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ABSTRACT

Recently, de Bruijn networks have been proposed as
the alternatives to the popular hypercube networks
as one kind of the new interconnection networks for
highly parallel computers because they have bound-
ed node degree that is an essential factor for a sys-
tem to be scalable. In addition to scalability, mes-
sage routing is an important factor that affects the
system performance. In this paper, we introduce an
optimal one-to-all broadcast algorithm for binary di-
rected de Bruijn networks with the expected running
time O(log N), where N is the number of nodes of the
network. Based on the concept of distance between
any two nodes, a message propagation rule is founded
to guarantee that no redundant messages are received
by any node on the network. In addition, an optimal
all-to-all broadcast algorithm is proposed. Both of
these algorithms make full use of incoming edges and
outgoing edges of binary directed de Bruijn networks.

Keywords: de Bruijn graph, de Bruijn network, dis-
tance, one-to-all broadcast, all-to-all broadcast, and
shortest path.
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1 Introduction

Direct networks have been extensively used in high-
ly parallel computer systems. One of these is the
hypercube network, whose properties have been ex-
tensively studied in the literature [5]. However, due
to its unbounded node degree, the scalability of the
system based on this network is limited. This has
motivated the interests of many researchers to search
bounded-degree networks that can efficiently simulate
hypercube computations [7, 8].

One of the most popular bounded-degree network-
s is the de Bruijn network based on the de Bruijn
graph[5, 7, 9]. The attractive properties of a d-ary
directed de Bruijn graphs with N nodes are'that each
node is of degree 2d and there are Nd edges. For sim-
plicity and practical considerations, in this paper, we
only consider binary directed de Bruijn graphs..

The major function of a routing procedure is to
route messages to its right place at a reasonable
amount of time. The most popular routing procedure
is one-to-one routing, which routes a message from a
source node to a given destination node. Two routing-
related problems, specifically one-to-all broadcast and
all-to-all broadcast, are essential to many scientific
computations {2, 3]. In one-to-all broadcast, a given
message is sent to all other processors of the system.
It is usually required in the following important com-
putations: matrix-vector multiplication, Gaussian e-
limination, shortest paths, and vector inner product
problems. All-to-all broadcast is a generalization of
one-to-all broadcast in which all processors initiate
a broadcast simultaneously. It is commonly used in
matrix operations, such as matrix multiplication and
matrix-vector multiplication [4].

In this paper, we introduce an optimal one-to-all
broadcast algorithm for binary directed de Bruijn
networks with the expected running time O(log N),
where N is the number of nodes of the network. Based
on the concept of distance between any two nodes, a
message propagation rule is founded to guarantee that
no redundant messages are received by any node on
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Figure 1: An example of binary 3-dimensional direct-
ed de Bruijn graph.

the network. In addition, an all-to-all broadcast al-
gorithm is proposed. Both of these algorithms make
full use of incoming edges and outgoing edges of bi-
nary directed de Bruijn networks.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes some basic definitions that will
be used throughout the paper. Section 3 develops a
one-to-all broadcast algorithm for de Bruijn networks.
Section 4 describes an all-to-all broadcast algorithm.
The paper is concluded in Section 5.

2 Preliminaries

In this section, we review some basic facts which
will be used throughout the paper.

+ Definition 1 A binary k-dimensional directed de
- Bruijn graph, denoted as DDB(k), consisting of
2% nodes and 21 directed edges, is defined as:
DDB(k) = (Vi, By,), where Vi, = {0,1,2...,2F - 1}
and B, = {(S,T)|T = 258 mod 2%, for all S,T ¢
Vi YO{(S, T)IT = (25 mod 2¥)+1, for all S,T € Vi}.

Let X = zpzk-1...21, where z; € {0,1}, be a n-
ode on a DDB(k), then it is connected to two other
nodes: zx_1Tx—2...210 and Tp_1Tk-2... 211, which
are called left-child node and right-child node, respec-
tively. The edges connected to node z_1Tp—s...210
and Tr_1Tk—2... 111 are called 0 channel and 1 chan-
nel, respectively. Figure 1 shows an example of binary
3-dimensional directed de Bruijn graph along with the
indications of 0 channels and 1 channels. The paral-
lel computer system based on the DDB(k) graph is
called de Bruijn multiprocessor network and is denot-
ed by the DDB(k) network.

For convenience, let node X be an arbitrary node
on a DDB(k) network and b € {0,1} then two opera-
tions: ShiftLeft and ShiftRight, are defined as follows:

ShiftLeft(zpzr—1-..21, b)
ShiftRight(zrsr—1...21,b)

= ZTp-1Tk-2...z{b)
bxrrTp—-1...22(2)

Based on this and the definition of DD B (k), two par-
ent nodes, P; and P, of any node X on a DDB(k)
network have node addresses: P, = Shi ftRi ght(X,0)
and P, = ShiftRight(X,1), respectively. In addi-
tion, node X has two child nodes, Y7 and Y, with
node addresses: Y; = ShiftLeft(X, 0) and V5 =
ShiftLeft(X,1), respectively.

The distance between any two nodes X and Y,
denoted as D(X,Y), is defined as the path with the
minimum number of edges between nodes X and V.
For any DDB(k) network, D(X,Y) # D(Y,X) and
D(X, X) = 0. The distance D(X,Y) can be computed
by using the following lemma [6].

Lemma 1
Let X = (zpzp—q...21) and ¥ = (Yryr-1...y1)
be any two nodes on a DDB(k) network and P =
{ShiftLeft(X,yr—c), ShiftLeft(X,ys—c-1), ...,
ShiftLeft(X,y1)} be a path on the network, where
k21,2 andy; € {0,1}, for 1 < i <k, and ¢ is
defined as

c=max{s|0 < s <k, T,T5-1... 01 = YpyYp_1. o UYk—s+1}
then P is the shortest path between X and Y with
length k — c.

Proof: First, we prove that there exists a path
with length k '— ¢ between any two nodes X
and Y on the DDB(k) network. Let P =
{ShiftLeft(X, yk-—C)y S’hzftLeft(X, yk—-c—l)a R
ShiftLeft(X,y1)} be such a path on the DDB(k)
network, then node X can reach
node ToZe-1...ZT1Yk—cYk-c-1...y1 through path P.
However, Z.ZTe—1...21 = Yplp—1... Yk—c+1; thus,
Teleoi v TaYbmelhmc—1 -+ Y1 = YuYhe1 -+ Yhmotl
Yk—cYk-c-1-..¥1 =Y. Thatis, P is a path with length .. .
k — ¢ from node X to Y.

Next, we prove that the length of the shortest
path between nodes X and Y is k — ¢. To prove
this by contradiction, assume that there is a path
Q= {ShzftLeft(X: Qk—r)a ShiftLeft
(X,gr-1),...,ShiftLeft(X,q1)} from nodes X to
Y with length less than k — c. Then node X can
reach node T,T,_1...T1¢k—rQr_r-1...q;, that is,
ZTrLr-1...T2T1GrGr-1-.-q1 = YrYr-1...Y1. Hence,
TrTp1...T2T1 = YpYk-1-..Yh—rt1. However, from
the definition of ¢, we obtain ¢ > k — r, which con-
tradicts to the assumption that there exists a shorter
path Q, that is, 0 <r <k —c. 0

As mentioned in Definition 1, each node on a
DDB(k) network has two parent nodes. However,
only one of them can be used to transmit a message
at any time to avoid redundant messages. This parent
node is called the message parent node and defined as
follows. A node Y is called the message parent mode
of node X on a DDB(k) network if ¥ is one of the t-
wo parent nodes of X and D(R, X) through node Y is
shorter than D(R, X)) without through node Y, where
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R denotes the source node of the message to be sent
to node X.

Lemma 2 The message parent node Y of any node
X on a DDB(k) network for any message source node
R is unique.

Proof: To prove this lemma by contradiction, let Z
be the another message parent node of X. By the
definition of message parent node, both nodes ¥ and
Z are the parent nodes of node X and D(R,Y) <
D(R,Z) as well as D(R,Z) < D(R,Y). According-
ly, D(R,Z) = D(R,Y). To prove that node Y is
the same as node Z, let D(R,Z) = d = D(R,Y)
and let X = ZpTg-1...21, Y = yzrri-1... 22,
Z = 22pTg-1...-%2, and R = 7p,7p—-1.:.71. Using
Lemma 1, we have rgrg—1...71 = YZpTr—-1- .-

Th-d4l = ZTkTh-1--.Tk-d+1, Which implies that .

y = z and hence node Y is the same node asZ. O

The relationship between the distance and nodes
on a DDB(k) network is then established as the fol-
lowing lemma.

Lemma 3 Let X and Y be any two nodes on a
DDB(k) network. Assume that node Z is the mes-
sage parent node of node Y then D(X,Z) < D(X,Y)
and D(X,Z) = D(X,Y) -1 if Y is not a child node
of X.

Proof: From Lemma 2, each node Y can only have
one message parent node. Since the message parent
node Z must also be a parent node of node Y, to reach
node Y from node X the path must first go to one of
the parent nodes of Y’ by the definition of the DDB(k)
network. Consequently, D(X,Z) < D(X,Y) and
thus D(X,Z) < D(X,Y) — 1. Since node Z is the
message parent node of Y, there must exist a path

from node X to node Y through node Z with length

D(X,Z) + 1. Therefore, D(X,Y) < D(X,Z) + 1,
that is, D(X,Y) — 1 < D(X,Z). Combining this
with D(X,Z) £ D(X,Y) — 1, we obtain D(X,Z) =
D(X,Y) -1 s}

3 One-to-All Broadcast Algorithm

In many parallel algorithms, a basic routing oper-
ation is to broadcast a message from one node to all
other nodes in the system. This operation is called
one-to-all broadcast. In this section, we present an
O(log N) time one-to-all broadcast algorithm.

From Lemma 1, the distance between any two n-
odes on a DDB(k) network can be computed directly
from their node addresses. For example, the distance
between two nodes X = 00100 and ¥" = 10011 on the
DDB(5) is 2 since the maximum length of suffix of X
that matches the prefix of Y is ¢ = 3. Therefore, the
distanceisk—c=5-3=2.
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Figure 2: The basic idea of one-to-all broadcast.

On binary directed de Bruijn networks, each node
has only two outgoing links. Consequently, the one-
to-all broadcast algorithm must make full use of these
two links so that a message can be distributed effec-
tively. The key idea of the algorithm is based on the
observation that once a node receives a message, it
can then distribute the message out through its two
outgoing links to two other nodes. These two nodes
in turn distribute the received message in a similar
way and so on until all nodes have the message.

An example is illustrated in Figure 2, in which the
source node is node 000. As shown in the figure, the
only outgoing link of node 000 is directed to node 001;
hence, in step 1 node 000 only sends its message to
node 001. In step 2, nodes 010 and 011 receive the
message sent from node 001, and in step 3 the two
nodes distribute the received messages to their child
nodes: 100 and 101 as well as 110 and 111, respec-
tively.

In order to guarantee the broadcast operation is
correct and effective, the following rule is formulated.

Rule 1 Let X, Y, and Z be any three nodes on a
DDB(k) network. Assume thatY is the lefi-child n-
ode of X and Z is the right-child node of X. Node

R is the source node of a message. The node X dis-

tributes its received message M according to the fol-
lowing rules: :

1. If D(R,X) > D(R,Y), then X stop distributing
M toY; otherwise, X distributes M toY.

2. If D(R,X) > D(R, Z), then X stop distributing
M to Z; otherwise, X distributes M to Z.

The OnetoAllBroadcast algorithm is used to broad-
cast a message from a source node 100t to all other
nodes on a DDB(k) network. Since a node could not
know where the message comes from before receiving
it, every node on the DDB(k) network must pay at-
tention to its two parent nodes although Rule 1 guar-
antees only one of them can have the message passed
from the source node. Once a node has the message, it
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may compute D(root, myid), D(root, left child), and
D(root,right child) and then broadcast the received
message in accordance with Rule 1.

Algorithm: OnetoAllBroadcast(myid, root)
Input: The message source node root and any node
mytid of a DDB(k) network.
QOutput: Every node has a copy of the message broad-
cast from node root.
begin
if myid # root then pardo
receive message from
ShiftRight(myid, 0);abort; {left parent}
receive message from
ShiftRight(myid, 1);abort; {right parent}
parend {End of pardo}
if D(root, myid) < D(root,ShiftLeft(myid,0))
then send message to
ShiftLeft(myid, 0); {left child}
if D(root, myid) < D(root,ShiftLeft(myid, 1))
then send message to
ShiftLeft(myid, 1); {right child}
end {End of OnetoAllBroadcast algorithm.}

An example is shown in Figure 2. The mes-
sage source node is node 000. From OmnetoAll-
Broadcast algorithm, at step 1 node 000 ob-
tains the result D(000,000) < D(000,001) and
D(000,000) > D(000,000) and hence it trans-
mits its message to node 001. At step 2, node
001 computes the distance and obtains the re-
sult D(000,001) < D(000,010) and D(000,001) <
D(000,011) so that it transmits the message to
both nodes 010 and 011. At step 3, nodes 010 and
011 obtain the results D(000,011) < D(000,111)
and D(000,011) < D(000,110), D(000,010) <
D(000,101) and D(000,010) < D(000,100), respec-
tively. Thus, they transmit the received messages
to the following nodes 100 and 101, 110 and 111,
respectively. The nodes 100,101,110, and 111 do
not relay the received messages furthermore be-
cause D(000,100) > D(000,000) and D(000,100) >
D(000,001) for node 100; D(000,101) > D(000,010)
and D(000,101) > D(000,011) for node 101;
D(000,110) > D(000,100) and D(000,110) >
D(000,101) for node 110; 'and D(000,111) >
D(000,110) and D(000,111) > D(000,111) for node
111.

The following theorem provides the correctness of -

OnetoAllBoradcast algorithm.

Theorem 1 If each node on a DDB(k) network dis-
tributes the received message to its child nodes accord-
ing to Rule 1, then

1. Every node on the DDB(k) network can have a
copy of message broadcast from source node R.

2. No duplicated messages can be received by any
node Y on the DDB(k) network.

Proof: 1. Assume. that node R is the source node of
the message to be broadcast. For an arbitrary node Y
on the DDB(k) network, the following cases should
be considered.

a It is valid trivially if ¥ = R.

b Node Y can receive the message if ¥ is the left-
child node of R since D(R,R) < D(R,Y). Simi-
larly, node Y can receive the message if Y is the
right-child node of R.

¢ In the case that Y is not a child node of R, as-
sume that D(R,Y) = d, where d > 1. By Lem-
ma 3, node Y can find a parent node Z such
that D(R,Z) < D(R,Y). That is to say, node
Y can receive the message if node Z can and
D(R,Z) = d — 1. Similarly, node Z can find a
parent node Z; and receive the message from it.
This operation is repeated until node Z;_5 such
that D(R, Z4—2) = 1. In this case, node Z4_5 is
a child node of R and thus can receive the mes-
sage from R. Consequently, node Y can have the
message from R.

2. From Lemma 2, every node on the DDB(k) net-
work can only have a message parent node, which
means it could not receives more than one copy of the
message at any time. Furthermore, by Rule 1, the
message is broadcast according to the increasing dis-
tance from the source node to all other nodes. Hence,
a node that already received the message could not
receive it again. Thus, no duplicated messages can be
received by any node. 0
’ The following theorem gives the bound of running
time for OnetoAllBroadcast algorithm.

Theorem 2 The paths used by OnetoAllBroad-
cast algorithm are shortest paths.

Proof: Let node X be the source node and Y be
any node on the DDB(k) network. Assume that
the path used by the algorithm OnetoAllBroadcast
to transmit a message from node X to Y is not a
shortest path, that is, the path length r is greater
than D(X,Y) = d. Let this path be X — ¥; —
Y = ... = Y1 — Y. From Rule 1, D(X,Y;) <
DX, Y3) < ... < D(X,Y,_1) < D(X,Y), so we have _
D(X,Y) > r—1, which implies that D(X,Y) =d > r
and contradicts to the assumption that d < r. m]
The following corollary is immediately followed.

Corollary 1 Algorithm OnetoAllBroadcast will
terminate after at most k = log N iterations, where
k is the dimension of the DDB(k) network.
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Proof: The number of iterations of broadcast on the
network is at most k = log N since algorithm One-
toAllBroadcast follows the shortest paths to dis-
tribute a message to all other nodes on the DDB(k)
network. ]

4 All-to-All Broadcast Algorithm

All-to-all broadcast is an extension of one-to-all
broadcast. In this case each node on the DDB(k)
network broadeasts a message to all other nodes. The
basic idea of our algorithm is as follows. For each n-
ode on the network, it sends its messages to its two
outgoing links and then receives messages from its t-
wo incoming links. In turn it combines the messages
received and prepares for the next step of distributing
operation. This operation is then repeated k& times.

The AlltoAllBroadcast algorithm broadcasts a
message from each source node to all other nodes on
a DDB(k) network. The AlltoAllBroadcast algo-
rithm is given as follows.

Algorithm: AlltoAllBroadcast(myid, S, R)
Input: The current node myid, the set of messages to
be relayed S, and the set of received messages R of a
DDB(k) network. At beginning, each node has only
its own message to be broadcast in S.
Qutput: Every node has a copy of the messages
broadcast from all other nodes.
begin
R=S5;
fori=1tok do
send S to ShiftLeft(myid,0); {left child}
send S to ShiftLeft(myid,1); {right child}
S =0
receive message M from
ShiftRight(myid, 0); {left parent}
S=85UM;
receive message M from
ShiftRight(myid, 1); {right parent}

S=SuUM;
R=RUS;
endfor

end {End of AlltoAllBroadcast algorithm.}

An example to illustrate the operations of algorith-
m ALLtoAllBroadcast is shown in Figure 3. The
following theorem establishes the correctness of algo-
rithm AlltoAllBroadcast. :

Theorem 3 Algorithm AlltoAllBroadcast will
distribute the message of each node to all other nodes
on the DDB(k) network. That is, after the algorith-
m terminates, any node on the DDB(k) network can
recetve all messages from all other nodes.

Proof: For notational convenience, assume that the
message sent by a node is identified by its node ad-
dress. Based on this notation, in what follows we will

(3.7}

(b) After the second itcration,

IV

. (01.23456.7)

{c) Atter the third stcration.

Figure 3: An example to illustrate the operations of
AlltoAllBroadcast algorithm.

show that after d iterations the node X will broad-
cast its message to all other nodes with distance < d,
where 1 < d < k. Let nodes X = zpz4-1...21 and
Y =2p-grr_g-1..-T1YqYd-1...Yy1 be any two nodes
with distance D(X,Y) = d on a DDB(k) network,
where z;,y; € {0,1}, for 1 < ¢ < k. Assume that S;
is the set of nodes containing the message from node
X after the ith iteration. Initially, let Sp = {X}.
Then S1 = {X,zp-1Zp-2...210,Z~1T—2...211}
and Tr_1Tp-o...21Y4 € S after the first iteration.
Similarly, S = S1 U {2k—22p-3...2:00,

Tp—2Tp—3 ... 2101, 2p—02p—3...2110, Tp—2Tp-3... 111}
and Tp_oTp_3...T1Yd¥d-1 € S» after the sec-
ond iteration. Therefore, after 'd  iterations,
Thod---Z1Yd.--Y1 € Sk, that is, node Y receives
the message from node X after d iterations, where
1 €d < k. As a consequence, all nodes will receive all
messages from all other nodes on the DDB(k) net-
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work after k iterations. O

Before continuing to analyze the running time
of AlltoAliBroadcast algorithm, the following defini-
tion [4] is required.

Definition 2 1. Startup time (i) is the time required
to handle a message at the sending node. This in-
cludes the time to prepare the message, the time to
execute the routing algorithm, and the time to estab-
lish an interface between the node and the router.

2. Per-character transfer time (t.) is the time to
transmit a character through o link.

Theorem 4 Assuming that each node broadcasts at
most one message, the expected running time of algo-
rithm AlltoAllBroadcast is O(N), where N is the
number of nodes of a DDB(k) network.

Proof: Let each messége has a fixed length with
m characters. Then the execution time of AlltoAll-
Broadcast algorithm is:

log N

> (ts + 2 tem) (3)
=1
= tslog N +tom(N - 1) = O(/8)

T AltoAllBroadcast =

where 2¢~1 is the maximum number of messages to be
broadcast at the ith iteration. In the above calcula-
tion, each node is assumed to have the same startup
time t; and to be started up simultaneously in every
iteration. O

5 Conclusion

In this paper, we have proposed algorithms for one-
to-all broadcast and all-to-all broadcast. Both algo-
rithms make full use of the incoming edges and the
outgoing edges of binary directed de Bruijn networks.
Since each edge of the underlying network is unidirec-
tional, a node could not be connected directly to its
parent nodes. To construct our one-to-all algorithm,
the distance between any two nodes is defined and
a message propagation rule is founded to guarantee
that no redundant messages are received by any node
on the network. The resulting algorithm is optimal
and without any redundant messages passed through
any node. Finally, an optimal all-to-all broadcast al-
gorithm is also proposed.
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