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Abstract

A unified model US? which contains a pair of
encoder-decoder and a channel is presented to em-
ulate the secret sharing systems of various schemes.
Depending on collusion is permitted or not in the par-
ticular system, the encoder-decoder pair and chan-
nel vary. The channel for collusion- nonpermissible
US? is developed. Its capacity is derived and used to
establish the bounds on the (I,p,r,n) secret sharing
scheme. The channel and a possible coding scheme
is investigated as well for US? which allows players
collude.
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1. Introduction

In cryptographic and large distributed systems,
when a group of people share a common key, it is
highly desirable to have robust key management such
that a maximum level of secrecy gprivacy) can be
achieved while allowing tolerance of faults (resiliency)
and non-participation (reconstructability). In real-
ity, there is a trade-off among these essential require-
ments. Several schemes have been devised to achieve
certain level of these requirements such as noncheat-
ing (k,n) threshold scheme by Shamir and Blakley
which achieves n/2 privacy and n/2 reconstructability
[14, 7], t-cheater identifiable glc,n) threshold scheme
which has reconstructability of £+ 2t by McEliece and
Sarwate [17] or k > 3¢ + 1 by K. Kurosawa et al. [5],
and (t-private, ¢-resilient) scheme which can achieve
n/3,n/3) by Ben-Or et al.’s fault- tolerant protocol
2] or (n/2,n/2) with exponentially small probabil-
ity of error by Rabin’s information checking protocol
[13]. However, a specific bound to inform the designer
about what levels can be achieved in reconstrutablity,
privacy, and resiliency is lacking,.
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As Shannon pointed out there is a unified model
for cornmunication, systems such as radio, television,
satellite, etc. even though their physical aspects vary
[10, pp. 144]. In this paper, we attempt to analogize
the secret sharing systems to communication systems
and present a unified model US? which contains a
pair of encoder-decoder and a channel to emulate the
secret sharing systems of various schemes. Depend-
ing on collusion is permitted or not in the particular
system, the encoder-decoder pair and channel vary.
The channel for collusion- nonpermissible /52 is de-
veloped. Its capacity is derived and used to establish
the bounds on the (I,p,r,n) secret sharing scheme
presented by Lin and Dunham [3]. The channel and
a possible coding scheme are investigated as well for
US? which allows players collude.

2. Preliminary

e A Secret sharing scheme is a method of sharing
a piece of secret information among a finite set
of players in such a way that only certain speci-
fied subsets of players can recompute the secret
information [8].

e A (k,n) threshold scheme, which was devised in-
dependently by Shamir [14] and Blakley [7] in
1979, divides the secret S into n pieces of infor-
mation called shares or shadows (s1,52,...,8.)
in such a way that the following two properties
hold:

(1), knowledge of any k or more shares makes S
easily computable; and

(2), knowledge of any k — 1 or fewer shares leaves
S completely undetermined in a sense that all
possible values of S are equally likely.

e A i-private, t-resilient scheme, which was devised
by Ben-Or, Goldwasser, and Wigderson [2] in
their distributed fault-tolerant protocol, divides
the secret S into n shares such that
(1), any t — 1 or fewer shares can’t compute §
better than a random guess; and
(2), no set of ¢ or fewer incorrect shares can affect
the reconstruction of S.
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Lin and Dunham combined the (¢,n) threshold
scheme and (i-privale, i-resilient) scheme and
presented an (I,p, r, n) secret sharing scheme [3].

e An (I,p,r,n) secret sharing scheme, which di-
vides the secret S into n shares in such a way
that the following properties hold:

(1), knowledge of any ! or more shares make S
easily computable, and ! is called reconstructabil-
iy; ’

(2), knowledge of any p—1 or fewer correct shares

leaves S completely undetermined in a sense that

all possible values of S are equally likely, and p

is called privacy; and

(3), no set of r or fewer incorrect shares can affect

the correctness of S, and » is called resiliency.

Notice that knowledge of shares implies that the
values of shares and their identifying indices are avail-
able. In the following sections, we establish a unified
model to emulate a group of players, who may not be
totally cooperative, sharing a discrete piece of secret.

3. The unified model: U S?

US? is a unified Secret Sharing Model as depicted
in Fig. 1 which contains a source encoder and a chan-
nel encoder; a discrete, symmetric, erasure, noisy
channel (memoryless or with memory); a channel
docoder and a source decoder. Depending on whether
players will collude or not, that is, whether the play-
ers will pool their shares before revealing their values
respectively, the channel could be either with memory
or memoryless.

Roughly speaking, a secret sharing scheme can be
separated into two phases: secret sharing phase and
secret revealing phase. Followings are the detailed de-

scription of how U/.S? models both phases properly.

3.1 US? models secret sharing

Only the source and channel encoders are required
to model the secret sharing phase. At first, the source
encoder encodes the secret information to an infor-
mation word using a proper source coding technique,
then the channel encoder uses an efficient channel cod-
ing method to encode the information word to a code
word with code rate less than or equal to the channel
capacity. These steps emulate the honest dealer, who
hides a secret in some finite pieces of information by
using an arithmetic or logical scheme and distributes
them to a finite set of players.

3.2 U S? models secret revealing

The channel, the channel decoder, and the source
decoder are involved in the secret revealing phase.

The channel is a discrete, symmetric, erasure, noisy
channel having equal probabilities of transmitting er-
roneous digits, or having some probability of missing
the digits. These characteristics emulate each player
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in the finite set, who holds a piece of information and
is equally likely to not participate or make mistakes
intentionally or unintentionally. Depending on collu-
sion is allowed or not in the particular secret shar-
ing scheme, the channel can be either with memory
or memoryless. When collusion is not allowed, each
player acts independently just like the output of a
memoryless channel only depends on its current in-
put. While collusion is permitted, the players may
pool their shares before revealing their values just like
the output of a channel with memory depends not
only on the current input but also on the past inputs
and outputs.

Based on the schemes that the source encoder and
the channel encoder use, the proper decoding algo-
rithms for both decoders can be chosen accordingly.
After the entire code word has been transmitted, the
decoders, which act as any group of legitimate play-
ers, can reconstruct the original information with ar-
bitrary small error probability, according to Shan-
non’s fundamental theorem of information theory {16}.
Thus, the channel and decoders act together to emu-
late secret revealing.
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Fig. 1. A Unified Model for Secret Sharing Systemn
(US?).

4. Collusion-nonpermissible U 52

In collusion-nonpermissible secret sharing systems,
all players act independently. That is, each player
(honest or dishonest) reveals the value based on
his/her share solely just like the output of a mem-
oryless channel only depends on its current input.
The shares can be any number in a large finite Galois
field GF(N) just as some channel block codes can
be generated from Galois fields. Thus, the channel
in collusion-nonpermissible U/ S? is an N-ary, discret,
symmetric, erasure, memoryless channel (NSEC).

4.1 N-ary, discret, symmetric, erasure,
memoryless channel (NSEC)



An N-ary, discret, symmetric, erasure, memory-
less channel (NSEC) is shown in Fig. 2. The set
A = {ag,ay,...,an_1} is its N-symbol input alpha-
bet, and A U {£} is its output alphabet, where £ is
the erasure symbol. Each input symbol z; and output
symbol y; has input /output transition probability of

l—e—6 fory; =,
A € .
peysles) = { o1 for y; # @; and y; # &,
) fory; =&,

(1)
where i =0,...,N—1and j=0,...,N;and ¢ and 6
are the probabilities of error and erasure, respectively,
with € + 6 < 1. A sequence of symbols zoz1...Zn-1
has input/output transition probability of

n-1

p(Yoy -1 | 2oz1 .. zn) = [] Plur | 2:)- (2)
=0

4.2 The capacity of NSEC

Theorem 1: The capacity of an N-ary, symmet-
ric, erasure, discrete, and memoryless channel with
error rate € and erasure rate § is C' = (1—e—6)log N+
hy(6) — h(e, 8,1 — ¢ —8) + elog(-ﬁl-‘_l_—l), where hy(-) is
the binary entropy function, and h(z,y,z) is the en-

tropy function of z, y, and z. For the asymptotic case,
C=(1—e-06)logN.

Proof: Theorem 4.5.1in [11, pp. 91] states that the
necessary and sufficient conditions on input probabil-
ities {Q(z)} to achieve capacity on a discrete mem-
oryless channel with transition probability P(y;lk) is
that for some number C,

H{z=FkY) =C
Iz=kY) <C

where A is the input alphabet, I(z = k,Y") is the mu-
tual information for input k averaged over the out-
puts, that is

for all £ € A with Q(k) >0
for all k € A with Q(k) =0

e 1 log —LWilE)
I(z = k;Y) zj:p(yglk)l &5~ Q) P(y i)’

and C is the capacity of the channel. Let

1
Qz=1)= -ﬁ>0fori=ao,a1.‘.,aN_1.
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Then,.for any input ¢ = k € A, we have

I(z=kY)
N-1 _ Pyilk)

3 35 Q) P(y;1)

+:—(1£|/»)1 5= 0G)P(E]i)

P(y; k)
= P(y; k)1
F%ﬁk(””°gﬁzu%wm

Pk
+ (IR og T s
N )
, P(£|k)
P(Elk)log T==—Fpr7y
PR o8 15 PR

€
N-1

=(N-1)

l—e—06 o
1—e—6)log+——=+ b0log(+—=
=(1—6—¢)log N + hy(8) — h(e, 8,1 —e—0)

N

+ elog

N-1
(3)

Since a uniform'distribution was assumed for input z,
Qz=k)>0forallz =k €A,
and hence I(z = k;Y) in (3) is the capacity. Thus

N
N-1
(4)
For sufficiently large N, log N/\i—l ~logl =0and 0 <
hs(), h(-) < log 3, and hence can be neglected. Thus,
(4) becomes

C = (1—6—¢)log N+hy(6)—h(e, 8, l—e—6)+elog

Jim C=(1—c=6)logN.// (5)

Fig. 3 shows the normalized channel capacity for
size of alphabet N =2,3,8 and 65536 respectively,
given error rate € and erasure rate 4. Notice that the
capacity approaches to 1 — e — 6 as N = 65536 and is
constant when both ¢ and § are kept fixed.

After succesfully emulated the (I,p,r,n) secret

sharing scheme by collusion-nonpermissible US?, we
are ready to establish its performance bound.

4.3 The performance bound of (I,p, 7, n)
secret sharing scheme

Theorem 2: Viewing an (n,k) code as an
(I,p,r,n) secret sharing scheme, we have that | >
k+t>p+t,andp+r < n—pfor sufficiently
large n and N, where ¢ is the number of errors and p
is the number of missing pieces and N is the size of
alphabet.

Proof. Apply Shannon’s fundamental ‘theorem to
our model, we have that for sufficiently large n and N,
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the secret can be reconstructed with arbitrary small
probability of error if a proper (n, k) code is used and
the rate R is less than the channel capacity C. Thus,
for sufficiently large n and N, we have

R<(l—e—é)logN. (6)

Since N¥ = 2"E so R = (k/n)log N. Substituting R
in (6), we have '

k <n—ne—né. (7)

But for sufficiently large n, ne is the number of erro-
neous shares, and né is the number of missing shares
based on Chernoff bound [11, pp. 127]. Thus, let
t =ne and p = néb, we have £ < n—1t—p, and so,

7l_p2k+t) (8)

which implies that the minimum number of shares
required for recovery of the secret with arbitrary small
probability of error is k1. Thus, for sufficiently large
n and N, we have

I>k+t. (9)

McElece and Sarwate [17] had related an non-
systematic linear (n, k) code to Shamir’s (k, n) thresh-
old scheme, thus there exists an non-systematic lin-
ear (n, k) code which has p = k. But linear code can
be systematic, which means that the secret S could
possibly be one of the share. Thus we have p < k.
Combine this with (9), we have [ >k +t > p+1t.

Also, from (8), t < n — p — k, which implies that
the maximum number of erroneous pieces that can
not affect the correct reconstruction of the secret is
n — p — k. Thus, for sufficiently large n and N, we
have r <n—p—k. Sincep< k,sor <n—p—pand
therefore, p+»r <n—p. //

The bold lines in Fig. 4 depict the bound of the
trade-off between (reconstructability I, privacy p),
and between (privacy p, resiliency r) of the (I, p,» n)
secret sharing scheme.

5. Examples

5.1 Non-systematic linear-coding (I, p, », n)
secret sharing scheme

An non-systematic linear-coding (/,p,r,n) secret
sharing scheme is an (/, p, 7,n) SSS realized by an non-
systematic linear code. From [12], an non-systematic
linear (n, k) code word, when expressed explicitly, is
s; = f(ag) for i = 1,...,n, where f(z) = ap + ayz +
.+ ap_12*"1 ag,ay,...,ap_1 are randomly chosen
from a uniform distribution of integers in a large finite
field GF(N) and a;’s are non-zero, distinct elemets
in GF(N). Let the secret S be ag, the information
word be (S,ay,...,ar—1) and the channel code word
be (s1,...,5,), such non-systematic linear codes can
emulate the honest dealer sharing the secret S with n
players.
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Fig. 2.

An N-ary, discrete, symmetric, erasure,
memoryless channel.

Since the players in this scheme are possibly cheat-
ing and nonparticipating, they can be emulated by
the channel in collusion-nonpermissible {/$2.

McEliece and Sarwate had related the above non-
systematic linear (n, k) code to Shamir’s (k, n) thresh-
old scheme with t-cheater extension [17].” They
pointed out that k42t shares suffice to reconstruct the
secret based on the theory of error correcting codes
and hence we have reconstructability I > &k + 2t and
privacy p = k. Since | > k + 2t implies n — p >
k +2t, hence t < 3(n — p — k) and so the resiliency
r = 2(n— p—k). The shaded areas in Fig. 4 depict
this result.

5.2 Shamiyr’s (k,n) threshold scheme

Shamir’s scheme is a special case of non-systematic
linear (n,k) coding (I,p,r,n) scheme. In his realiza-
tion, the share s; = f(z) for i = 1,...,n. Since all
players are assumed honest, the channel is an N-ary
discrete, memoryless, erasure channel with error rate
€ = 0. Thus the capacity C' = (1 — §)log N asymp-
totically. Similar to the proof in Theorem 2, we have
k<n-—p,s0l>k and !> p. Since (k, n) threshold
scheme requires | = p, and hence it is an (I,p,7, n)
scheme with | = p = n/2. The point marked by an
"X’ as shown in Fig. 4 depicts this result when { = 0.

5.3 Ben-Or et al’s (t-private, t-resilient)
scheme

Ben-Or et al.’s (i-private, t-resilient) scheme is a
primitive (n, k) Reed-Solomon code [2],” which is also
a special case of non-systematic linear (n,k) cod-
ing (/,p,»,n) scheme. Since a full enrollment is as-



Fig. 3. The capacity of an N-ary, discrete, symmet-
ric, erasure, memoryless channel for N =2,3,8 and
65536.

sumed, the channel is an N-ary, discrete, memory-
less, symmetric channel with § = 0. Thus the ca-
pacity C = (1 — ¢)log N asymptotically. Similar
to the proof in Theorem 2, we have capacity rate
k., < n—t. But an (n, k) Reed-Solomon code can cor-
rect 1(n — k) errors [6], that is, ¢ < 1(n — k). So the
code rate k < n — 2t < k.. But Reed-Solomon codes
also have p = k based on Shamir’s argument, hence
r < 1(n - p). Since (t-private, t-resilient) scheme re-
quires p = r, and hence it is an (I, p, 7, n) scheme with
p = r = n/3. The point marked by a ’¢’ as shown in
Fig. 4 depicts this result when p = 0.

5.4 Rabin et al.’s information checking
protocol

Unlike the schemes of non-systematic linear coding
and Ben-Or et al. which use error-correcting codes to
detect and correct the erroneous shares, Rabin and
Ben-Or [13] used an information checking protocol to
validate the shares and hence to detect and identify
the cheaters.

Since the model US? enables us to realize the se-
cret sharing schemes by error-correcting and detecting
codes, the information checking protocol are not fit-

ted in US? properly.
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Fig. 4. The performance capacity for a collusion-
nonpermissible (/, p, r, n) secret sharing scheme.

6. Collusion-permissible U 5?

Unlike the model in which each player casts his/her
value according to his/her own share only, this model
deals with players who may not act independently.
In other words, the players may pool their shares
before casting their values. Depending on how the
players collude, the channel that emulates the play-
ers varies accordingly. For example, if player; casts
value; according to share; and value;_, only, then
we can emulate the players by a channel with Markov
sources. If k players collude, i.e., player, casts his/her

- value based on values of player; to playery—, and

shares of player; to player, then we can emulate the
players by a channel with the input/output proba-
bility p(ye]z*,y*~!), where =¥ denotes the shares of
player, to player;, and y*~! denotes the values casted
by player, to playere_;. Since the present state of a
channel will in a sense represent a summary of its
past history, the channel with finite memory is in fact
a finite-state channel.

6.1 A discrete, symmetric, erasure,
finite-state channel

A discrete, symmetric, erasure, finite-state chan-
nel with a finite set § = {s1,...,5.} as its set of

achievable region of linear codes
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states and two finite set I' = {b1,...,5;} and A as
its input alphabet and output alphabet can be char-
acterized by a collection of r by r transition matrices
My, , ..., My,, where M;(s;, s) represents the proba-
bility of moving from state s; to s; when the input
symbol is ¢, together with a function g that assigns to

each pair (]b, 5),beT,se€S, an element g(b,s) € A )

[1, pp. 215].

6.2 Codes for a discrete, symmetric, erasure,
finite-state channel

From [9, pp. 212], block codes, such as linear (n, k)
codes used in collusion-nonpermissible model as de-
scribed in the sections above, are designed for chan-
nels that there is no dependence on past information
bits, convolutional codes are for channels that the
ouput block depends not only on the current input
block, but also on some of the past inputs as well.
This may explains the fact that no good block codes
have been proposed yet for secret sharing systems that
allow players collude. Tompa and Woll [4] pointed
out cheating is possibly undetected if k players col-
lude when using Shamir’s scheme even choosing the
secret from a field much smaller than the field where
the shares reside.

7. Conclusions

A unified model US? is presented to model the var-
ious secret sharing schemes in which players may or
may not collude. Depending on whether collusion is
allowed or not, the channel in US? is with or with-
out memory. The channel capacity of the collusion-
nonpermissible US? is developed and used to estab-
lish the performance bound for an (I,p,r,n) secret
sharing scheme. An non-systematic linear (n, k) code
1s demonstrated to be an (I,p,7 n) secret sharing
scheme but yet not reaching the performance capac-
ity. This suggests possible existence of other codes
which might outperform the linear codes when viewed
as secret sharing schemes. The channel in collusion-
permissible /5% and possible codes for it are also in-
vestigated.
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