the series computation
statements, it is assumed that only Sy and S can ac-
cess array A in which f,(L)), £,(1,)), (1)), and f,(1,J)
are linear subscript expressions of index variable I and
J. Dependence exists if Sy and Sp both refer to the
same element of array A.

fori=L,,U;
forJ= L’ , U]
Su: oo
Sv: AR I), H(0))=eee
@ o o
SR: cee= A(fB(I:J): f4(I3J))
endfor
endfor

Fig. 1. Program Model

In previous research, most loop parallelization
techniques are focused on the problem of uniform de-
pendence loops[1]-[4]. However, when the loop is
non-uniform dependence loop these methods are ei-
ther fail or inefficient. As for the non-uniform depend-
ence problem, diophaniine equations analysis and
IDCH computations are two kernel process for analyz-
ing the data dependence features of non-uniform loops.
The general solution of the diophantine equations can
be computed by the process proposed by Banerjee
[12]. The inequation set given by the program pattern
restricts the solution space and forms an area which is
called Dependence Convex Hull(DCH) [7].

Lemma 2.1: If the Dependence Convex Hull(DCH) of
a nested loop L is empty, then no cross-iteration de-
pendence occurs in L. O

Proof: See [6]0

The DCH can be obtained by the algorithm pro-
posed by Tzen [6]. According to the processes intro-

duced above, several attempts have been made to paral-
lelize non-uniform dependence loops. They focus on
two important directions. One direction is dependence
uniformization [6, 13, 14] technique, and the other
direction is minimum dependence distance [3, 7] tech-
nique. We discuss them separately in the following
subsections.

2.2 The uniformization technique

Tzen and Ni [6] proposed the first dependence
uniformization technique called dependence slope
method. They construct two dependence vector sets for
two-dimensional loops with non-uniform dependences.
For a  two-dimensional dependence’  vector

d= [a’ 1d 2]T, a dependence slope function is defined

as dofdr. A pair of upper and lower bounds §.,, and
Smin Of the slope function can be obtained. Then either

([O'IIT*[l ’LSminJ]T) or ([0'“117*[1[5“-”? is used

as Basic Dependence Vectors Set (BDVS). They can
compose all non-uniform dependences. However, one

of the vector ((0,1),(0.~ 1)) hasto be in their BDVS,

the parallelism of the first dimension will be one and
the dependence cone size will remain large.

2.2.1 On uniformization of affine dependence algo-
rithms '

Several algorithms have been considered in
[13,14] used to uniformize non-uniform dependences
based on several objective functions such as schedule
length, BDVS cardinalities and dependence cone sizes.
Together with six basic ideas and improving techniques,
the objective functions are used to guide the selection
of the best uniformizations. They enhance the basic
uniformization techniques depending on specific de-
pendence patterns. However, they didn’t consider de-
pendence directions and their methods are also con-
strained by the minimum dependence vector of the loop.
Our method, on the contrary, can release such con-
strains by separating the loops and explore more paral-
lelism degrees which will be introduced in the next
section.

2.2.2 On effective execution of mnon-uniform
DOACROSS loops

This approach demonstrates a better way to se-
lect the uniform dependence vectors and their static
strip scheduling schemes enforce dependences with
more locality, For a n-dimensional dependence vector

Veyivi.,ya’
c ; , 18 a dependence vector in the
V': I/:.I'V Fu2reeny i.o

where each
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n-dimensional iteration space. Vi € { 1,..., m} , ubi

and Jb} are upper and lower bounds of V;.;/Vi. respec-
tively. Then ([1,01%,[L-1b, 011D, ([1,01%[L-ub',)-117),
1, -417[0,11) and  ([LOT[L-16%0107, [L-ub',)-
177) are used as BDVS. They can compose all non-
uniform dependences. However, when their BDVS
contains and, their algorithms are only successful
when P < M, where M; is the upper loop bound of
parallelized dimension j. When their BDVS contains
([1.0]’.{[/1)’1}1}3 and [[1,0]’,[[-ub',_|,-l]r] , their parallelism is
" equal to traditional uniformization techniques [6].

In summary, the uniformization based tech-
niques introduce extra dependences and the parallelisnt
is constrained by their BDVS. In order to overcome
these difficulties, we introduce another popular paral-

lelization mechanism called minimum dependence
distance technique in the next subsection.

2.3 Minimum dependence distance mechanisms|[5, 7]

Minimum dependence distance mechanisms use
classical convex theory or principles of linear pro-
gramming to compute the minimum dependence dis-
tance and the iteration space to be tiled. Iterations in the
same tile can be executed in parellel and the tiles can be
executed with proper synchronizations. However, when
the dependence vector function do not pass through the
IDCH, the non-uniform dependence loop must execute
serially and can not explore proper parallelism in the
minimum dependence distance tiling technique. In the
minimum dependence vector mechanism, they solve
integer programming formulations to find the minimum
dependence vector set. The minimum dependence vec-
tor set is then used to tile the loop for parallel execu-
tion.

Our method will enhance the parallelism ex-
plored by minimum dependence distance methods in
some degree. The above two directions both ignore the
irregularity of non-uniform dependence loops. We dis-
cover as much parallelism as possible based on the
irregularity of non-uniform dependence loops. In the
following, we will describe our methods in some detail.

3. Effective non-uniform loop paral-
lelization technique

In this section, we will introduce some mechanisms
to improve the parallelism of non-uniform dependence
loops. Table 1 shows four popular non-uniform loop
models used to evaluate several previous work [5, 6, 13,
17]). We will use them as examples and to evaluate our
performance improvement.

At first, we split the loops to get the total paral-
lelization iterations. And then we decompose and {rans-
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form them to find larger tiling blocks. Finally, we de-
tect some parallelized patterns as large as possible to
greatly enhance parallelism of them:

Model 1 (17) Model 2 (6} Model 3 {5, 6] Model 4 [13]
for I=1,N deo for I=1,N do for I=1,N do for I=1,N do

for J=1,M do for J=1,M do for J=) M do for }=1 M do
st AQL 23) s|sl: AQ+), 31+343) ={s:AI+3,1+1) = ... ls1: A(31, SN = ..»
..... s2:.=A(IHIH3, 21+1); fs2: o= ALY,
s2: ... = AQHI0,f52: ... = A(l+}+1, enddo enddo
1+3+6); 1+21+4); enddo enddo

enddo enddeo
enddo enddo

Table 1. The standard models.
3.1 Parallelization Part Splitting(PPS)

Because the irregularity of non-uniform de-
pendence loops, total parallelization part of them may
occupy most of the iteration space. If we can split such
total parallelization parts and execute them in parallel,
we can greatly enhance the speedup of non-uniform
dependence loops directly. Firstly, we will define the
concept of the Non-IDCH region in the following.
Definition 3.1: In the nested loop iteration space T, let
ik =1,2,3,...) € T be the iterations and I'(IDCH) be
the IDCH iteration space. i, € T(Non-IDCH) if i, e T
and _itk ¢ T(IDCH). Then the I'(Non-IDCH) is called
the Non-IDCH region of the given nested loop.0

Noa-1DCH

1 . 1 N . 100

Fig. 3. An example of IDCH .and Non-IDCH

Fig. 3 shows the IDCH region and the Non-IDCH
region respectively. In this example, most iterations
are in the Non-IDCH region. Parallelization of them is
very important in this example.

Lemma 3.1: In the nested loop iteration space I', V i,
ivk=1,2,3,..) € I( Non-IDCH ), then i, andi, are
cross-iteration independent and can be executed in
parallel. O

Proof: The proof is done by contradiction.

Let ( S1(X,Y), S2(X,Y), S3(XY), S4(X,Y ) is
the general solution of the corresponding diophantine
equations of L. Assume there exists dependence be-
tween iteration (i, j;) and iteration (4, j,). There must
exist two integers o, such that (4, j,) = (81(c,B),
82(a36)) and (iZ. jl) = (83(a’B)a 34(aal3))' Since both
(i1, j1) and (4, j») are in the iteration space, the follow-
ing inequalities hold.
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Lis Sitaf)s U,
Lis §i( a:ﬂ )< U,
Lis Si(af)s U,
Lis §apf)sU,

Thus, (o,B) is in the DCH. Because the IDCH is
the set of integer iterations of the DCH, integer point
(a,B) is in the IDCH. From definition 3.1, (a,B) is not
in the Non-IDCH region. The lemma is proved. O

The theorem 3.1 and 3.2 in the following show
how we can split some square part of the Non-IDCH
region from the iteration space into appropriate paral-
lelized tiles.

Theorem 3.1: Let L be a doubly nested loop with the
form shown in Fig. 1. And let L; be lower bound of the
loop index I and Uy be upper bound of the loop index J.
Let L(IDCH) be lower bound for the IDCH in loop
index L If L; < Ly(IDCH) then the loop iteration can be
split from L; to (L(IDCH)-1) to form a parallel execu-
tion tile called Left-tile and the tile size is T, =
(L(IDCH) - Ly*U,. O

Proof: If L; < L(IDCH) then [L;,(L(IDCH)-1)] is in
the Non-IDCH region. From Lemma 3.1, iterations in
[L,(Ly(IDCH)-1)] can be tiled and executed in parallel.
Therefore,

TL = ((L](IDCH) -l) - L[ + 1)* UJ = (Ll(IDCH) - L])* UJ’
O

Theorem 3.2: Let L be a doubly nested loop with the
form shown in Fig. 1. And let U, be upper bound of the
loop index I and U; be upper bound of the loop index J.
Let U(IDCH) be upper bound for the IDCH in loop
index 1. If Uy(IDCH) < U; then the loop iteration can be
split from (U(IDCH)+1) to U; to form a parallel execu-
tion tile called Right-tile and the tile size is Ty = (U
U(IDCH))*U,.0 ,

Proof: If U(IDCH) < U then [U(IDCH)+1, U] is in
the Non-IDCH region. From Lemma 3.1, iterations in
[U(IDCH)+1, Uj] can be tiled and executed in parallel.
Therefore, .

Ty = (Up-(U,(IDCH) + 1) +1)* U; = (U-U(IDCH))* U,.
a

‘ ) ' 333 1o ¢

Fig. 4 Tiling of (a) lefi-tile (b) right-tile (c) example 3.1

Fig. 4(a) shows the Lefi-tile of Theorem 3.1 and
Fig. 4(b) shows the Right-tile of Theorem 3.2. At first,
we can execute iterations in the Lefi-tile in parallel.
And then, the iterations which are not tiled are executed
using ordinary parallelization mechanisms. Finally,
Because the PPS method eliminates all unnecessary
dependencies in both Lefi-tile and Right-tile, the tiled
parts after it are not consirained by traditional methods.
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Example 3.1: For the program model 1 in table
1 with U, = U; =100. Tiling of the Non-IDCH region is
shown in Fig. 4(c). We can find that T, = 0 and T, =
45*100 = 4500 by using theorem 3.1 and theorem 3.2.
According to the PPS mechanism, 45% of the iteration
space can be split into the Right-tile in this example and
they can be executed in parallel,

for I = L(IDCH), U(IDCH) do
forJ=1,U;do
Sv:
SR:

AR (LD, HAD) =...
= AR, £.(1LT))
enddo

enddo

DOparallel I = U(IDCH)+1, U,
DOparaliel J=1, U;

Sy AL, L)) =...
Sk L= AGED, £(L)
ENDDOparallel
ENDDOparallel

Fig. 5. Parallel code after using the PP S method

In order to supply standard transformed mecha-
nisms of our methods in the parallelizing compiler, the
transformed loop of the program model after using the
PPS method is shown in Fig 5. The complexity of the
PPS mechanism is restricted by the complexity of the
computation of the IDCH region. So the complexity of
this algorithm is O(nlogn), where n is the loop bound.
However, the parallelization of the IDCH region is still
constrained by traditional mechanisms. We will pro-
pose effective mechanisms to explore more parallelism
from the IDCH in the following sub-section. :

3.2 Partial Parallelization Decomposition(PPD)

Parallelism degree explored by existing meth-
ods for non-uniform dependence loops is restricted by
minimum dependence distance of total iteration space
[5-7]. If we can partition the iteration space into differ-
ent parts and handle them differently, the minimum
dependence distance for each part may be larger than
original minimum dependence distance. This decom-
pose method exploit more parallelism degree for each
partial iteration space. We call it the PPD mechanism,
which will be described formally in the following.
Definition 3.2: In the nested loop iteration space T and
a partial iteration space I, I’ < T'. The minimum de-
pendence distance of T" is called the Partial Minimum
Dependence Distance(PMDD) . O
Definition 3.3: In the nested loop iteration space I, the
minimum dependence distance of T is called the Global
Minimum Dependence Distance(GMDD). O
Theorem 3.3: For the nested loop L, {pi, pseers Pt €
PMDD(L)and g € GMDD(L)thenp; 2 g, Vie 1,...,n.
o
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Proof: The proof is done by contradiction. If {p,,
D2eees Po € PMDD(L) and g € GMDD(L), we assume
that 3 ie 1,...,n such that p; < g . Because p; < g and
Min{ p,, g}eGMDD(L), p; € GMDD(L). Then g ¢
GMDD(L), it contradicts that g € GMDD(L). Thus p; 2
g, Viel,.. n0O

" In the example, we decompose the iteration space
into two sub-iteration space and calculate their partial
minimum dependence distance separately. After using
our PPD mechanism, the PMDD of the second sub-
iteration space is larger than GMDD. The parallelism
degree is thus greatly increased.

Fig. 6(a) and (b) show tiles before and after us-
ing the PPD method respectively. We can find that tiles
of Fig. 6(b) is larger than tiles shown in Fig. 6(a). The
transformed loop of the program model is shown in Fig.
7 in which T; and T; are tile numbers of the partial re-
gion i and j respectively and P; is the loop bound of first
partial block. The transformed loop shown in Fig. 7
~ have some larger tiles than the tiles before transforma-
tion. The complexity of this method is restricted by the
complexity of the minimum dependence tiling mecha-
nism, which is O(nlogn), where n is the loop bound.
However, the minimum dependence distance may be
larger in anothor loop index and the loop interchange
may be applied. We will propose a method to detect the
validity of interchange for irregular dependence loops
and interchange them to extract more parallelism if
valid. In the next subsection, we will give detailed de-
scriptions about this technique.

Example 3.2: For the program model 3 shown in tablel
with Uy =U, =10.

F={I=1,10},Ti={I=1,6},T;={1=7,10},g=2,
pi=2,p=41=2,=2,t=4.

T e€¥r ¢ 9L 8 6 O1IF

1 23 435 6 7 8 9 101

12 3 4 3 6 7T 8 v 101
Fig. 6(a) Tile before the PPD method(b)Tile after using the PPD method
DOserial K=1, T;
DOparallel 1 = (K-1)* t; +1,min(K* t, P})
DOparallel J=1, U; do

' llz(r:sLusolr

Sv: AGQAD, AN =...
St ... = ARG, LALD)
ENDDOparallel
ENDDQOparallel
ENDDOserial

DOserial K=1, T

DOparaliel I = (I-1)* ¢ +1,min(K* t; , U)
DOparaliet J=1, U; do
AGLD, HAN) =...
... = AR, £,

Sv:
SRZ
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ENDDOparallel
ENDDOparallel
ENDDOserial

Fig. 7. Parallel code after using the PPD mechanism
3.3 Irregular Loop Interchange(ILI)

We present an effective method to distinguish
the validity of non-uniform loop interchange. After
using irregular loop interchange, the parallelism of the
tiled loop is dependent on the maximum parallelism
before and after using the ILI mechanism. In the follow-
ing, we will briefly survey some previous work and
then introduce our ILI mechanism immediately.
Definition 3.4: [15] A dependence S 86 S’ in loop L is
c-interchange preventing iff S(i/c) 8/c §'(i’ /c) does not
hold. D
Lemma 3.2: [15] A dependence $ 50 S’ in L is c-
interchange preventing iff 0 = (="', <> * ¥).0
Lemma 3.3: [15] Loop interchange at level ¢ is valid
iff there exists no c-interchange preventing dependence.
D -

We can use the following theorems to distin-
guish whether interchange is legal or not.
Theorem 3.4: Assume that the general solutions of
dependence vectors which are interchanged are V (X, .
Y) and V.., (X, Y) respectively. A dependence S 80 §'
exists in L where 8 = ( =", VX, Y) , Veu(X, Y),
*...%). Loop interchange at level ¢ is valid iff V (X, Y)*
Veu(X, Y) 2 0. '
Proof: Let the assumption of the theorem hold. We
apply Lemma 3.3. Loop interchange at level ¢ is valid
then there exists no c-interchange preventing depend-
ence. From Lemma 3.2, a dependence S 50 S’ in L then
0= (="', <>*..%), Clearly, V.(X, Y)* Vo (X, Y) <0
can not be satisfied. We have V (X, Y)* V.., (X, Y) 2
0.

Conversely, V (X, Y)* V.u(X, Y) 2 0 implies
that a dependence S 80 §' in L then @ = (=", <>*, .. %),
which concludes the proof of the theorem. O
Theorem 3.5: Assume that loop interchange at level ¢
is valid. The loop bounds for the normalized loop
index ¢ and c¢+1 are U, and U, respectively. And the
minimum dependence distance of loop index ¢ and ¢ +1
are Min(d.) and Min(d..,) respectively. The maximum
parallelism with minimum dependence tiling for loop
index ¢ and ¢ +1 is Max(Min(d,.)* U, Min(d..,)* U,).
Proof: Let the assumption of the theorem heold. There is
no dependence between any two iteration inside the tile
with tile length Min(d,) and Min(d,.,) respectively. The
iterations of the tile after using tiling are Min(d,.)* U,
and Min(d.,)* U,. The maximum parallelism of loop
index ¢ and ¢ + 1 are the maximum tile size of loop
index ¢ and ¢ + 1. Then the maximum parallelism are
Max(Min(d.)* Uy Min(d..,)* U.). O
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Theorem 3.4 detects whether some specific
kinds of irregular loop can be interchanged or not. If it
is valid after detection, we can interchange the irregular
loops immediately. Theorem 3.5 tells how to calculate
the minimum dependence distance before and afier
using the ILI method and choose the larger minimum
dependence distance to be the tile length. In order to
illustrate our ILI method clearly, let’s consider the fol-
lowing example.

Example 3.3: For the program model 4 with U; = U;
=10,Dependence Vector = (2X, 4Y), V,* V,=2X*4Y
>0, Min(d,) = 2, Min(d,) =4

3

s

t+ € 9L 8 6 Ol

E R B T T

123436789 10V
Fig. 8(a). Tile before the ILI mechanism  (b). Tile after using the ILT mechanism
DOserial K=1, T}
DOparallel J = (K-1)* § +1Lmin(K* t; +1, U)
DOparallel I=1, U; do

8g

1YY 45 e T % 9 100X

Svi ALY, H(LY) =...
Sk - = ABLY), £(.)))
ENDDOparallel
ENDDOparallel
ENDDOserial

~ Fig. 9. Parallel code for the ILI mechanism

In Fig. 8(a), the maximum parallelism before
the ILI mechanism is 20. It is 40 after applying the ILI
mechanism as shown in Fig. 8(b). The complexity of
this method is dominated by the complexity of the

minimum dependence distance tiling mechanism. So it
is O(nlogn) where n is the loop bound. The transformed

loop of the program model is shown in Fig 9. T; and T;

are tile numbers of the loop index i and j respectively.
On the other hand, there exists some regular de-
pendence vector patterns in some loop indices. In the
next subsection, we will introduce a method to compute
the minimum dependence distance of those regular

dependence patterns efficiently.

3.4 Growing Pattern Detection(GPD)

If the dependence vector function is increasing
or decreasing, we can tile the loop according to the
dependence vector function. The minimum dependence
distances of the loop index can be computed according
to functions proposed in the following to exiract more
parallelism,

Definition 3.5 Growing Pattern: Let dependence
vector function V; be real on (L, U;). Then the patiern
of V, is said to be growing paitern on (L, Up) if Ly <x <
Y < Ub v Ly e Z» hnplies Ivl(x)l < |V|(V)|~D

Lemma 3.4: Let T and J be index variables. The pattern
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of the dependence vector is the growing pattern if the
dependence vector function V; and V, contain only the
linear function of loop index variable I and J respec-
tively.O

Proof: If the dependence vector contains only one
variable I, it must be a*I + ¢ ,where a,c € B. We can
differential it, then d(a*I + ¢)/dI = a. Clearly, [a*x + ¢|
Sla*y + ¢, VX y € Z and x <. Thus, the patiern of
the dependence vector function V; is the growing pat-
tern. The dependence vector function V; can also be
proven as growing pattern by the similar way.D

Lemma 3.5: Assume the pattern of dependence vector
function V; for loop index I is the growing pattern. The
maximum tile length T of the loop index variable 7 ¢ 1
will be [V(9)].

Proof: Because the pattern of dependence vector func-
tion Vi for loop index I is the growing pattern,. Vx,y €
Z, implies [V(x)| < [Vi(y)]. The maximum tile length T
of the loop index variable i € I must be [V (?)], because
VDI SVi)l, Vx e (i+ 1,0+ [V} - 1.0

Theorem 3.6: Assume the pattern of dependence vec-
tor function V; for loop index 1 is the growing pattern
and the dependence vector function V; = a*I + ¢ ,where
a,c € R, I is the variable of the corresponding loop
index. The tile size T, for tile n is [a*(8,.,+1)+c|, where

a-1 i
Sa is equal to | Z (a+1) (a+¢) |,
Proof: The theorem can be proven by induction on k.
We begin our induction at 1.
Basis k= 1. Then T, is equal to the absolute value of
dependence vector Vy(1). T, =[Vi(1)[=Ja + ¢|.
Induction k > 1. By the induction hypothesis, T, =
[a*(Sia+1)+e| = ¥ 'S 241y (ave) +1] +¢| . We must
i=0
show that Tywy = [a*(St1)+e| = [a*| § (2 1) (a+ 0y +]
+¢|. Then as
Ty = Vi(Sk+1) = [a*( S, +1) + ¢[. We have
Tiwr = a*(Ser*t Tt e = [a*(Si+a (S +H1)+e+ D+
=fa*((a+t1)Sy. 1 +atet1)+e|
=la*(a+1)( ‘j}i:( a+1) (a+c) fratetl)ytc|

=a*[ | E(a+ )" (ave) | Hate)1]ee]

=la*[| fg;(aﬂ Y(ate) [F1l+c|= |a(sk+1)'+c|
=V(Sk+1)
Then the theorem is proven, 0

Example 3.4: For the program model 4 with U, = U,
=10, Dependence Vector = (2X, 4Y).

[N R IR IR S A T

IR JOK SN AR T AR BN 1}
VRO e s 0L 0 e or,

wdl 10gk weB.

£33 43 6 7T 0 s te 123 4% e T B 9 10 VTS 4 e e

Fig.10(a)Original Tiling.(b)the GPD method.{c)the ILI and GPD.
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In Fig. 10(a), minimum dependence distances are
static and equal to 2. In Fig. 10(b) and (c), they are
increasing and greater than original tiles. The average
tile size after applying the ILI and GPD methods is
greater than the GPD method only. The transformed
loop of the GPD method is shown in Fig. 11(a). The tile
size of the GPD method can be calculated by using
theorem 3.6. In Fig. 11(b), we also show the trans-
formed loop of the combination of both the GPD and
the ILI methods. T; and T; are tile numbers of the di-
mension i and j respectively. S, is the sum of the tile
sizes from T, to T,. The complexity of this algorithm is
dominated by the computation of T, and is O(n) where
n is the loop bound.

DOserial K=1, T;

DOparallel [=S;.,,+1, min(S,, U))
DOparallel J=1, U; do

AR, HAD) =...
- = AGLY), £(LI))

ENDDOparallel

ENDDOpatvallet
ENDDOserial

Fig. 11. (a) Parallel code for the GPD method.

DOserial K=1, T;
DOparallel J= 8., +1, min(S, U;)
DOparallel I=1, U; do
Sv: A1), R(ALD) =...
Sw: = AR, £(L))
ENDDOparallel
ENDDOparallel
ENDDOserial

Fig. 11.(b) Parallel code for the ILI and GPD methods.

Sv:
SRZ

Algorithm Effective Parallelization mechanisms:
input: The nested loop L(1, J) with irregular dependence
output: Transformed loop with combination of our parallelization mechanisms
begin
Let Vi and V, be the dependence vector functions of the nested loop L(1, J);
Calculate the diophantine equation f(L) of the nested loop L;
Calculate V; and V, according to f(L);
Build the IDCH(L) according to f(L);
ILI Detection(ILID(L)) variable = False;
If ILID(L) = true then
L' =ILKL); /* L’ is transformed after applying ILI mechanism */
L"=GPD(LY);
Parallelism degree is Speedup-ILI, GPD;
/* Speedup-ILI, GPD is speedup after ILI and GPD */
L" =PPS(LY;
L"=PPD(L"Y,
Parallelism degree is Speedup-ILI, GPD, PPS, PPD;
else
L' =GPD(LY,
Parallelism degree is Speedup-GPD;
L' =PPS(L);
L"=PPD(L");
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Parallelism degree is Speedup-GPD, PPS, PPD;
endif
Speedup-all = Max((Speedup-IL1, GPD), (Speedup-1LI, GPD,
PPS, PPD), (Speedup-GPD), (Speedup-GPD, PPS, PPD));
end

Fig. 12 The algorithm of Effective Parallelization mechanisms

In summary, different mechanisms can not only
be applied individually, but also can be applied with
different combinations. The algorithm in Fig. 12 de-
picts the whole procedures of our effective paralleliza-
tion mechanisms. The symbols used in Fig.12 is pre-
sented in table 2.

4. Preliminary performance evalua-
tions

Preliminary performance evaluations of pro-
posed mechanisms is presented in this section. We
assume that the processor number is unlimited and the
speedup is calculated by the parallelism degree. We
compare our performance evaluations with two tradi-
tional non-uniform parallelization methods, named
minimum dependence distance tiling mechanism 7]
and dependence uniformization mechanism [6]. Fig. 13
shows the performance results of our techniques by
calculating maximum parallelism degree before and
after transformations proposed. ’

In each experiment, different loop bounds are
applied to a doubly nested loops. Two basic paralleliza-
tion techniques are implemented, because they explore
most parallelism of traditional methods. One is the
uniformization method and the other is the minimum
dependence distance tiling method. Fig. 13 not only
shows speedup between the uniformization method and
the minimum dependence distance tiling method, but
also shows the speedup of our effective mechanisms.
The minimum dependence distance tiling methods usu-
ally perform better than the uniformization method
because the later introduces extra dependences. Fig.
13(d) illustrates it.

SYMBOL U T PPS PPD LI GPD
Mesaning [Uniformiz} Minimum |Parallelizati Partial Irregular | Growing
ation Dependence on Part | Parallelizatio Loop Pattern
Distance Tiling[ Splitting |n Decomposi-] Inter- | Detection
tion change

Table 2. The meaning of the symbols used in Fig. 12 and Fig. 13.
Fig. 13(2) and Fig. 13(b) show the great speedup of our
PPS method, because they have most part ¢an be split
for total parallelization. Fig. 13(b) and Fig. 13(c) show
the uniformization method performs better than the
minimum dependence distance tiling method because
the uniformization method provides another techniques
when two dependence veciors both go through the
IDCH. Fig. 13(b) and (c) shows performance of the
PPD method. Fig. 13(d) shows that the ILI method can
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be adapted because interchange is valid in this program
model. Fig. 13(c) and Fig. 13(d) both have growing
patiern in their dependence vector patterns. In Fig. 8,
when the loop bounds is increased from 5 to 50, the
speedup of our PPS technique is increased from 1 to
1.8 times better than the uniformization technique [6]
and from 1 to 2 times better than the minimum depend-
ence distance tiling technique [7]. Our PPD technique
is 1.42 to 2 times better than the minimum dependence
distance tiling technique. Our ILI technique is 1.5 to 2
times faster than the minimum dependence distance
tiling technique. The speedup of our GPD technique is
increased from 3.25 to 19.8 times better than the uni-
formization technique and from 1.25 to 5 times better
than the minimum dependence distance tiling technique.
Combination of our ILI technique and GPD technique
is 1.5 to 8.33 times better than the minimum depend-
ence distance tiling technique. In summary, our effec-
tive techniques is 3.25 to 19.8 times faster than that of
the uniformization technique and 1.5 to 8.33 times
better than that of the minimum dependence distance
tiling technique. From above figures, the different
mechanisms can be combined to extract much more
parallelisms. The efficiency of different mechanisms
depend on their program patterns. When our effective
mechanisms are implemented at those popular models,
we can explore much more parallelism degree than
those of traditional methods

% 2 {' . o *:’i___‘“:*;,,,_:.:,:......»zzé..».4:&‘--'0:7
'g B SLA N4 NA NN A A T A T2 B2 B A
« 0 l 1 1 1 ) 1 i ) ] ]
AT < B«
Loop Bounds

—&— Speedup-u,PPS —#— Speedup-u
Speedup-t ¥ Speedup-t,PPS

Fig. 13(a) Speedup for Model 1

Loop Bounds

~—&— speedup-u
—#— spesdup-t
=~ speedup-t,PPD

~&— speedup-u,GPD
e speedup-t, GPD

Fig. 13(c) Speedup for Model 3
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Speedup
8 8

Loop Bounds

—&— Speedup-u
Speedup-t
—¥#%— Speedup-t,PPD

&~ Speedup-u,PPS
~& Speedup-,PPS

Fig. 13(b) Speedup for Model 2

Loop Bounds
&~ speedup-u —&— speedup-u,ILI
- speedup-t i speedup-tILT
~3~ speedup-t,GPD  —&— speedup-t.ILI,GPD
~—83— speedup-u,GPD

Fig. 13(d) Speedup for Model 4

5. Concluding remarks

In this paper, we present an effective way to
enhance the parallelism of non-uniform dependence
loops. Several mechanisms, including PPS, PPD, ILI,
and GPD are proposed to enhance different program
models and they also can be combined to enhance the
same program model. We also compare performance
of traditional parallelization and our parallelization
techniques. When the loop bounds is increased from 5
to 50, our effective techniques is 3.25 to 19.8 times
faster than the uniformization technique and 1.5 to
8.33 times better than the minimum dependence dis-
tance tiling technique. The speedup of our enhanced
mechanisms shows that our mechanisms can poten-
tially explore parallelism of current popular models.
We have built most parts of our mechanisms in our
parallelizing compiler environments based on SUIF
[16]. In the future, further enhancement and perform-
ance evaluations will be going on.
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