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Abstract

This paper describes the implementation of a
platform-independent parallel C4++ unstructured
mesh library. This framework can facilitate paral-
lel programming of unstructured mesh computations,
and promote code reusability, reduce developing cost,
and ease code maintenance with object-oriented tech-
nology.
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allel processing, object-oriented technology.

1 Introduction

The unstructured mesh is the fundamental data
structure in various irregular scientific computations.
Unlike a regularly structured array, an unstructured
mesh can have non-uniform distribution that adapts
to the dynamic nature of the problem. As a result un-
structured meshes are widely used in problems that
the data or the computation structure is not uniform.
For example, an unstructured mesh can be used in
modeling the resonance of piezoelectric crystals, the
surface of aerospace vehicles, or simulating the vor-
tices in the superconductors while they arrange them-
" selves in a hexagonal lattice pattern to minimize the
free energy when the temperature is below a critical
temperature.

1.1 Object-oriented support for un-
structured mesh

Although unstructured mesh computations perform
different calculations according to the systems being
simulated, they use the mesh virtually the same way.
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A mesh point updates its stored data, which represent
some physic quantities at that point, by retrieving the
data from its neighbors and performing calculations
on them. The applications may have different cal-
culation rules and communication patterns, but the
principle of exchanging data with neighbors to update
one’s own data remains the same.

Our library tries to extract the common ingredients
from different unstructured mesh computations and

.reuse them in a systematic way. We set up a clear

interface between the library and the applications so
that tedious details of maintaining an unstructured
mesh can be hidden from the application program-
mers. The application programmers only have to
work on the part that they are most familiar with
— the application-dependent. computation kernel. All
the other details should be handled by the library.
Also by separating the application from the library
implementation, we can choose the most efficient li-
brary implementation in a particular hardware set-
ting, be it a Pentium PC or a large scale parallel
computer.

We implemented the interface between the unstruc-
tured mesh library and the applications using object-
oriented technology. We implemented various classes
within the library to capture the fundamental prop-
erties of an unstructured mesh. Users of the library
can inherit the generic unstructured mesh, customize
them by adding application-dependent. data, and re-
define generic methods inherited form the basic class
to suit their needs.

The framework allows fast prototyping of new un-
structured mesh applications without significant per-
formance penalty. We will show in Sec 4 that the
performance ineficiency is small when compared with
the saving in code development costs. We will give
the timing of an exemplary flux simulation program
to justify the idea of trading efficiency for fast code
development.

Our object-oriented library can be easily ported
to a parallel environment. The separation of library
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and application lets us choose any implementation

that can maximize the efficiency of a computing hard-
ware. As the mesh size increases, the parallelization
of these scientific computations becomes inevitable.

The framework can make this transition from sequen-

tialism to parallelism much more smoothly, as we will

see in Section 3.

1.2 Related works

The benefit of data abstraction in object-oriented
languages on scientific code development has been
demonstrated by various efforts. For example, C++
objects are used to define data structures with built-
in data distribution capabilities. Examples of work
along this line include the Paragon package [3], which
supports a special class PARRAY for parallel pro-
gramming, the A++4/P++ Array class library [9],
PC++ proposed by Lee and Gannon [7, 12], which
consists of a set of distributed data structures (arrays,
priority queues, lists, etc.) implemented as library
routines, where data are automatically distributed
based on directives. Interwork II Toolkit [2] described
by Bain supports user programs with a logical name
space on machines like iPSC. The user is responsible
for supplying procedures mapping the object name
space to processors. Unfortunately, all of these ef-
forts use static arrays and will have difficulties in
representing dynamic structures efficiently. The cur-
rent implementation of our library uses a dynamic
pointer-based structure, which is the most intuitive
and convenient way to handle the adaptlve nature of
unstructured mesh.

Our effort has similar goals and approaches to the
POOMA package (1] and the Chaos++ library [10].
POOMA supports a set of distributed data structures
(fields, matrices, particles) for scientific simulations.
To our knowledge, POOMA has not supported adap-
tive data structures as our library does. Chaos++
is a general-purpose runtime library that supports
pointer-based dynamic data structures through an
inspector-executor-based runtime preprocessing tech-
nique. On the other hand, our framework focuses on
unstructured mesh and is able to exploit optimiza-
tions that would be difficult for a general preprocess-
ing technique to find.

In addition to the above work on object-oriented
parallelism which has influenced ours, a large body of
work in the literature can be categorized as “object-
parallelism,” where objecis are mapped to processes
that are driven by messages. If a message is sent in
between two processes residing on two different pro-
cessors, this message will be implemented via inter-
processor communication. Examples of parallel C++4
projects using this paradigm include the Mentat Run-
time System [6], Concurrent Aggregates (CA) [4]
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by Dally et al., and VDOM by [5]. Our use of
object-orientation is for structuring the unstructured
mesh and their specializations for optimizations, de-
bugging, profiling, etc., which is entirely distinct in
philosophy from that of object-parallelism. Apply-
ing these ideas on dynamic tree structures, we re-
ported abstractions of adaptive load balancing mech-
anisms and complex, many-to-many communications
as C++ classes for supporting tree-based scientific
computations [8].

The rest of the paper is organized as follows.
Section 2 describes the object-oriented unstructured
mesh library. Section 3 discusses the potential haz-
ards in parallelizing the library. Section 4 gives the
timing results from an exemplary program for flux
simulation developed within our framework. And
Section 5 concludes.

2 The unstructured mesh li-
brary

We divide the framework of unstructured mesh into
three layers: generic graph layer, unstructured mesh
layer, and application layer, where each layer is built
on top of the previous one. The generic graph layer
contains basic graph operations and describes the
structure of a general directed graph. The unstruc-
tured mesh layer is built on the top of the generic
graph layer, with additional functionalities specific
to unstructured mesh. These two layers constitute
the unstructured mesh API that application program-
mers can use t0 develop unstructured mesh codes. In
Section 2.3 we will demonstrate the ease of coding
in our framework by an exemplary program for flux
simulation.

2.1 Generic graph layer

The generic graph class serves as the foundation of
our framework from which generic unstructured mesh
and application-specific unstructured mesh can be de-
rived. The generic graph is a container class that
when given a user-defined data type (as a C++ tem-
plate argument), will construct a graph data type
where each vortex contains a data member of the
specified data type. In addition, each node will have a
list of pointers to its neighboring vortices, along with
other house keeping data essential to data structure
integrity. The generic graph class itself has a list of
vertices in the graph, and other important informa-
tion like the number of vertices in the graph, etc.
The generic graph class also defines basic graph op-
erations, including the insertion and deletion of vor-
tices and edges. These operations are essential to
building a dynamic structure. In addition, we de-
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fine a traversal class that will go through every vor-
tex of the graph and perform a specific operation on
it. Note that the generic graph class only provide
control mechanism for traversal (i.e. in the function
traverse in Figure 1). The actual operation per-
formed (i.e. the function process in Figure 1) is
up to the users of the generic graph to decide. This
concept is implemented by declaring process as a
C++ pure virtual function. We can immediately see
the advantage of code reusability with object-oriented
approach since after the basic graph class has been
throughly tested, any of its derived class can perform
graph traversal function flawlessly. This effectively
reduces the development costs of writing an unstruc-
tured mesh application.

template <class Data>
class Graph_vortex
1{
protected:
int visit;
long id;
int in_degree;
int out_degree;
Data data;
Link_list<Graph_edge<Graph_vortex>*> edges;
¥
template<class Data>
" class Graph
{
protected:
int counter;
int vortex_number;
int visit;
Link_list<Greph_vortex<Data>#> vortices;
public:
void add_vortex(Graph_vortex<Data> #v);
void del_vortex(Graph_vortex<Data> wv);
void add_edge(Graph_vortex<Data> #s, (Graph_vortex<Data> #d);
void del_edge(Graph_vortex<Data> #s, (Graph_vortex<Data> *d);

3}
template <class Datad>
class Graph_traversal
{
void traverse_helper(Link_list_node<Graph_vortex<Data>%> #);
protected:
Graph<Data> #graph;
public:
virtual int process{(Graph_vortex<Data> %) = 0;
void traverse();

};

int get_neighbor(Graph_vortex<Data> #v, Graph_vortex<Data> #w¥n)

Figure 1: Generic graph classes.

2.2 Unstructured mesh layer

The unstructured mesh layer serves as a mediator be-
tween the generic graph class and the applications.
It encapsulates the specific details of an unstructured
mesh implementation. For the current sequential im-
plementation, the unstructured mesh layer functions
as a direct channel between the application and the
generic graph, and all the function calls coming from
the application layer are relayed to the generic graph
through stud functions. On the other hand, a par-
allel implementation of the unstructured mesh layer
will for example, partition the entire mesh into a set
of disjoint submeshes, and map each submesh into
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one processor. In other words, all the details related
to parallel implementation will be hidden in this in-
termediate layer. In either case, the change in the
library itself will not change the generic graph im-
plementation or the applications built on top of the
library.

template <class Data>
class Umesh_node: public Graph_vortez<Data>;

template <class Data>

class Umesh: public Graph<Data>

{

protected:
Link_list<Umesh_node<Data>*> vortices;

public:
void add_node(Umesh_node<Data> *v);
void del_node(Umesh_node<Data> *v);
void add_edge(Umesh_node<Data> s, (Umesh_node<Data> #d);
void del_edge(Umesh_node<Data> #s, (Umesh_node<Data> #d);
int get_neighbor(Umesh_node<Data> #v, Umesh_node<Data> *»#n)

I

template <class Data>
class Umesh_traversal: public Graph_traversal<Data>
{
void traverse_helper(Link_list_node<Umesh_node<Datad*> #);
protected:
Unesh<Data> #graph;
public:
virtual int process(Umesh_node<Data> #) = 0;
L}

Figure 2: Generic unstructured mesh classes.

2.3 Application layer

The library users write application by inheriting
classes from the unstructured mesh layer. The ap-
plication layer consists of customized classes inherited
from the unstructured mesh layer, with additional ap-
plication dependent data and operations. For exam-
ple, we wrote a flux simulation program using Roe
scheme, with customized unstructured mesh points
containing all the necessary data for computational

.fluid dynamic in Roe scheme.

We wrote the flux simulation program as follows.
First we define the data type that will be stored in
each mesh point. In our flux simulation example this
is defined as Fluxroe_node (See Figure 3). The data
type Fluxroenode is then given to the container
classes Umesh and Umesh_node to form the actual data
types for unstructured mesh and mesh points respec-
tively. Then we put the flux computation kernel into
process of the traversal class Fluxroe._traversal,
which is specific to traversing a graph consists of
Fluxroemnode data. For the flux simulation, the
process function for one vortex goes through every
edge adjacent to this vortex, gets the data of the tar-
get vortex, use Roe scheme to compute the results,
and adjust the data stored in this vortex accordingly
(Figure 3).
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class Fluxroe_node

{

public:

double datal4);
double solution{4];
3

typedef Umesh_node<Fluxroe_node> node_t;
typedef Umesh<Flurrce_node> mesh_t;

class Fluxroe_traversal: pubEFe:
{
double roeeps;
double gmil;
double gammai;
public:
Fluxroe_traversal(Graph<Fluzroe_node> #g, double r, double gi,
double g2):
Unesh_traversal<Fluxroe_node>(g)
{roeeps = r; gnl = gi; gammai = g2;}
int process(Umesh_.node<Fluxroe_node> #v)
{
Umesh_node<Fluxroe_node> #up;
Fluzroe node ql, q2;
int i, n;
n = v->get_neighbor(&p);
for (i = 0; i < n; i++)
{
ql = v->get_data();
q2 = plil->get_data();

ztraversal<Fluzroe_node>

fluxroe_compute(ql, &q2, roeeps, gml, gammal); // Roe scheme

v->set_data(ql);
plil->set_data(q2);
}
free(p);
return(0) ;
)
3
Figure 3: A flux simulation example. The entire Roe
scheme for is too large to list so we illustrate the
control structure in process in which the function

fluxroe_compute will be called.

3 Data partitioning and shar-
ing

In a parallel implementation of our library the mesh
structure is partitioned into submeshes and dis-
tributed over local memories of processors. In or-
der to effect the same computation as in the global
view, the local computations must be coordinated.
We adopt the owner-computes rule, which distributes
computations according to the mapping of data
across processors. However, a local submesh may
require data from other processors to complete the
computation of data assigned to it. When commu-
nications mostly occur between neighboring proces-
sors and the same communication patterns may oc-
cur many times during program execution, it is more
efficient to duplicate boundary data elements on adja-
cent processors. Indeed this is the case in an unstruc-
tured mesh computation where the new data value
of a mesh node is a function of its neighbors. By
duplicating boundary mesh nodes to the other side
.of partitioning lines, computations on the local sub-
meshes on individual processors can all be performed
locally without communication. In reality, data ele-
ments may be read or updated, which raises the issues
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of data coherence and synchronization. We desciibe
our approach next.

We classify the data into two categories, master
copy and duplication. A master copy is a data region
in the original global structure that is mapped to a
processor. A master copy.can make copies of itself,
called duplication, on other processors. That is, all
the data elements that are essential to the computa-
tions of the local master copies will be fetched into the
local submesh on the processor which owns the mas-
ter copies. As far as each master copy is concerned,
there is no distinction between global and local struc-
tures. Note that we do not have the notion of global
pointers because all the pointers address a local mem-
ory address, be it-a master copy or a duplication. The
computations read and update the master copy only -
the duplications only provide data and are read-only.
Therefore, data coherence is guaranteed by allowing
only the master copy to be updated, and only one
master copy exists for one data element.

Figure 4 shows the duplication mechanism for un-
structured mesh. We assume that the computation
of each element in the unstructured mesh requires its
neighbors.

duplication for unstructured meshes (irregular data structures)

Figure 4: Duplication for distributed data structures.
The duplicated data are indicated by solid black.

To assure synchronization, data elements are du-
plicated before the actual computation is performed.
After data are partitioned, system objects in the un-
structured mesh layer duplicate the data to the pro-
cessors where they are essential to the computation.
A barrier synchronization separates the duplication
process from the computation, assuring that all the
data are available and the computation can proceed
without any further communication. This mechanism
guarantees safety in a distributed environment.

The master copies must be duplicated periodi-
cally. When the data dependency and distribution
are static, e.g. static unstructured meshes, we only
have to allocate storage for the duplicated data once
during the entire execution, then update its value
once the master copy is changed. However, when
the data distribution or dependency is not static, the
storage for duplicated data must be dynamically al-
located, or even deallocated. Nevertheless, the prin-
ciple of “read-only duplication, exactly one master
copy” remains the same.
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4 Experimental results

4.1 Sequential experimental results

To evaluate the efficiency of our library we measure
the execution time of an exemplary program devel-
oped within the framework. This application is a flux
simulation program used in airfoil design [11]. We
isolated the computation kernel after intensive study
of the original C code, and rewrote it into a module
that can be plugged into our framework. We gener-
ated the input data by using the unstructured mesh
generator in [11]. This generator produces a random
unstructured mesh where each edge is chosen with a
fixed probability !.

The experimental results indicate that the library
only introduces a small amount of overhead. Figure 5
shows that on a Intel Pentium-133 PC the C+4+ ver-

sion achieves up to 84% of the performance of the

original C code. On a 143MHz Sun UltraSparc work-
station the efficiency drops to about 62% (Figure 5).
It is interesting to note that Intel Pentium CPU is
more “C++ friendly” than the UltraSparc. We sus-
pect that the function call mechanism of the Intel chip
is far more efficient so that the extra function calls
inevitable in object-oriented programming do not de-
grade the performance significantly. In any case, we
are investigating the real reasons of this discrepancy
and at the same time, working on ways to speed up
the C++ version, for example, by using inline meth-
ods.

The prelimihary timing results suggests that the
object-oriented library is very beneficial for unstruc-
tured mesh application developments. The extra
overhead due to object-oriented style of programming
can be easily compensated by the reduced code devel-
opment time. This fast prototyping capability is ex-
tremely critical when computational scientists want
to have a working code as soon as possible so that
they can observe the effects of a new model, and may
only execute the program a few times before switch-
ing to another computation model. In such cases the
ability to generate a working code quickly is far more
important than the efficiency of the code generated.

4.2 Parallel experimental results

We implement a parallel version of the same airfoil
code in Section 4.1. We perform experiments on a
cluster consisting of 8 Pentium Pro 200MHz PC run-
ning Linux, and connected by ethernet. Figure 6
presents the timing results from our parallel imple-
mentation. We encountered considerable overhead
due to the parallelization. First, we introduced com-
plex data structures and operations for the paral-

1We used 0.5 throughout the experiments.
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Sun 143MHz UltraSparc

# of mesh points | 4096 | 9216 | 16384 | 36864 | 65536 | 147456
fluxroe.c time 0.15 | 0.33 0.64 1.56 2.73 6.32
fluxroe.cc time 0.25 | 0.54 1.06 2.45 4.33 10.17
performance ratio | 0.60 | 0.61 0.60 0.63 0.63 0.62
Intel Pentium-133 )

# of mesh points | 4096 | 9216 | 16384 | 36864 | 65536 | 147456
fluxroe.c time 0.28 | 0.62 1.17 2.59 4.60 11.00
fluxroe.cc time 0.33 | 0.74 1.39 3.09 5.55 13.07
performance ratio | 0.84 | 0.83 0.86 0.83 0.82 0.84

Figure 5: Timing comparison between C and C++
code for a flux simulation application. Two hard-
ware configurations are used in the comparison: Intel
Pentium-133 running Linux with 32M memory and a
Sun 143MHz UltraSparc workstation with 64M mem-
ory.

lelization. Therefore, even when running on a single
processor (the second row of Figure 6), we can see a
much larger overhead compared to the results from
Section 4.1.

Execution Time Per Traverse

# of mesh points 16384 | 36864 | 65536 | 147456
¢ version 0.124 | 0.289 | 0.519 1.260
¢+ version 0.314 | 0.720 | 1.289 2.922
2 processors 0.283 | 0.677 | 1.160 2.667
no communication | 0.154 | 0.355 | 0.645 1.443
4 processors 0.144 | 0.335 | 0.623 1.395
no communication | 0.082 | 0.171 | 0.312 0.713
8 processors 0.083 | 0.160 | 0.310 0.710
no communication | 0.033 | 0.085 | 0.166 0.359

Figure 6: Parallel execution time per iteration, not
including the initialization stage. The system has 8
Intel Pentium Pro 200 MHz,

The communication in an ethernet-based worksta-
tion cluster is expensive, From the experimental re-
sult, the program spends almost 50% of of the total
time to transfer only 6% of total data among them-
selves (in the largest case when the number of mesh
points is 147456 and the number of processor is 8).
In addition, our communication protocol may not be
efficient. In the current protocol, we use an empty
message to indicate the end of communication be-
tween two processors. Therefore the protocol will
send n? packages (n is the number of processors) just
for the synchronization. We are working on other
more efficient synchronization mechanism, especially
in a loosely coupled ethernet environment. We plan
to run the same code on systém connected with dedi-
cated high-speed network, and report the new finding
during the conference. In addition, we used a simple
orthogonal recursive bisection (ORB) to partition the
mesh points. However, since the number of floating
point operations needed to update a mesh point is
only about 350, the efficiency of the code is very sen-
sitive to the quality of the partitioning scheme. We
will consider other good partition method can mini-
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mize the number of interprocessor communications.

5 Conclusion and future im-

provements

The object-oriented framework makes the develop-
ment of unstructured mesh applications much more
easily. The users are able to write only application-
dependent portion of the code without worrying
about the details of maintaining the mesh. In fact
after we traced and isolated the computation kernel
in the flux code, it took us only hours to plug the mod-
ified kernel into the framework. This “plugin-ability”
is extremely important in code reusability and reduc-
tion of code development costs.

We demonstrate that the convenience of object-

orient technology does not necessarily translate into-

large runtime overhead. Preliminary timing results
indicate that on a Intel Pentium-133 PC we measured
only 16% overhead due to our OOP framework - a
very small price to pay considering the reduced costs
in faster code developments. Nevertheless, We are in/
vestigating all possible optimizations that can close
the gap even further, including inlining and more
careful object creation and releasing.

We also implemented a parallel version of our li-
brary. The data partitioning and sharing problems
that might occur during the parallelization have all
be properly addressed in Section 3. We will bor-
row the data mapping and communication classes
from our previous tree library [8] and the implemen-
tation will be straightforward under object-oriented
programming model. Preliminary timing results from
the parallel library indicate there is still room for
performance improvement. We will be working on
a more efficient implementation through the use of
better communication protocol and dedicated high-
speed communication network. :
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