Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

State Assignment for Low Power Consumption in
Sequential Circuits

Sying-Jyan Wang and Ming-De Horng

Institute of Computer Science
National Chung-Hsing University
Taichung, Taiwan, R.0.C. 40227

Abstract

In this paper we present an algorithm for the state
assignment in finite state machines targeted for
minimal switching power dissipation. Two states are
assigned codes closer in Hamming distance if the state
transition probability between them is higher by our
algorithm. In this way we can reduce the average
number of bit changes associated with state transitions.
The proposed algorithm achieves this goal by
modifying the given state transition graph so that it
can be embedded into an n-cube. Experimental results
show that this method greatly reduce the switching
activity generated by state transitions.

1. Introduction

Low-power design has attracted tremendous
attention in recent years. The advance in technology
enables us to put more and more devices in a single
chip while at the same time pushes the clock rate even
higher. Low power design is thus necessary to reduce
the packaging and cooling costs as well as prolong the
life span of ICs. The second source of requirement for
lower power design comes from the low power
applications. For these applications, low power
designs extend the battery lifetime.

Two strategies are used in low-power design [1].
Architecture-independent strategy tries to reduce
power consumption in integrated circuits by modifying
processing technology so that the fabricated devices
consume less power. For examples, Silicon-On-

Acknowledgments: This. work was supported by National
Science Council under Grant No. NSC85-2215-E-005-001

Insulator (SOI) technology can reduce parasitic
substrate capacitance. Devices with lower operating
voltage also consume less power [2].

Technology-independent strategy reduces power
consumption through a refined design process. An
obvious method to reduce the power consumption is to
shut-down part of a circuit when it is not in
operational condition. Many studies have also been
carried out to minimize the average power dissipation
by reducing switching activities of a given logic
circuit. The minimization can be achieved at
technology mapping phase [3],[4], logic design phase
[5], or through code assignment for finite state
machine (FSM) design [6]-[8].

In this paper we study the problem of low power
synthesis of FSM. The reduction in power
consumption is achieved by minimizing switching
rates caused by state transitions. A state transition in
an FSM requires single or multiple bit transitions.
Therefore, switching rate can be minimized if states
associated with state transitions that appear most
frequently are assigned codes that are close to each
other. We propose an algorithm that assigns codes to
states in FSMs targeted for low switching power
consumption.

This paper is organized as follows. In Section 2 we
present some preliminary information. Our algorithm
is described in Section 3, while experimental results
are given in Section 4. Finally, concluding remarks are
given in Section 5.

2. Preliminaries

In this section we provide some background
information.

213

Proceedings of International Conference
on Computer Architecture

2.1. Power Dissipation in CMOS Circuits

CMOS is currently the dominant technology. There
are two components that contribute to the power
dissipated in CMOS circuits [9]. The static dissipation
is due to leakage current, while dynamic power
dissipation is due to switching transient current as well
as charging and discharging of load capacitances.

Since the amount of leakage current is usually small,
the major source of power dissipation in CMOS
circuits is the dynamic power dissipation. Dynamic
power dissipation appears only when a CMOS gate
switches from one stable state to another. In the
dynamic power dissipation, the component due to
charging and discharging of load capacitance is
usually the dominant factor. Thus the average dynamic
dissipation of a CMOS gate is:

g

P =—;—><CLxVoszfpr

where C; is the load capacitance, Vj,, is the power
supply voltage, f, is the clock frequency, and N is the
average number of switching activities in a.clock cycle.
Thus, the power consumption can be certainly reduced
if one can reduce the switching activity of a given
logic circuit without changing its function [10].

2.2, Finite State Model of Sequential Circuits

A general sequential circuit is shown in Fig. 1. The
circuit consists of two parts: a combinational circuit
that performs the logic function, and feedback registers
that hold the state information. The inputs of the
combinational logic include the primary inputs and the
present state inputs. The output side of the
combinational logic also has two parts: the primary
outputs and the next state lines.

. .
Primary Combinational : Primary

Inputs Logic Outputs
Present Memory Next
State Elements [~——— State

Fig. 1. A sequential machine.
2.2.1. The Finite State Machine Model

A finite state machine (FSM) is an abstract model
describing a synchronous sequential machine. A Mealy
machine M is a quintuple M= (I, O, S, §, A) where I, O,
and § are finite, nonempty sets of input symbols,

output symbols, and states, respectively. The function
§: IxS—S specifies all state transitions, and A: IxS—0Q
is the output function.

The behavior of a FSM is usually described by .a
state transition graph (STG). An STG is a direcied
graph in which a vertex represents a state while an
edge represents a state transition. The STG of an FSM
is shown in Fig. 2.

Associated with an edge, which starts at state s; and
terminates at state s;, is a pair p/g,, where p,el and
q,<0. This edge indicates that, if the present state is s;
and the input symbol is p, the machine will be
transferred to state s; with output symbol g,. In order
to get the final circuit, all symbols in 7, O, and S are
encoded with binary codes. A binary encoded input
symbol will be called an inpuz vecior henceforth.

01 00

Fig. 2. An example STG.
2.2.2. State Transition Probability

Since we are interested in minimize the average
switching rate due to state transitions in FSMs, first we
have to find a way to calculate the probability
associated with each state transition. In [6] a method is
proposed to calculate state transition probability. We
briefly introduce the method here.

First, a local state transition probability matrix is
calculated. The local state transiiion probability
associated with a state transition from s, to s;, being
denoted as /p;, is the probability that a primary input
will bring the machine to state s; given that the current
state is s;. If the distribution of input vectors fed to the
circuit is known, each Ip; can be calculated
accordingly. Otherwise, uniform inpui pattern (i.e.,
each legal input vector appears with the same
frequency) is assumed. Thus Ip; is the ratio of the
number of minterms causing such a transition to the
total number of valid minterms at state s;, The local
state transition probability mairix is defined as LP =
{Ip;}™" where m is the number of states in the STG.

When an FSM is in the steady-state, the probability

214

that the FSM stays at s; is denoted as sp;. Thus sp; is
the accumulated proportion of the time residing at
state s, during the operating period. The steady-state
probability of state matrix is denoted as SP = {sp;}"*".
Since in the steady-state we may assume that sp; does
not change with time, the following equation holds:
SP=SPxLPor(LP-1)"xSPT=0

The above equation has only m-1 linearly
independent equations. Thus, to obtain SP, one
additional equation is required:

ZSp,. =1
i=1
The probability for state transition from s; to s,

denoted as #py, is just sp; x Ip;. The state transition
probability marrix is defined as TP = {ip;}"". For
example, the steady-state probability and the state
transition probability for the STG shown in Fig. 2 are
given in Fig. 3.

TP, ;=6/58

$p,=6/29

TP,=9/58

spy=12/29y¢

TP, =3/58 TP, ,=18/56

P, =9/58

TP,,=3458

TP,,=9/58

) $p,=2/29

$p,=9/29
TP, ;=158

Fig. 3. State transition probability.
2.2.3. Switching Activity

Our goal in this research is to minimize the
switching activity due to state transitions in FSMs.
Therefore, we must have a way to estimate the amount
switching activity. Let the binary encoding of state s;
be denoied as enc(s;). The Hamming distance between
two codewords is the number bit positions that the two
codewords differ. The switching activity can be
defined as:

m m
z z ip; x Hamming_ distance(enc(s;),enc(s;))
i=t j=1
The switching activity is the average number of bit
changes required for a state transition. An FSM with
higher switching activity indicates a higher level of
switching rate in the real circuit.

215

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

2.3. Bipartite Representation of Graphs

The ultimate goal of code assignment is to assign
binary code to states in an FSM. The code space
consisting of all 2" n-nit binary words is usually called
a binary n-cube. Since an n-cube is always a bipartite
graph, it is useful to study the relationship between
these two graphs. In this section we briefly introduce
the work by Kang, Wey, and Fisher, which discusses
how to represent bipartite graphs and n-cubes with
tables [11]. Two types of tables, which are derived
from bipartite graphs, are introduced. One is the
bipartite adjacency table (BAT), and the other is the
bipartite representation table (BRT) for n-cube. Most
of the notations in this section are borrowed from [11].

2.3.1. Bipartite Adjacency Table

A bipartite graph G = (V, E) is a connected graph, in
which the set of vertices V is divided into two disjoint
subsets X, and X, (r and ¢ stand for column and row,
respectively). No vertices in the same subset are
connected. In other words, if one endpoint of an edge
e € E is in subset X, then the other endpoint of e must
be in subset X.. Let | X.|=x, and [X,|=y (ie., x and y
are the cardinalities of X, and X, respectively). To
simplify the notation, the vertices in X, and X, are
represented as S; and s; (i.e., X;= {S,, S,,..., S,} and
X= {8, §3,..., 5,}. The set of edges in a bipartite graph
isthus E={(S, s)| S, e X, and s, € X, }.

ONONORO

e B st ins T
(a) ()

Fig. 4. (a) A bipartite graph, and (b) a 6-BAT for (a).

Fig. 4(a) is an example of bipartite graph and Fig.
4(b) is its corresponding bipartite adjacency table. If
the number of vertices in a bipartite graph is m (i.e., x
+ y = m), the corresponding bipartite adjacency table
will be called an m-BAT.

2.3.2. Bipartite Representation Table

Since an n-cube must be a bipartite graph, we can
represent the connection pattern in an n-cube with a
bipartite adjacency table. In Fig. 5 we show a 3-cube
and its corresponding 3-BATs. A 3-cube consists of
iwo 2-cubes and the edges connecting them, as shown

Proceedings of International Conference
on Computer Architecture

in Fig. 5(a). In this figure, vertices {a, b, c, d} are
clements of one 2-cube, while the other 2-cube
consists of vertices {e, f, g, h}. The two 2-cubes,
connected by four edges, form a 3-cube. These edges
are {(a,), (b, /), (c, g), (d, h)}. The 2-cube consisting
of {a, b, ¢, d} is denoted as (a, c| b, d). This notation
implies that any one of vertices {a, c} is adjacent to
any vertex in {b, d}. However, vertices ¢ and ¢ are not
adjacent to each other, nor are vertices b and d
adjacent to each other. Similarly, the 2-cube formed
by {e, f, g, h} is denoted as (f, hle, g). In the same
way, the 3-cube can be denoted as ((a, ¢ | b, d) l G h l e,
). This implies that vertices {a, c} are not adjacent
to vertices {f, &}, and vertices {b, d} are not adjacent
to {e, g}: Therefore, the connection pattern of a 3-
cube can be represented by a bipartite representation
table, as shown in Fig. 5(b). Fig. 5(c) and Fig. 5(d) are
both equivalent to Fig. 5(b). Larger BRTs can be
constructed from smaller BRTs recursively.

Fig. 5. (a) A 3-cube, (b), (c) and (d) 3-BRT.
3. State Assignment

In this section we present our approach to state
assignment in FSM for low power consumption.

3.1. Basic Strategy

In order to reduce power dissipation in a circuit, one
may want to reduce the switching rate of a given logic
circuit. One way to achieve this goal in FSM design is
to minimize the number of bit changes when state
transition occurs. The optimal condition is that
whenever there is an edge in the STG (except for the
self loops), the two states conmnected by the edge
should differ in only one bit position. In this way, each
state transition involves at most one bit change.
Obviously, this goal is not achievable in most cases.
Whenever this happens, we shall try make the
codewords of adjacent states as close to each other as
possible. This sirategy reduces the number of bit
transitions associated with state transitions, which in
turn reduces the switching activity of memory
elements. The reduction of switching activity in the
present-state part of the combinational logic (see Fig.

1) can also reduce the internal switching activity of the
combinational circuit [12], so that the power
dissipation in the combinational circuit can be reduced
too.

The basic strategy of our approach is described as
follows. First, we compute the state transition
probability matrix 7P. A weighted undirected graph G’
= (V, E', W(E")) is obtained from the STG G = (V, E)
and TP. The set of vertices in G' is the same as that in
G. An undirected edge e=(s,, s;) exists in E' if at least
one of two edges {(s;, 5;), (55, 5;)} exists in G and i # .

?

‘The weight on e w(e) is ip; + Ip;. Since weights on

216

self-loops do not affect our state assignment, self-
loops are removed in G'. Such a graph is referred to as
the state adjacency graph henceforth. The state
adjacency graph obtained from the STG in Fig. 2 is
given in Fig. 6. The goal of the state-assignment
algorithm is thus to minimize the following expression.

Z Z w(e(s;,s;)) x Hamming_ distance(enc(s,), enc(s)]

i=1 j=i+t

Fig. 6. State adjacency graph for the STG in Fig. 2.

The next step is to embed the resulting graph into a
binary n-cube, where n = rlogzm_’ and m is the number
of states. However, most state adjacency graphs can
not be embedded directly. Whenever G’ is not
embeddable, the best we can do is to embed a graph
G" = (V, E", W(E")), which is a subgraph of the state
adjacency graph G', such that G" preserves the
maximum sum of weights in G'. The basic sirategy of
our code assignment can thus be expressed as follows.
Step 1. Obtain the state-adjacency graph G'.

Step 2. Generate an embeddable graph G* from G'.
Step 3. Embed G” into an n-cube.

3.2. Generation of Bipartite Graph

The following theorem gives the necessary
conditions under which a state adjacency graph can be
embedded.

Theorem 1: Consider a state adjacency graph in which
there are m states. Let n = f_logzm-l. If the graph can be

embedded into an n-cube, then:

1) each state in the graph is adjacent to at most # other
states, and '

2) if there are cycles in the graph, the length of the
cycle must be even.

Proof: Since each node in an n-cube is adjacent to
only n other nodes, it is obvious that a state adjacency
graph in which at least one state has more than n
neighbors cannot be embedded.

To see why (2) is true, remember that each n-cube is
a bipartite graph. Let the two sets of unconnected
vertices be ¥, and V. Let the length of a path be /, / is
an odd number, and let the vertices on this path be
denoted as v, 0 < i < /. Without loss of generality,
assume vertex v, belongs to V. From the definition of
bipartite graphs, we have v, € V,, v, € V,, etc. The
other endpoint, v, thus belongs to set V, since / is an
odd number. Since v, and v, are not in the same subset,
they can not be the same point. Thus this path is not a
cycle.

By Theorem 1, it is clear that we have to generate a
bipartite subgraph from the given state adjacency
graph so that it can be embedded into an n-cube.

Whenever a state adjacency graph violates Theorem
1, some edges have to be removed. This is done as
follows. First, we check the number of edges
connected to any node. Let the number of nodes
adjacent to node i be a; Whenever g, > » is true for
node /, the a; — n edges whose weights are smaller are
removed. Next we break odd-length cycles. Whenever
an odd-length cycle is found, the edge with least
weight on the cycle is removed.

During this proceduré, we may remove more edges
than we really have to. There are two situations in
which the recovery of a removed edge is possible.
Suppose an odd-length cycle is found and we decide to
remove edge (s, 5;). Now if in the original state
adjacency graph the degree of either s, or s; is greater
than n, some edges must have been deleted already.
Since edge (s;, 5;) has to be removed, one of the edges
that have been removed earlier can be recovered. On
the other hand, it is possible that edge (s,, 5;) is also
contained in another odd-length cycle, which has been
broken earlier by removing another edge. Since edge
(s;, s;) must be removed anyway, the edge removed
earlier can be recovered, too. This recovery
mechanism gives us a beiter adjacency relation and
may potentially lead to a better result.

3.3. Embedding a Bipartite Adjacency Table

Up to this stage we have obiained an m-BAT (the
original STG has m states) in which there are no odd-

217

Joint Conference of 1996 Internationat Cc')mputer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

length cycles. However, it is still possible that the
bipartite graph can not be embedded into an n-cube.
First we have to check whether a BAT can be
embedded into an »-BRT. If the BAT cannot be
embedded, some exira links are removed. Then the
resulting BAT is embedded.

3.3.1. Identification of Mappable BAT
The following theorems are used to check whether

an m-BAT is mappable.
Theorem 2 [11]: An m-BAT is unmappable if either

1) each row or column of the m-BAT contains more
than » links, or
2) the link set of the m-BAT includes WS, 5p) li= 1,

2,3andj=1,2} or {(S,spli=1, 2andj=1,2,
3}

The first condition has been checked when we
generate the bipartite graph, so we only have to check
the second condition. The second condition essentially
says that any two nodes in the same set (either X, or X))
can not have common links to three nodes in the other
set. For example, the BAT shown in Fig. 7 is
unmappable. Thus we will remove the least weighted
edge from the set {(1,7), (1,8), (3,7), (3,8), (4,7),
(4.8)}.

6 7 8 9 10
I [0 1 1 0 |0
2 10 10 10 [0 1
3 10 (1 |1 j0 o
4 10 11 [t {0 {0
5 10 {0 |10 0 11
Fig. 7. An example of unmappable BAT.

The following conditions are applicable to BATs in
which there exist more than one 2-cube.

Definition 1 [11]: For the link (S,, s) in a BAT, we
define adj(S;, 5,) = {(S,, 59| s, € X, and 5, 25} U {(S,,
s)| 8 e X, and 5, = 5}, and (adj(5)), adj(s)) = {(S,,
sl (S s,) is a member of the link set, (S, s,) €
{adj(S;, s,) N adj(S,, 5,)}, where adj(S,, s,), adj(S,, 5,) €
adj(S;, 5,)}.

Theorem 3. [11]: Let a BAT contain the following
linkS: (SI Sr)’ (Sia Sl)a (Sp Sr)7 (Sp si): (‘S}’ Su)a (Slc’ St)’ and
(84 5,). The BAT is unmappable if (adj(S)), adj(s,)) =
O or (adj(S,), adj(s,)) = &.

The condition given in Theorem 3 is thai two 2-
cubes are contained in a 3-cube and they share a link
(S;, 5,). In other words, the two 2-cubes share one row
and one column in the BRT. This condition is
illustrated in Fig. 8, in which the seven circles are the

Proceedings of International Conference
on Computer Architecture

links listed in Theorem 3. When the condition is
satisfied, then the BAT is mappable if both (adj(S)),
adj(s,)) and (adj(S,), adj(s,)) do not contain any link
other than the ones in the 3-cube.

S, 5 Sy Sy
Si@) x | x
Sjg x) /x)
S| x x| x
sl)
Fig. 8. Condition for Theorem 3.

Our way to check this condition works as follows.
After having calculated (adj(S;), adj(s,)) and (adj(S,),
-adj(s,)), we check whether this is a 2-cube contained in
a 3-cube. If those links are not contained in the same
3-cube, then the links are removed. Consider Fig. 8. If
(adj(S), adj(s,)) include (S,, s,) and the 2-cube (S,,

1S, 8,) does exist, then (S,, s,) is in the same 3-cube
and thus does not have to be removed.

The above theorem deals with the condition in which
two 2-cubes share one common row and column. In
this paper we extend the concepts in [11]. Consider the
situation in which two 2-cubes share only one row or
only one column, as illustrated in Fig. 9. Now we have
to check four sets (adj(S,), adj(s,)), (adj(S,), adj(s,)),
(adj(S.), adj(sy)), and (adj(S,), adj(s)). If any one of
them is nonempty, the BAT is unmappable and the
corresponding links have to be removed. However, if
the resulting links become a 2-cube contained in rows
Sa, Sp, S, Sy, then they are not removed.

Se § 8,
s, [xXIx]x] [x
Spf x| x| |x
CSx] [x]x (%)
s X\x XX ")E\x X: BRT node
d X (0): BAT node
X x| x| |x
x| Ix| Ix{x
x| | x]x|x

Fig. 9. Condition for Theorem 4.

Theorem 4: Suppose a BAT contains the following
1inks: (Sm Se): (Sao Sf)a (Sb’ se): (Sba Sf)a (Sw se)s (Sc’ Sg)’
(i 5.0, (S 55). The BAT is unmappable if {S,|(S,, s)
is in the BAT, and 5, # 5, S, # S;} N {S,|(S,, s,) is in
the BAT, and S, = S,, S, = §,} # . The same situation
can be applied to columns in BAT.

Proof: In Fig. 10 we draw a sphere whose center is s,
and the radius is Hamming distance 1. S, S;, S, and S,
are four nodes on the sphere. Again we draw four
spheres centered at these four nodes, and the radius of
each sphere is Hamming distance 1. Now the spheres
centered at S, and S, intersect at two points s, and S
while the spheres centered at S, and S, intersects at
two points s, and s,. From the figure it is obvious that
there are no nodes whose Hamming distance-to s, and
sg are both 1 except for those given in the Theorem. B

Fig. 10. Spheres in n-space

In most of the cases, the graph obtained so far can
readily be embedded into an n-cube. However, since
all the conditions we use to check for embeddable
bipartite graph are only necessary conditions, it is still
possible that the resulting graph can not be embedded.
Even if the graph can be embedded, the process can be
time-consuming since state embedding (as discussed
below) is an NP-complete problem. Thus we employ
an optional heuristic in the state assignment algorithm.
We can assign a small threshold w,, and all edges in
G’ whose weights are smaller than w,, are removed. A
large threshold makes state embedding easier and
faster; however, the switching activity of the resulting
circuit is usually higher. If w,, is 0, we simply get the
original exact algorithm.

The following algorithm is used to check whether a
given bipartite graph can be embedded into an n-cube.
If the graph cannot be embedded, some links are
removed.

Algorithm : Get a mappable bipartite graph

{
Remove links whose weighis are less than w,,;
Remove links that violate Theorem 1;
Remove links that violet Theorem 2;

Remove links that violate Theorems 3 and 4;

218

3.3.2. State Embedding

At this stage we have two tables: an »-BRT which is
a representation of an n-cube, and an m-BAT which is
a tabular form of the state adjacency graph. The state
embedding problem here is to find a subgraph in the »-
BRT such that the subgraph is isomorphic the given m-
BAT. The subgraph isomorphism problem is known to
be an NP-complete problem [13]. Thus we apply only
a greedy algorithm to compare the given »-BRT and
m-BAT. During the state embedding process, two
neighboring states in G" are given codes whose
Hamming distance is one. If edge (s;, 5;) exists in G’
but is removed in G", we will also try to keep the
Hamming distance between enc(s;) and enc(s) as small
as possible. This will keep the final switching activity
low.

4. Experimental Results

We have implemented the above algorithm into a
program called ‘STATE’, which assigns minimum-
length code to states in FSMs targeted for minimum
switching power. In order to compare it with the
previously published method, we adopt the same set of
MCNC FSM benchmarks circuits listed in [6] except
the circuit tbk. The reason we do not include 7% is that,
for this particular circuit, the number of cubes given
by [6] is only 60% of the circuit synthesized by
NOVA[14]. Since NOVA is a state-assignment
program targeted for area efficiency, this result seems
rather exceptional and thus we exclude it in our
comparison.

The experimental resulis are given in Table 1 and 2.
For the fourteen circuits listed in Table 1, our results
for NOVA are identical to those in [6] in both the
number of cubes and switching activity. Thus, for the
method proposed by Hong er al. and NOVA, we only
list the switching activity for comparison. The number
of cubes obtained by these methods can be found in
[6]. The lower bound -on switching activity listed in
the table is obtained by assuming all state transitions,
except for self-loops, involving only 1 bit change.
Compared with NOVA, STATE gives a 46.1%
reduction on switching activity; and there is a 5.0%
reduction on switching activity compared with the
method by Hong er al. Among the 14 circuits, our
method gives better results in 8 cases, while in 3 cases
the method by Hong et al. is better. The resulis are
identical for the other 3 circuits. In Table 2, however,
our results for NOV A are different to those given in [6]
in terms of switching activity, although the results for
cubes are the same. These circuits are either

219

. Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

incompletely specified machines, or FSMs with a
resetting input. The difference may be caused by the-
way transition probability being computed. For these

five circuits,” STATE gives a 46.9% reduction on

switching activity compared with NOVA. This résult
is consistent with those in Table 1.

In terms of size of the synthesized circuit, the resulis
given by STATE are close to those in [6]. For the 19
circuits, our method requires 920 cubes in all, while
Hong’s method requires 907 cubes. The number
obtained by NOVA is 825. Thus our method requires
11.5% of extra cubes while Hong’s method increases
the number of cubes by 9.9%.

5. Conclusions

In this paper we present a state a state assignment
algorithm for FSM targeted for low switching power.
This method can reduce more 46% of swiiching
activity associated with state transitions at the cost of
about 11.5% 'extra area. Compared with previous
results [6], this method gives lower switching activity
and costs a little more area.

REFERENCES
[1] Z. J. Lemnios and K. J. Gabriel, “Low-Power
Electronics,” [EEE Design & Test of Computers,
pp. 8-13, Winter 1994,
Z. Chen, J. Scott, J. Burr, and J. 'D. Plummer,
“CMOS technology scaling for low voltage low
power applications,” IEEE Symp. om Low Power
Electronics, pp. 56-57, Oct. 1994,
C. Tsuiy, M. Pedram, and A. Despain,
“Technology decomposition and mapping
targeting low power dissipation,” in Proc. 30th
Design Automation Conf., pp. 68-73, 1993.
V. Tiwari, P. Ashar, and S. Malik, “Technology
mapping for low power ,” in Proc. 30th Design
Automation Conjf., pp. 74-79, 1993,
M. Alidina, J. Monteiro, S. Devadas, A. Ghosh,
and M. Papaefthymiou, “Precomputation-based
sequential logic optimizaiion for low power,”
IEEE Trans. VLSI Sysiems, vol. 2, no. 4, pp. 426-
436, Dec. 1994,
S. K. Hong, 1. C. Park, S. H. Hwang and C. M.
Kyung, “State asignment in finite state machines
for minimal switching power consumption,”
Electronics Letter, vol. 30, no. 8, pp. 627-629,
1994,
G. D. Hachtel et al, “Re-encoding sequential

[2]

3]

(4]

(5]

(6]

{7

Proceedings of International Conference
on Computer Architecture

circuits to reduce power dissipation,” in Proc.
Intl. Workshop Low Power Design, pp. 69-74.

[8] V. Veeramachaneni, A. Tyagi, and S. Rajgopal,
“Re-encoding for low power assignment of
FSMs,” in Proc. Inil. Symp. Low Power Design,
pp. 173-178, 1995.

{91 N. Weste and K. Eshraghian, Principles of CMOS
VLSI Design: A System Perspective, 2nd Ed.,
Addison-Wesley, 1992.

[10] F. N. Najm, “Transition density: a new measure
of activity in digital circuits,” JEEE Trans. CAD,
vol. 12, no. 2, pp. 310-323, Feb. 1993.

[11]J. W. Kang, C. L. Wey, and P. D. Fisher,
“Application of bipartite graphs for achieving
race-free state assignments,” IEEE Trans.

Comput., vol. 44, no. 8, pp. 1002-1011, Aug.
1995.

[12] C. L. Su, C. Y. Tsui, and A. M. Despain, “Saving
power in the conirol path of embedded
processor,” IEEE Design & Test of Computers, pp.
24-30, Winter 1994,

{13] M. R. Garey and D. S. Johnson, Computer and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company,
1979.

[14] T. Villa and Sangiovanni-Vincentelli, “NOVA.:
state assignment of finite state machines fof
optimal two-level logic implementation,” IEEE
Trans. CAD, vol. no. 9., pp. 905-924, Sep. 1990.

Table 1. Experimental results (I)

ST ATE Hong et al. | NOVA | Lower Bound
n-cube | SA | Cubes SA SA SA

bbara 41 0.279 26 0.295} 0.459 0.223
bbsse 41 0.776 31 0.856] 1.495 0.673
bbtas 3| 0.443 9 0.561 0.809 0.443
cse 4] 0.239 48 0.292 0.604 0.228
donfile 51 1.125 45 1.083(1.750 0.750
ex6 3} 1.009 30 1.009] 1.530 0.803
keyb 5| 0.556 58 0.647f 1.469 0.549
modulo12 4] 0.500 12 0.583| 1.000 0.500
planet 6{ 0.984 103 1.153(2.833 0.960
sl 5] 1.175 91 1.131] 1.698 0.731
sand 5| 0.610 109 0.604] 1.083 0.491
shiftreg 3| 1.000 10 1.000{ 1.500 1.000
styr 5| 0.553 99 0.578} 1.276 0.511
tav 21 1.000 10 1.000| 1.500 1.000
Total 10.249 681 10.792] 19.006 : 8.862

Table 2. Experimental results (IT)

STATE |NOVA | Lower Bound
n-cube | SA | Cubes| SA SA

exl 5 1.135 47f 1.938 0.809
exd 41 0.957 18] 2.261 0.870
opus 41 0.712 171 1.449 0.650
scf 7} 0.845 147 1,787 0.750
trainll 4] 0.714 10| 0.786 0.571
Total 4.363 239| 8.221 3.650

220

