Proceedings of International Conference
on Cryptology and Information Security

A Software Implementation of Multisignature Scheme
for Electronic Document Systems

Ki-Yuan Wang, To Chang, Erl-Huei Lu*, and Jau-Yien Lee*

Department of Electrical Engineering, Chung Cheng Institute of Technology

*Department of Elecirical Engineering, Chang Gung College of Medicine and Technology

Abstract

The implementation of the security environment
for elecironic documenis not only can improve the
efficiency of document processing, but also can provide
a secure and reliable environment. It is well known
that the security environment for electronic document
systems consists of many components, such as
password authentication, multisignature, access control
and key assignment, etc. And multisignature is the
core of the security of such systems since it concerns
the security of digital documents generation, signature
authentication and safe storage of an electronic
document. In this paper we implement a software
multisignature system with C language for PCs which
allows unpredetermined signing order for general
electronic documents. We also provide test result for
performance analysis.

Key words: multisignature, public-key cryptosystem,
digital signature.

1. Introduction

The first public key cryptosystem concept was
introduced by Diffie and Hellman [1] in 1976. Then, in
1978, Rivest, Shamir and Adleman|2] presented the
first public key encryption scheme, which received the

widest attention among several public key systems[2-5].

This scheme can be used for data encryption and
digital signature for one-to-one communication. Few
attempts has been made to apply RSA scheme to
multisignature cryptosystems due to the problems of bit
expansion and moduli size clashes for
multisignature[6-7]. Though several resolutions have

184

been proposed but still impractical, not to mention 2
software implementation of RSA cryptosystem for
realistic electronic documents environments.

Recently, Chang, et al, [8] presented a
multisignature scheme suitable for environments
where multiple users involved in signing a document
with random signing order. In their method each user
possesses a set of modulo numbers »n and
corresponding secret and public keys which are
delimitated by the increasing values H (see Fig. 1). Itis
this structure that provides the random signing order
capability. Since their method is more practical than
the others, we implement a software system based on
that method which is suitable for electromnic document
systems. In our software system a one-way-hashed
document digest is signed instead of a clear text, in
order to reduce the complexity of calculating modular
exponentiation, communication traffic, storage space
and to avoid the known-signature attack.

We used a Chinese text file created with Microsoft
Word 6.0™ as our test document and the test result is
also provided for performance analysis.

This paper is organized as follows: Section II
describes the system structure, system modules, users
interface, files format, one-way hash function, modular
exponentiation, functional modules and keys
management of the multisignature system. In Section
III we evaluate the system performance, and in Section
IV, we cryptanalyze the system followed by a brief
conclusions,

2, System design

2.1. System structures

The complexity of the system solely depends on
the number of users. In the system, each user is
assigned with same number of pairs of secret and
public keys. These keys are delimitated with increasing
values H as shown in Fig. 1. With such keys
assignment, the bit expansion problem of modular
exponentiation in RSA-based multisignature scheme([6]
can be avoided, hence enable multiple users to sign on
one document without predetermined order{8].

When a user enters the multisignature system
he/she could be either the document initiator who
creats a document to be signed by other users, or an
intermediate verified receiver who authenticates the
received signature then signs. Therefore, the
comprehensive structure of the system is depicted in
Fig. 2. In the system, signatures and the clear texis are
send through e-mail to receivers.

Since the modular exponentiation is the most
time-consuming operation in the RSA scheme and it’s
complexity is proportional to the length of the binary
expression of key and modulo n. So, we use a one-way
hash function to compress a clear text into a block of
digest of fixed length. Then the complexity of space
and time are confined to a constant and the sofiware

system is thus workable in a PC environment. -

Moreover, the known-signature attack can be avoided
if a digest were signed instead of clear text.

Since the digest is signed and send to the next
receiver, the authentication procedure requires that
clear .text is send together with the signature for
receiver to verify. When the receiver receive clear text
and signature, he/she also hashes the clear text and
compare to the result from encrypting the signature
with former user’s public key. It is authenticated if they
are the same.

2.2. System modules

From the discussions stated above, the complete
system function is based on two functional modules,
they are:1. a one-way hash function which compresses
a variable-length text into a fixed-length digest, and 2.
a multisignature algorithm. For 1, we adopted the
Message Digest MD35[9] to hash a text into a digest.
For 2, we applied Chang’s et al improved RSA-based
multisignature algorithm. Fig 3. shows functional
blocks of these two modules.

2.3. User interfaces

A user interface composes of the functional menu

185

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

a user can choose after he/she enters the multisignature
system. System assigned each legal user an ID number
and a certain number of pairs of keys for the functions
of signatures and authentications. And the interfaces
can be categorized as follows:

2.3.1. Interfaces for multisignature

When a user selects the function of signature, the
system prompts a screen for user to input the name of
file to be signed and the name of file to store the signed
document. The system will also require the user to
input his ID and the ID of next receiver to be verified
and for the system to access corresponding public key
files. The system now reads in the file named by the
user but must first identify the contents of the file as
either a clear text or a signature, If it is a signature then
after authentication the user directly signs on the
signature and the procedure of hashing can be omitted,
But if it is a clear text then hashing procedure must be
applied to transform the text into a 128-bit digest
before it is signed.

To be sure that the contents of the file be identified
correctly, we choose a identification value =25, and
let the length of the clear text be over 25 bytes, this is
because after it is one-way hashed, the length is 128
bits (16 bytes). Then after the modular exponentiation
the length remains the same. Now, we can tell it is a
signature if the length of the file is less then L.

A signature seleciion menu consists of the
following items:

I. input the name of the file to be signed

II. input the name of the file to store the
signature

L. input signer’s ID and receiver’s ID

2.3.2. Interfaces for authentication

When a user selects the function of authentication,
the system prompts a screen for user to input the name
of clear text and the name of corresponding signature.
In the system, the string of concatenated user’s ID is
stored together with signature as a header, therefore
the system can access this string to identify the number
of signatories and access their corresponding public
keys to transform signatures back to digests with these
public keys. And the signature is authenticated if the
recovered digest and the one-way hashed digest are the
same. The complete procedure of authentication is
depicted in Fig. 4.

An authentication selection menu consists of the
following items:

Proceedings of International Conference
on Gryptology and Information Security

I. input the name of signature file
II. input the name of clear text file

2.4, File formats

An elecironic document system is a system where
digitalized files are generated, processed and stored.
And it is these digitalized files what we defined a clear
text and a signature in multisignature systems. No
matter what the contenis may be.

Fig. 5. shows the format of a signature file in the
system which had been signed by four different users,
the hexadecimal 20,3¢ is the delimitation to separate
ID data from signature data. The length of each ID is
temporarily set to 5 bits, it can be variable. And the
length of signature is 16 or 17 bytes.

2.5. One-way hash function

The purpose of using one-way hash function to
compress a message of variable length to a digest of
fixed length is to reduce the complexity of the system.
Here in this system, we applied MDS5[9] to compress
messages into digests of 128 bits (16 bytes).

In MDS35, the file is padded so that its length is just
64 bits short of being a multiple of 512. This padding
is a single “1” added to the end of the file, followed by
as many “0”s as required. Then, a 64-bit representation
of the length of the file (before padding bits were added)
is appended to the result. These two steps serve to
make the message length an exact multiple of 512 bits
in length, and ensure that different files will not be the
same after padding.

Therefore, in software implementation a block of

" 64 bytes (512 bits) of data is read in from the file. And
MDS processes this 512 bits block, divided into sixieen
32-bit sub-blocks. The output of the algorithm is a set
of four 32-bit blocks, which concatenate to form a
single 128-bit hash value. Thus, we define an array
whose length is 64 bytes and each sub-array is 32-bit
long, as the buffer to store the read in data.

MNow, a padded clear text file can be divided into L
sub-blocks, each with 512-bit as its length and are
denoted as Yy,Y),....,¥1y. MD5 then processes these
sub-blocks iteratively as shown in Fig. 6. For details of

MDS5 algorithm, please refer to [9].

2.6. Modular exponentiation

186

In the system, a 128-bit signature is generated from
modular exponentiating a 128-bit hashed digest. Thus,
the lengths of digest, keys, and modulo » are all of
128-bit. To compute the modular exponentiation on PC
is time-consuming. So we applied Knuth’s Binary
Method[10] to reduce computational complexity.

It is well-known that Binary Method niot only can
reduce computational complexity of modular
exponentiaiton but also can make the coding of
software programs much easier. The fundamental
algorithm for computing A= M 4 modn is
described as follows: . ‘

1.Let d be represented as a binary siring, e.g.,

d=(101011101.......).

2.Let A=M.

3.Scan d from left to right, start at the second bit

1. if “1” then square 4 and mod(n), then
times M and mod(n),
then let A=result;
ii. if “0”, then square A and mod(n),
then let A=result.

It also can be scanned from right to left[11]:

1.Let d be represented as a binary string, e.g.,

d=(101011101.......),.

2.Let A=1, and B=M.

3.Scan d from right to left

i. if not the last bit then B=B X B(mod),
ii. if “1” then 4=4 X B(mod n).

Either scan from left to right or from right to left,
the complexity of computing modular exponentiation
is dramatically reduced to that of modular
multiplication, i.e., computing A/ X M(mod n). But it is
still time-consuming when M is large. Therefore we
adopted an improved method in {11]:

Let E, M and » are binary integers of length /,
where 0 <M < n. Let binary expression of Af be

M =ml_121_1+ +1my 2 +my
where m; =0o0r1,0<i</ -1,
Therefore E=M X M mod n can be expressed as
E = [(Mmy_ 2™+ +(Mimy 2) + (Mimy)] mod n

ey
Now, let E=0, then Eq(1) can be computed iteratively
as follows:
First compute
E} = [(Eo + Mml__l) modn]Z

then

E, =[(E1+Mm1_2)modn]2
:El-l = [(El-z + Mmo)mod n]Z

after / steps we have
EI = [(El—l + Mmo)mod n] =F

It is obvious that this method needs only / modular
additions insteat of /* modular multiplications in M X
M{(mod n). Afier each iteration of computing E;, its
range mustbe 0<E;< Mm;_;_;.

2.7. Functional modules

From the design considerations and algorithms
studies stated above, we defined functional modules
and sub-modules as follows which are the core of the
software implementation:

MD35 and MODEXP() are the two constructing
functional modules of the software system.

For the module of MD3, it can be decomposed into
three sub-modules, they are:

1.LAPPEND(): to perform string padding of read

in file, so that file length is
. congruent to 448 mod 512.
2.REG(). to generate a 128-bit digest block. It
consists of executing 16 times of
ROUNDi:(){9].

3.ROUND(): to perform ith round computation.

As functional module MODEXP() is concerned, it
is clear that a modular exponentiation can be expressed
as modular multiplication, and modular multiplication
can be expressed as modular addition. Thus, a modular
exponentiaiton can be decomposed into a addition
operation and a modular operation. The sub-modules
which constitute the MODEXP() are listed as follows:

1.COMPARE(): to perform comparison of two

integers.

2.SHIFTLEFT(): to perform shifi one bit position

to the left.

3.SHIFTRIGHT(). to perform shift one bit

position to the right.

4.ADD(): to perform the addition of two integers

whose length are 128 bits.

5.8UB(): to perform the subiraction of two

integers whose length are 128 bits.
6.MOD(): to perform modular operation of two
integers whose length are 128 bits.

TMODMUL(): to perform modular multiplica-

tion.

187

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

2.8, Keys management

In the system, the generation of user’s keys for
multisignature must meet the requirements depicted in
Fig. 1 so that the bit expansion problem can be avoided.
We adopied key generation program from [12] to
assign each user the certain number of keys as needed.
These keys are stored as files depicted in Table 1,
where files with extension .PUB indicates it is a public
key file and .SCT indicates it is a secret key file.

In each .PUB files, it contains public key elements
e and n, where e is a 32-bit long integer and n is a
129-bit long integer. In each .SCT files, it contains
secret key elements (p,q,d,n), where p and ¢ are prime
numbers of 64-bit and 65-bit respectively, dis a 128-bit
long integer, n is the same. All these public keys and
secret keys are all stored as hexadecimal format.

These key files can be accessed for encryption or
decryption according to the list of ID that is shown in
the header of signature file (Fig. 5) which is
transmitted among users. The .PUB files should be put
into a directoryfor public access, and the .SCT files
must be kept as user’s personal secrets.

3. Performance analysis

As previously stated, we used MD5 to hash
variable length messages into fixed length digests in
order to reduce the inherited computational complexity
in RSA cryptosystems. Therefore, for a single signature
computation in our system, the total times required are
the time for MD5 plus time for single (M,dn) =
(128,128,129) modular exponentiation. For the second
user and the followings who are going to sign on the
same signature, it only requires to compuie a single
(M, d,n) = 128,128,129) modular exponentiation. Table
2. shows the performances of time complexity of MD35
computation and modular exponentiation for a
message and a signature, respectively.

We also evaluated the performance of signature of
digests with different length, 128 bits, 256 bits and 512
bits,which results are shown in Table 3. The evaluation
was conducted on a 486-DX66 PC with 8 MB RAM
and 256KB CACHE.

From Table 3, we see that the time complexity
increases proportional to the key lengih and modulo .
And according to [12], for a secure public-key
cryptosystem, the length of keys and modulo n should
be 512 bits at least. But in our system we still use 128
bits keys instead of longer ones in the light of system
portability. Anyhow, the one-way hash function MD3
compensates the weakness of security from using short

Proceedings of International Conference
on Cryptology and Information Security:

keys.
4. Cryptanalysis

We intentionally skip the cryptanalysis of
signature computation and the message recovery from
signature since ther are the same as that in RSA
cryptosystems.” Here we cryptanalysis the possibility
that an innocent user signs a forged signature from an
adversary. In our system, any valid receiver will
receive a pair of message {A, S} for authentication
where M is the clear text and S is the signature of A/
signed by the former users. If an adversary forged a
clear text A/, the hash value A(A1") of M will not be
equal to the hash value h(M) of M. Besides, without
user’s secret key, the adversary can not generate a
signture S* whose corresponding hash value
h(M*) = S*% mod n; will be the same as the forged
hash value h(M"), i.e., h(M*)=h(M"). Therefore, it is
impossible that a valid user would sign on a message
that is forged by an adversary.

Is it possible that an adversary can randomly
selects two values A; and A5, which satisfies
MM, =M mod n and send M; and M; to be signed

by other users into S; and S; then forge a signature
S =85S, mod n?Because

S=88, = M M§ = (M M) = M modn.

The answer is no. In MD3, the procedure to hash a
message into a digest goes through 4 rounds, 64 steps
of nonlinear permutations. It is impossible that there
exists a multiplicative function between A(M,) and
h(M>). Moreover, a message is signed by a number of
users in this system, it is impossible for an adversary to

forge an intermediate signature (o be verified as a legal
one,

5. Conclusion

We presenied a sofiware sysiem of multisignature
which is coded in C language for electronic document
environments. We analyzed and designed system
modules as are one-way hash function and modular
exponentiation, each consists of several independent
sub-modules. We designed a user interface in DOS
environment and tested its functions and evaluates
complete system performance on a 486 PC. We also
cryptanalyzed thie system to assure its robustness in
security.

188

Acknowledgment

The authors would like to thank Professor Chi-
Sung Laih at Chen Kung University for the assistance
in the coding of the software programs.

References

[1] Diffie, W. and Hellamn, M. E., “New Direction in
Cryptography,” IEEE Transactions on
Information Theory, IT-22, pp. 644-654, 1976.

[2] Rivest, R. L., Shamir, A., and Adleman, L., “A

" Method for Obtaining Digital ‘Signatures and
Public-Key Cryptosystems,” Communications of
the ACM, vol. 21, no. 2, pp. 120-126, 1978.

{31 ElGamal, T., “A Public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms,”
IEEE Transactions on Information Theory, 1T-31,
pp. 469-472, 1985.

'[4] Merkle, R., and Hellman, M., “Hiding information

and signatures in trapdoor knapsacks,” IEEE
Transactions on Information Theory, IT-24, pp.
520-530, 1978.

[5] McEliece, R. J., “A public-key cryptosystem based
on algebraic coding theory,” DSN Progress Report,
42-44, pp. 114-116, 1978.

[6] Kiesler, T. and Harn, L., “RSA Blocking and
Multisignature Schemes With No Bit Expansion,”
Elecironics Lefters, vol. 26, no. 18, pp. 1490-1491,
1990.

[7] Kohnfelder, L. M., “On the Signature Reblocking
Problem in Public-Key Cryptosystems,” Commu-
nications of the ACM, vol. 21, no. 2, pp.179, 1978.

[8] Chang, T., Pon, S.-F., Lu, E.-H,, and Shyu, H.-C.,
“ A Multisignature Scheme Without Predetermin-
ed Signing Order,” Journal of Chung Cheng
Institute of Technology, vol. 24, no. 2, pp. 169-175,
Jan. 1996.

[9] Rivest, R. L., “The MD5 Message Digest
Algorithm,” RFC 1321, 1992.

[10] Knuth, D. E., The Art of Computer Programming,
vol. II, Addison-Wesley, 1969.

[11] Ly, E.-H,, “A Programmable VLSI Architecture
for Computing Multiplication and Polynomial
Evaluation Modulo a Positive Integer,” IEEE
Journal of Solid-State Circuits, vol. 23, no. 1, pp.
204, Feb. 1988.

[12] Laih, C.-S, Hamn, L., and Chang, C.-C.,

Contemporary Cryptography and Its Applications,
UNALIS Co., 1995.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

U, nyy c e Ry
U, ny 1 m2.w
U; m s 3,
Uy g1 14
Ut n, 1 i e ni,w
U; : User’s identity
H; : Delimitation
n;; . User i’s modulo number » at level j
Fig. 1. Structured chart of user’s levelwise modulo numbers
Table 1. Examples of three levels keys files of user U,
i Afiles: of secret-keys fil
1-1.pub 1-1.sct
1-2.pub 1-2.sct
1-3.pub 1-3.sct
Table 2. Time complexities for MDS5 and MODEXP() _
MDS5(seconds) MODEXP()(seconds) Total(seconds)
Message 0.16 0.38 0.54
Signature 0 0.38 0.38

Notes: 1. the length of example message is 22,528 bytes.
2. the digest to be signed is 128 bits (hashed value of message).

3. d=128 bits, n=129 bits.

Table 3.MODEXP() times required for variable length of digests

PC models (M. d,n) length (bits) Time for A% (mod n) (seconds)
486D X-66 (128,128,129) 0.38
486DX-66 (256,256,257) 2.36
486DX-66 (512,513,513) 15.27
<— 512bits—wr<— 512bits—>| <g— 512bits—

Yo Yy o o, Yi.1
512bits 512bits 512bits
4
AB.C.D AB.C.D
|23|;:’ MDS5 == MD5 _12:|)ite IIS_E)? MDS5 1—2_8—5: Digest

Fig. 6. MD3 generates the digest of a clear text

189

Proceedings of International Conference
on Cryptology and Information Security

Enters the system

Verified
receiver

Read contents

Unverified

Quit Authentication

Verified

Signs the
signature

identity

Send clear text
and signature to the next
receiver

Document
initiator

A

Initiates the
document

Signs the
document

Send clear text

and signature to the next
receiver

Fig. 2. System structure of multisignature software system

Message Digest
I ——— MDS
Variable 128bits
length
Digest RSA Signature
—_—
128bits di 128bits

¢ o % modn

Fig. 3. Functional blocks of system modules

190

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

1. Input file name of clear text
2. Input file name of signature
2. 1
h A
Reed in ID siring Rﬂﬂd;;;?ﬁ block
S
to access public keys ()
h(M)y= s (modn;) I\’D5Efl‘§§ftl]itﬁ:)lchon)
(128 bits)
Store the result in
an mteger amay

Yes

Store the result in

an integer array
| Compare these two arrays
No
Equal?
o~ Tllegal signature
Yes
Legal signature

Fig. 4. Flow diagram of authentication procedure

1 byte
<-by(-» le—2 bytes —se—— 16 or17 bytes —b
20 | 3e
g _— e e———) _
D data Delimitation Sigrature

Fig.5. Format of signature files

191

