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Abstract

Designing shoriest-path routing algorithms for incomplete
networks is in general more difficult than for complete
networks. The reason is that most incomplete networks lack a
unified representation. One of tne coniributions of this paper
is to demonstrate a useful representation, i.e., the multistage
graph representation, for thz incomplete WK-recursive
networks. On the basis of ii, a shortest-path routing
algorithm is then proposed. With O(d-) time preprocessing,
this algorithm takes O(t) time for each intermediate node to
determine the next node along the shortest path, where d>1 is
the size of the basic building block and t21 is the level of
expansion.

1 Introduction

One crucial step on designing a large-scale multiprocessor
system is to determine the topology of the interconnection
network (network for short). In the recent decade, a number
of networks have been propo-cd in the literature [1, 3, 10,
12, 17]. Among them, the WK-recursive networks own two
structural advantages: expansibility and equal degree. A
network is expansible if no changes to node configuration
and link connection are necessary when it is expanded, and
of equal degree if its nodes have the same degree no matter
what the size is. A network viith these iwo properties will
gain the advantages of easy implementation and low cost
when it is manufactured. '

Although the WK-recursive networks own many
favorable properties (see [2, 4, 5-6, 17, 18]), there is a
rigorous restriction on their sizes. As will become clear in the
next section, the number of nodes contained in a WK-
recursive network must satisfy df, where d>1 is the size of
the basic building block and 21 is the level of expansion.
Thus, as d=4, extra 3-47=49152 nodes are required to
expand from a 7-level WK-recursive network to an 8-level
one. Almost all announced neiworks have suffered from the
same resiriction. To relieve this restriction, some incomplete
networks such as incomplete hypercubes [7], incomplete star
networks [8, 11], incompl:te rotator graphs [9] and
incomplete WK-recursive networks [13], have been defined
recently.
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In [7], a shortest-path routing algorithm for the
incomplete hypercubes was presented. In [8)], Latifi and
Bagherzadeh suggested a heuristic routing algorithm for the
incomplete star networks. Their routing algorithm is not a
shortesi-path one. Ravikumar et al. [11], on the other hand,
presented a shortesi-path routing algorithm for a special class
of the incomplete star networks that comprise ¢ k-stars,
where 1<c<k. Although shortest-path routing algorithms
have been proposed for the star networks [1] and the rotator
graphs [3], no shortest-path routing algorithms exist for the
incomplete star networks and the incomplete rotator graphs.
In this paper, a shortest-path routing algorithm is designed
for the incomplete WK-recursive networks. With O(d-r) time
preprocessing, this algorithm takes O(¢) time for each
intermediate node to determine the next node along the
shortest path.

In the next section, we formally define the incomplete
WXK-recursive networks and show that their structures can be
conveniently expressed as multistage graphs. Section 3
shows a prerequisite step for our routing algorithm. The
stages are grouped into consecutive blocks such that each
block contains one or more stages, and every two adjacent
blocks share a common stage. The union of all blocks is
exactly the set of the stages. In Section 4, a heuristic routing
algorithm is presented. By its aid, a shortest-path routing
algorithm is presented in Section 5. Finally, this paper is
concluded in Section 6.

2 Incomplete WK-recursive networks and
their multistage graph representations

In this section we first review the WK-recursive
networks. The incomplete WK-recursive networks are
defined as their induced subgraphs (graphs and networks are’
used interchangeably in this paper). It is shown that the
incomplete WK-recursive networks can be conveniently
expressed as multistage graphs. Some necessary notations
and definitions are also introduced.

The WK-recursive networks can be construcied
incrementally by grouping basic building blocks together.
Any complete graph can serve as a basic building block. Let
K(d, t) denote a WK-recursive network of level ¢ whose
basic building blocks are each a d-node complete graph,



where d>1 and 21, K(d, 1), which is the basic building
block, is a d-node complete graph, and K(d, 1) for 22 can be
constructed by connecting d K(d, ¢-1)'s as a d-supernode
complete graph (each K(d, ¢-1) is regarded as a supernode).
Each node of K(d, ) is associated with a r-digit identifier.
- The following definition is due to Chen and Duh {2].

Definition 2.1. The node set of K(d, #) is denotied by
{ar1ara..a1a0 1 a;€ (0, 1, ..., d-1} for 0<i<t-1}. Node
adjacency is defined as follows: a,.;a;5...a1a0 is adjacent to
(1) ar1a4.3...a1b, where 0<b<d-1 and b=ay, and (2) a,.10.2
waja1(ay if aptajy and ajy=ajo= ... =ao for some 1</<t-
1, where (aj)i represents j consecutive a;'s. The links of (1)
are called substituting links, and.are labeled 0. The link of
(2), if existing, is called a jlipping link (or simply flipping
link), and is labeled j. Besides, if a,.1=a,o= ... =ay, there is a
link, called open link, incident to node a,.ja..;...a;aq. The
open link is labeled ¢. Since the open link is reserved for
further expansion, iis other end node is unspecified.

K(d, ¢) coniains @* nodes. Since each node is incident
with d-1 substituting links and one flipping link (or open
link), K(d, ¢) has degree d. The structures of K(4, 1) and
K(4, 3) are illustrated in Figure 1. The substituting links are
those within basic building blocks, wheréas the links
connecting two embedded K(d, j)'s are j-flipping links. The
open links are left for future expansion. For illustration let us
consider the incident links of node 311 in Figure 1. The one
to node 133 is a 2-flipping link; the others are substituting
links.

Figure 1. The structures of K(4, 1) and K(4, 3). This
figure also shows two routing paths between 033 and 133.

Definition 2.2. Define ¢, yc..3...c'K(d, m) to be the
subgraph of K(d, ¢) induced by {¢;.1 C1.2...Cm@m-1...a10 | aj
€{0, 1, ..., d-1} for 0<j<m-1}, where 1<m<t and ¢,.1, ¢;0,
-s Cn e all integers from {0, 1, ..., d-1). That is, ¢ ices
CrmK(d, m) is an embedded K{(d, m) with identifier ¢,.1¢,2
vl

For example, refer to Figire 1, where 31-K(4, 1) is the
subgraph of K(4, 3) induced by (310, 311, 312, 313).
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Definition 2.3. Node a,.1a,.2...a1a¢ is a k-frontier if
apa= ... =ay=ay, where 1<k<r,

By definition a k-frontier is automatically an /-frontier for
1<i<k. Both end nodes of a k-flipping link are k-frontiers.
An embedded K(d, m) contains one (m+1)-frontier and d-1-
m-frontiers. These d frontiers are 27-1 distant from each
other.

The incomplete WK-recursive networks, which were
originally defined in [13], are induced subgraphs of the WK-
recursive networks. If we number the nodes of K(d, )
according to their lexicographical order, then an N-node
incomplete WK-recursive network is the subgraph of K(d, )
induced by the first N nodes. Throughout this paper, we use
IK(d, ¢) to denote an N-node incomplete WK-recursive
network, where d“1<N<d* and N is a multiple of 4.

The coefficient vector of IK(d, 1) is defined as the (¢-1)-
vector (.1, by.a, ..., b1) such that N=b,4 d"1+bt.2d"2+
+b1d, where 0<b,<d-1 for all 1<m<t-1. IK(d, ¢) with
coefficient vector (b1, by.y, ..., b1) coniains b, embedded
K(d, m)'s with identifiers b,-lb,_g...b,,,HO, b;_lbt-g...bm.(.ll,
wees AN b1 Dy 2. Dini1(bp-1), TESpEctively, where 1<m<t-1.
For example, IK(5, 10) with coefficient vecior (4, 2, 4, 3, 4,
1, 1, 3, 1) contains the following embedded K(d, m)'s.

0-K(5, 9), 1-K(5, 9), 2K(5, 9), 3-K(5, 9)

40-K(5, 8),41-K(5, 8)

420:K(5, 7), 421-K(5, 7), 422:K(5, 7), 423:K(5, )

4240-K(5, 6), 4241-K(5, 6), 4242-K(5, 6)

42430-K(5, 5),42431-K(5, 5), 42432-K(5, 5),
42433.K(5, 5)

424340-K(5, 4)

4243410-K(5, 3)

42434110-K(5, 2), 42434111-K(5, 2), 42434112.K(5, 2)

424341130K(5, 1)

Figure 2 shows the structure of IK(4, 3) with coefficient
vector (3, 2). In the rest of this paper, coefficient vector (b1,
by, ..., by) is written as (by.y, b,.o, ..., b;, *), where 1<i<s-
1, provided b0 and b;.}=b;»= ... =b1=0. For example, (2,
0, 4, 0, 0) is written as (2, 0, 4, *), and (2, 3,4, 1, 1) is
written as (2, 3, 4, 1, 1, %).

Figure 2. The siructures of IK(4, 3) with
coefficient vector (3, 2).
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Let S, represent the subgraph of 1IK(d, ¢) with coefficient
vector (by1, by, ..., b;, *) induced by the nodes of b,.1b.o
...bm+10‘K(d, m), b;.1b;.2...bm+1 l'K(d,, m), ..., and b[-lbg.z

B 1(bin-1)-K(d, m), where iSm<:-1. That is, S,, contains
b, embedded K(d, m)'s with identifiers b,.16.3...5,410,
brabia. b, ..., and bybys...bp(by-1), Tespectively.
For example, when IK(5, 10) with coefficient vector (4, 2,
4,3,4,1,1, 3, 1, %) is concerned, S9 contains 0-K(5, 9),
1-K(5, 9), 2.K(5, 9), and 3-K(5, 9), Sg contains 40-K(5, 8)
and 41-K(5, 8), and S, contains 42434110-K(5, 2),
42434111.K(5, 2), and 42434112-K(5, 2). We note that
there is an m-flipping link between any two of the embedded
K(d, m)'s within S,,, where i<m<t-1. If each S,, is regarded
as a stage, then the structure of the IK(d, ¢) forms a (i-i)-stage
graph, denoted by S, +S;o+ ... +S;. For example, refer to
Figure 3 where the structure of IK(5, 10) with coefficient
vector (4, 2,4, 3,4, 1, 1, 3, 1, %) is represented by a 9-stage
graph. For simplicity each embedded K(d, m) within S, is
drawn as a circle, and the one with identifier b,.1b.2...0m+1],
where 0Sj<bn-1, is denoted by C/. All the links within S,

are omitted for conciseness.

2431(4 424341)°
WC§

Jl

4247
@\/@
3
J7s

Figure 3. Multistage graph representation of IK(5, 10)
with coefficient vector 4, 2,4, 3,4, 1,1, 3, 1,%).

There are min{b,, b,.1} n-flipping links between S,
and S,,.; that connect C’ and C/ j , for 0SjSmin (b, b1}
1. Besides, there may exist a u-flipping link between S, and
Sy, where t-12u>v2i and u-v>1. Such a link, if existing, is
called a jumping u-flipping link. As shown below, a
necessary and sufficient condition for the existence of
jumping flipping links has been suggested in [14].

Theorem 2.1.[14] For 1K(d, ) with coefficient vector
(bi-1, bi2, <., biy *), one jumping u-flipping link exists
between S, and S, if and only if b,>b,.1=b,.0= ... =by41<b,,
where -12u>v2i and u-v>1. Moreover, this jumping
flipping link connects C,; and

bv+1-

4
C,, where e=b, 1=byo= .. =
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Let Juev represent the jumping u-flipping link connecting
C? and C; (refer to Figure 3 for illustration). Theorem 2.1

provides a simple method to determine all jumping flipping
links from the coefficient vector (by.i, by2, ..., by, *). We
only need to examine (b1, by-2, ..., b;, *) from the left to the

right, and J,°, exists if and only if bu>by1=buo= ... =
by+1<by, where u-v>1 and e=b,.1 =bya= ... =by41.

The structure of Sp.1+S:2+ ... +5; is further explained as
follows. Since each C’ is a K(d, m), the links inside C’ are
subject to Definition 2.1. On the other hand the links
incident to CL include (1) b,,-1 m-flipping links connecting

C,?,, C;, - C’,;I, C{: ! ., and Cf";’"l, respectively; (2) one
m-flipping link connecting Cj if j<bp.1-1, Or one jumping
m-flipping link connecting C’ where I<m-1, if j=bpn.1=bp.y
= ... =by,1<by; (3) one (m+1)-flipping link connecting C’

if j<bpn41-1, or one jumping h-flipping link connecting cl )
where h>m+1, if bp>bp.1=bpo= ... =b,,,'+1=j. Both end
nodes of (1) are by1biz...bme1j(x)m € Cl and byybys...
bmsx()m e C,,, where 0=x<bp,-1 and x=j. Both end nodes
of (2) are br1bi2..bmi1j(bm)™ € C}y and bi1brs.bmii
bu()me C’ 4 (ore C 5. Both end nodes of (3) are by.1by.a...
bms2i(brms1y™ L € CL | (OF br1byg...bps1j(br)P € CL) and
br1bio.. bpsabme Y1 € C,f,~

We note that for iSm<i-1 and b,,#0, Sm+Sm-1+ ... +5;
forms an embedded IK(d, m+1) with coefficient vector (b,
bm-1, ..., bi, #) Whose each node has its identifier prefixed
with b.1b2...bme1. For example, refer to Figure 3 where
Ss+Sa4+S3+S2+S1 forms an embedded IK(5, 6) with
coefficient vector (4, 1, 1, 3, 1, %) whose each node has its

identifier prefixed with 4243. Theorem 2.1 can be applied to
SmtSm-1+ ... +S; as well.

3 A prerequisite step

In this section, a prerequisite step for our routing
algorithm is described. More concretely, an algorithm is
presented to group the stages into consecutive blocks such
that each block contains one or more stages, and every two
adjacent blocks share a common stage. The union of all
blocks is exactly the set of the stages. The algorithm will be
invoked by our routing algorithm.

The input to the algorithm is a coefficient vector (b, bp-
15 - bj, %) together ‘with an integer A, where iSm<¢-1 and
0<2<b,-1. The output is a sequence of integers myg, My, ...,
my, where k20 and m=2mo>m1> ... >my=i. The meaning of
the output is that the stages Sy, Sim-1, ..., S; are grouped inio
k+1 blocks, i.e., Sp+Smat . +Smp, SmgtSmg-1+ o +Sm,s

., and S,,,k41+S,,,k_l,1+ e +8p,. TO simplify notaiions and



without losing generality, we explain the algorithm by letting
m=t-1. The algorithm, as shown below, takes O(f) time.’
Algorithm Stage_Grouping((b.1, bi-z, ..., bi, *¥), A).  [*
0<a<h,y-1 */

1. Scan (b1, bss, ..., by, *) from the left to the right and

L3
determine in sequence.; 2y )’2-22 Jy 7, such that
A>X >Xp> ... >xn. That is, J ' is the first jumping

Y15
flipping link encountered in the scanning which has x;<A.

Each J , between J ’ and J, i

S where 1<j<n, has
el

e2x;, and each J after J *  has 22x,. Then siore x;,

X9, ey Xp in A hnked hst L If no feasible jumping
flipping link is found in the scanning, L is empty.

For example, refer to Figure 3 where the coefficient
vector is (4, 2, 4, 3, 4, 1, 1, 3, 1, ), If A=3, then two
feasible jumping flipping links, i.e., 192,7 and Js.lz, are
determined, and L contains two values 2 and 1. If A=2, only
J 5}2 is determined, and L contains one single value 1. If A=1
or 0, no feasible jumping flipping link is found, and L is
empty. Also note that 1-12y;>2,2y,>2,> ... 2y,>z,2i. By
the aid of Theorem 2.1, this step can be completed in O(r)
time.

2. Determine mo=min{r | b,>2 and b;24 for t-12j2r}. If L
containg x;>x,> ... >x,, determine m,, m,, ..., m,
sequentially as follows: my=min(r | b;>x; and b,..xl for
mo>j>r}, my=min{r | b,>x, and b2x, for my>j>r}, .
and m,=min{r | b,>x, and b2x, for m,, (>j>r).

By examining (b1, br.2, ..., bj, *) from the left to the
right, this step can be completed in O(¢) time. Refer to Figure
3 again. If =3, we have my=9, m;=5, and m,=2. If 1=2,
we have my=5 and m;=2. If =1, we have my=2. If 1=0, we
have mgy=1. Also note that -12m2y,>212m12y9>292 ... =
My 1 ZYn>Zn2Mp2i.

3. Output (mg, my, ...,
following four cases.
Case 1. L is empty and mg=i. Qutput (mo).
Case 2. L is empty and my>i. Set m,=i and Output (m,
ml).
Case 3. L is not empiy and m,=i. Output (ng, my, ...,
my).
Case 4. L is not empty and i, >i. Set m,, =i and Quiput
(mo, m]: wesy Mp, mn+l)-

m,) for some k>0 .according to the

Note that k=r or n+1, and m,=i. For the example of
Figure 3, (9, 5, 2, 1) is output if A=3, (5, 2, 1) is output if
=2, (2, 1) is output if A=1, and (1) is output if 1=0.

Clearly the time complexity of the algorithm is O(). The
outpui (mq, ntq, ..., my) defines k+1 blocks, denoied by By,
By, ..., By, where Bo=5;1+S.2+ ... +55, 2nd B,=Snm, +
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Sm, 1t -
and B, contain one common Stage S,,,r .
lemma, we use x, (0 represent .

. +Sp, for 1<r<k. Any two adjacent blocks B;.,
. In the following

*2 g
Lemma 3.1.[14] Let J, o z ) J),2 2,0 J, 7, and mg,

my, ..., M, be defined as in Algonthm Stage Grouping.
Then, for 1<j<n,

(1) m]~1—y ?

(2) if mj,>y), then by, >(x_ )b, m; 12 e 2b,j;

(3) z;2m;;

4) 1% zpm, then b, :>%js b >%js and bg2x; for z>q>m;;

5) x,—mm{b,,l " ,,,_1_1, by, ey b,], veos bmj].

See [14] for the proof. To help understanding, this
lemma is illustrated with Figure 4 where m;.,>y; and z>m;

are assumed. Two blocks Bj.; and Bjare shown, which
intersect with S

eee Bj4 B; X
n Sz 'Jm‘Sm -1 S S S

mz.d ol oo iT Q...o...o

‘ 0
@ >
. o _0O .

S .
o o o O él-yl‘ z]° ®
Q|- o .
dyj-l' %’-1_: o
o b

Figure 4. Nustration of Lemma 3.1,

3 Xp
Y2.23" 7 Y ¥Va2,
known to be the leftmost and upmost jumping flipping links
in By, Bs, ..., B,, respectively (the smaller the value X is,

the upper J;’zj is). That is, for any

According t0 Lemma 3.1, are

e
J,» In Bj we have u<y;

. . x;
and e2x; (in fact, we have u<z;if .{fﬁjyj,%). We note that Bo

may or may not contain jumping flipping links, and B4, if

existing, does not contain any jumping flipping link. To say
more precisely, for B,.; we have bmn>(xn2)bm“_12

2bp_ (mp+1=i). We also note that- Bg contains at least one
stage, B; for 0<j<n contains at least three stages, and Bj.,, if
existing, contains at least two siages.

4 A heuristic routing algorithm

In this section, we present a heuristic rounting algorithm
for IK(d, t). The length of the routing path can be determined
in O(¢) time. It is shown that the routing path is the shoriest
for some sepcial cases. In the rest of this paper, we use X
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and Y to denote the source node and the destination node,
respectively.

First of all, we have to review Vecchia and Sanges's [17]
routing algorithm for K(d, f) because it will be invoked by
our algorithm. For any two nodes A and B in K(d, 1), we
define A =, B if they belong o the same embedded K(d, r),
and A #, B otherwise, where 1<r<¢. For example, refer o
Figure 1 where 300=2321, but 300%; 321. A routing path
from X 0 Y within K(d, ¢) can be determined by the
following procedure [17].

1. Determine the level r, wheie 1<r<t, such that X=,¥ and
X#47.

2. Determine the flipping link. say (W, Z), such that X=,;
Wand Z=,,Y. '

3. Determine the routing path from X to W, and the routing
path from Z to Y, all in a rescursive manner.

A routing path from X to Y is obtained by concatenating
the routing path from X to W, the flipping link (W, Z), and
the routing path from Z to Y. For example, the routing path
from node 033 to node 133 within K(4, 3) is shown with
bold lines in Figure 1. It has been shown in [2] that the
maximum length of the routing paths is not greater than D,,
where D=2%-1 is the diameter of K(d, f).. The routing
algorithm, although simple, does not guarantee the shortest
path. For example, the shortest path from 033 to 133 is
shown with dashed lines in Figure 1. Let p(X, Y) denote the
routing path from X to ¥ within K(d, ) that is obtained by
Vecchia and Sanges's algorithm. Chen and Duh [2] have
proven the following three lemmas.

Lemma 4.1.[2] Suppose X and Y are iwo nodes of
K(d, ). If X=,Y and X (or Y) is an r-frontier, where 1<r<y,
then p(X, Y) is the shortest.

Lemma 4.2.[2] Suppose X=Xx;.1Xp.2...X1X0 and Y=y, ¢
Ye2...¥1¥o are two nodes of K(d, 1). f X=,Y and X (or ¥)
is an r-frontier, where 1<r<y, then p(X, Y) has length equal
o » 2.

0<j<t-1
X;®Y;

Lemma 4.3.[2] Suppose X=x;1x:.2..X1X0 and Y=y, ¢
Ye2...¥1Y0 are two nodes of K(d, ¢). If X=,Y and both X
and Y are r-frontiers, where 1<r<y, then p(X, Y) has length
equal io D,=2r-1.

By Lemmas 4.1, 4.2, and 4.3, the distance between X
and Y can be determined in O() time if X =,Y and either X
or Y is an r-froniier, and O(1) time if X=,Y and both X and
Y are r-frontiers. .

Now we are ready 0 describe the routing algorithm for
IK(d, ). Suppose the IK(d, ¢) has coefficient vecior (b1,
big, ..., by, *), and without loss of generality, assume X
eCf and Y e C¥, where igf<i-1, i<g<i-1, 0<a<by1, and
0<p<h,-1. To simplify our discussion, we further assume
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f=t-1. Let ip(X, Y) denote the path that the routing algorithm
traverses from X to Y. The routing algorithm is o be
explained by means of the construction of ip(X, Y). If g=t-1,
we simply let ip(X, Y)=p(X, Y). That is, ip(X,Y) is
constructed as a concatenation of p(X, W), (W, 2), and p(Z,
Y), where We Cq, ZeC fl, and (W, Z) is the flipping link
between Cfl and Cfl.

If g<t-1, with (b1, bra, ..., by, *) and « as input
Algorithm Stage_Grouping is executed 1o produce (g, m,
.y 1), Where k20 and my=i. So, we have Bo=S.1+S5.2+
+S,,,0, Bi=Sn+Smp1t ... +S,,,,, .., and Bk=8mk,1+

Smy -1+ oo +Sm,. Suppose Y€ By, where 0<i<k. Two cases

have to be considered.

Case 1. I=0.

In this case ip(X, Y) is constructed within Bg. Since ¢-
1>g2mg, we have bg>a or bg=a. If b>e, ip(X, Y) is
constructed as the path that passes the circles C:l, C ,‘_'2, e
Cg, Cg in sequence (refer to Figure 5(a), where a<f is
assumed). Each subpath inside a circle is obtained by
executing Vecchia and Sanges's algorithm, and each subpath
between two adjacent circles is a (jumping) flipping link. We
also note that some of C,y, Cla, ..., Cy, C}p May not exist.
For example, if there is a;J,f{’,.3 in Bg, then b,.o=c. S0, Cpy
is not existent and should be removed from the sequence.
For all the sequences of circles that appear subsequenily, we
follow the same convention.

If by=c, there exists a jumping flipping link, say Ju‘."v,
under S,, where u>g>v, and ip(X, ) is consiructed as the
path that passes C5, C o, v Con Con CH €L, oo Cin
sequence (refer to Figure 5(b)).

Case 2. I>0.

In this case, ip(X, Y) contains' [+1 subpaths that are
within By, By, ..., By, respectively, and any adjacent iwo are
joined by a flipping link. Let (e>)x>x,> ... >X, be defined
as in Algorithm Stage_Grouping, i.e., x=min{bn, , bm, 1,
s b,,,}.} for each 1<j<n (by Lemma 3.1), where n=k or k-1,

The subpath within By passes C,;, C o 29 wes C ,?,0, and the

vig X
subpath within B, passes C;’ e C;’ (10 e C ", where
Fe re

m,?
1<r<l-1. The subpath within B; is explained below.
If no jumping flipping link exists in B; (J=k=n+1 in this
case), the subpath passes C,n“, Cinpy-1s oo C g. Otherwise
(l#n+1), let J;'z’ be the lefimost (and upmost) jumping

flipping link in B;. Five subcases have io be considered as
follows.

Subcase 1. g2y, The subpath passes cﬁm, Cf,l.l-l, s
C? (by Lemma 3.1 b, >bp, 12 ... 2by).



Subcase 2. g=y,-1. The subpath passes C,ﬁ,_l, C ,ﬂm-l,

s C'g (by Lemma 3.1 (bg=)x=min (by, , b, 1,
o b ).
X, X
Subcase 3. z<g<y,-1. The subpath passes Cm:], Cﬂ;.rl’
5 % LB LB B
o €y €1, Co Caa, o C1.
Subcase 4. g<z; and b,>x,. The subpath passes C,:i o
* X ~% X ~B
Coyetr = Cyly € e €2, CH.
Subcase 5. g<z; and by=x,. By Theorem 2.1 there is a

jumping flipping link. say 4 xv', under S, (note that
b, >x) and b, >x;). The subpath passes C,:L, c

my ,-1°
X % x B B B
oes C)’I’ C’t’ eer Cu', Cv', Cor Coits oo Cg.

S Sip Sg ove Sy
O O O o

¢
C,_‘]x Cl-a ° C: o
60 O

: :
. ; ct

: obtained by executing
O 7 O Vecchia and Sanges's
6 algorithm

: flipping (or jumping
flipping) link

o o0

"Figure 5. Two examples of ip(X, Y). (a) bg>oa (b) bg=a.

Now we show a more concrete example for the
construction of ip(X, Y). Refer to Figure 6. Let X=
3AAAAAAMAA and Y=4243410AAA be two nodes in TK(5,
10) with coefficient vecior (4, 2, 4, 3, 4, 1, 1, 3, 1, %),
where A is a don't care symbol. Since X € C;' and Ye Cg, we
have =3, p=0, and g=3. With (4, 2, 4,3, 4,1, 1, 3, 1, %)
and 3 as input, Algorithm Stage_Grouping determines x=2,
x,=1, and produces (mg, my, m,y, m3)=(9, 5, 2, 1). So,
Bo=S89, B1=S¢+Sg+857+S¢+55, Bo=85+84+53+52, and
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B3=58,+§). Clearly, ¥ belongs to B, and ip(X, ¥) contains
three subpaths that are within By, By, and B, respectively.

The subpath within Bg passes Cg. The subpath within B,
passes Ca, C%, C%, and Ci—. Since 151.2 is the leftmost
Jjumping flipping link in B,, the subpath within By passes
C;, C;, Cg, and Cg The entire path is shown with darkened

lines in Figure 6. For the same example, if Y e Cg, then the
subpath in B, which is shown with lightened lines in Figure
6, passes Cg and Cf.

CIETETD
: obtained by executing
Vecchia and Sanges's
algorithm

: flipping (or jumping
flipping) link

Figure 6. Another example of ip(X, Y).

It is not difficult to see that the length of ip(X, Y) can be
determined in O(¢) time. Recall that ip(X,Y) can be
expressed as an alternate sequence of paths and links, say
(P1, 11, Py, by, .oy Pe, L, Peyy), where 1<c<2¢. Each I,
1<k<c, is a (jumping) flipping link, and each P4, 1<g<c+1,
i a path that is obtained by executing Vecchia and Sanges's
algorithm on some embedded K(d, /). Moreover, the two end
nodes of P, are j-frontiers if 2<g<c, and at least one of the
two is a j-frontier if g=1 or ¢c+1. By Lemmas 4.1, 4.2, and
4.3, we have the following lemma.

Lemma 4.4. The length of ip(X, ¥) can be determined
in O(¢) time,

Besides, ip(X, Y) is the shortest if X is a -frontier of
Se1.

Theorem 4.1.[14) If X is a -frontier of S,.,, then
ip(X, Y) is the shortest.

Thus far we have assumed X e C;, YeC g, and f=¢-1,

Now we consider the situation of f<z-1. If ¢-1>f2g>i, the
routing algorithm is executed on SprSpa+ ... +5;, in spite of
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Se1+So+ ... +5p4. In this case, ip(X, Y) is entirely
contained in Sp+Sp1+ ... +5;. We note that Sp+Sp.q+ ... +§;
forms an embedded 1K(d, f+1) with coefficient vector (b,
bg, ..., bi, *). On the other hand, if -12g>f2i, ip(Y, X) can
be constructed, and so we simply let ip(X, Y)=ip(Y, X),
regardless of their directions. The following corollary holds
as a consequence of Lemma 4.1 and Theorem 4.1.

Corollary 4.1. If X or Y is a i-frontier of S;.;, their
distance can be determined in O(F) time.

Tt is possible for a ¢-frontier (at most one) 1o be positioned
ouiside S;.;. Fortunately, Corollary 4.1 remains irue even if
X is such a ¢-frontier.

Corollary 4.2.[14] If X or Y is a ¢-frontier of IK(d, 1),
their distance can be determined in O(¢) time,

5 A shortest-path routing algorithm

In this section, we first show that the shortest path from
X to Y can be determined in O(d-¥) time. Then we show that
it takes only O(¢) time for each intermediate node to determine
the next node along the shortest path. Suppose the IK(d, ¢)
has coefficient vector (by.1, br-2, ..., bi, *). We first assume
XeCpy and Ye CP, where 0<asby-1, isg<r-1, and 0p<

bg-1. There are two cases (o be discussed below.
Case 1. g=t-1. If a=p (i.e., X and Y reside in the same

embedded K(d, 1-1)), Chen and Duh's shoriest-path routing.

algorithm [2] can be applied to determine the shortest path
from X to Y in O(¢) time, Otherwise (e=p), it takes O(by.1+1)
time (o determine the shortest path from X t0 Y as explained
as follows. First, we note that the length of ip(X, Y), which
is at most Dy.4+1+D;1=2%1, serves as an upper bound on
the distance beiween X and Y. Hence, we only need to
examine at most b,y paths: one is ip(X, Y), another goes
through the embedded 1K (d, i-1) with coefficient vecior (b,
br3, .., by *) (i€, Sp2+8p3+ ... +8;) (refer to Figure 7),
and the others each go through one intermediate embedded
K(d, i-1). The path of Figure 7 is not existent if node
by.1(a)*! or node b,.;(B)*! is not existeni. For other paths
that go through two or more intermediate embedded K(d, -
1)'s, their lengths are at least 14D, +14+D,1+1=2/+1.

Since the shortest path is concerned, the subpaths inside
embedded K(d, i-1)'s and IK{d, i-1) are required io be the
shoriest. For those subpaths inside embedded K(d,¢-1)'s,
their lengths can be determined in O() time by Lemmas 4.1,
4.2, and 4.3. On the other hand, if the subpath inside the
embedded TK(d, -1) is existent, its length can be determined
in O(1) time by Corollary 4.2. Consequently, we can
determine the shortest path ficm the b,.; paths in O(b,.l £)
ime,
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: obtained by executing
Vecchia and Sanges's
algorithm

: flipping link

Figure 7. The path that goes through the embedded
IK(d, t-1) with coefficient vector (b, b3, ..., by ).

Case 2. g<t-1. If b,_1<b,_2, there are b,y (¢-1)-flipping
links that connect C;; and C/,, for all 0<j<b,_;-1. Any route
from X to Y will waverse one of them. Since a path from X
to Y that goes through two intermediate embedded K(d, ¢-
1)'s can be replaced with a shorter. path that goes through
only one intermediate embedded K(d, i-1), we only need to
examine b,.; paths: one does not go through any intermediate
embedded K(d, ¢-1), and the others each go through one
intermediate embedded K(d, t-1). The shoriest path can be
determined from the b,.; paths in O(by.; +f) time similarly.

If b.1>by.3, there are by (1-1)-flipping links that connect
C, 1 and C,’ , for all 0Sj<b.»-1. Besides, a jumping flipping
link that connects Cf_"lz and Cf" -2 may exist, where i<r<¢-2,

Any route from X 0 Y will raverse one of them. Since these
links connect Sy.; and the embedded IK(d, ¢-1) formed by
Si.o+Se3+ ... +5;, their both end nodes are all (¢-1)-frontiers.
So, the shortest path can be determined in O((b,.o+1)-1) time
similarly.

Thus far we have assumed Xe Cf, Y € Cg, and f=¢-1.
Now we briefly discuss the situation of f<i-1. If -1>f2¢>i,
we can determine the shortest path within Sp+-Spy+ ... +5;
for the reason as follows. It has been shown in [13] that
2:+2¢-1-26-1 is a tight upper bound on the diameter of IK(d, 1)
with coefficient vector (br.1, br-2, ..., bi, *). This imposes an
upper bound of 2*+1+2/-2i-1 on the distance beiween X and
Y because Sp+Sp1+ .. +5; forms an embedded IK(d, f+1)
with coefficient vector (by, br.y, ..., b;, *). So the shoriest
path from X io Y is contained in the embedded TK(d, f+1),
for otherwise its length is at least 14Dy 414Dy +1= 224
1>2+14:2/.2i-1. On the other hand, if f<g, the shortest path
from X to Y is identical io the shoriest path from ¥ 0 X,
regardless of their directions. The following theorem
summarizes our discussion above.

Theorem 5.1. The shortesi path between any (wo
nodes of IK(d, f) can be determined in O0(d-¢) tme.



A distributed algorithm can be found in [14], which takes
O(¥) time for each intermediate node to determine the next
node along the shortest path once the shortest path being
determined by the source node. The interested readers are
encouraged 0 ask for this report.

Theorem 5.2.[14) With O(df) time preprocessing
performed by the source node, it takes O(7) time for each
intermediate node to determine the next node along the
shoriest path.

6 Concluding Remarks

Generally speaking, shortest-path routing on incomplete
networks is more difficult thanon corresponding complete
networks. For example, there is a shortest-path routing
algorithm [1] designed for the star networks, but no shortest-
path routing algorithm is available for the incomplete star
networks. The shortest-path routing algorithm proposed in
[11] is applicable only to the incomplete star networks of size

c-k!, where 1<c<k. Latifi and Bagherzadeh have suspecied -

(see [8]) that designing a shortest-path routing algorithm for
the incomplete star networks is difficult, and even if such an
algorithm exists, the optimality of the algorithm may not
justify its complexity. Besides, no shortest-path routing
algorithms for the incomplete rotator graphs and the
incomplete WK-recursive networks were designed before.

One contribution of this paper is to demonstrate a useful
representaiion, i.e., the multistage graph representation, for
incomplete networks. The multistage graph representation
can provide a uniform look at ihe incomplete WK-recursive
networks. By its aid, we have successfully designed an
efficient shortest-path routing algorithm for the incomplete
WK-recursive networks.

The readers who are interested in the incomplete WK-
recursive networks are refered to [13, 15, 16] for more
results.

References

[1} S. B. Akers, D. Harel, and B. Krishnamurthy, "The
star graph: an attractive alternative to the n-cube,” in
Proc. of the Int. Conf. on Parallel Processing, 1987,
Pp. 393-400.

(2] G. H. Chen and D. R. Duh, "Topological properties,
communication, and computation on WK-recursive
networks,” Nerworks, vol. 24, no. 6, pp. 303-317,
1994,

(31 P. Corbett, "Rotator graphs: an efficient topology for
point-io-point multiprocessor networks," IEEE Trans.
on Parallel and Disiributed Systems, vol. 3, no. 5, pp.
622-626, 1992.

(4] D.R.Duhand G. H. Chen, "Topological properties of
WEK-recursive networks," J. of Parallel and Distributed
Computing, vol. 23, no. 3, pp. 468-474, 1994.

243

(3]

(6]

(7]
(8]

9

(10

[11]

[12]

[13]

[14]

(15]

(16}

(17]

(18]

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

k. Fernandes, D. K. Griesen, and A. Kanevsky,
"Efficient routing and broadcasting in recursive
interconnection networks,” in Proc. of the Int. Conf.
on Parallel Processing, 1994, pp. 51-58.

R. Fernandes, D. K. Friesen, and A. Kanevsky,
"Embedding rings in recursive networks," in Proc. of
the Int. Symp. on Parallel and Distributed Processing,
Oct. 1994, pp. 273-280. ‘

H. P. Katseff, "Incomplete hypercubes," IEEE Trans.
on Computers, vol. C-37, no. 5, pp. 604-608, 1988.
S. Latifi and N. Bagherzadeh, "Incomplete star: an
incrementally scalable neiwork based on the siar
graph,” [EEE Trans. on Parallel and Dzstrzbuted
Systems, vol. 5, no. 1, pp. 97-102, 1994,

S. Ponnuswamy and V. Chaudhary, "Embedding of
cycles in rotator and incomplete rotaior graphs," in
Proc. of the Int. Symp. on Parallel and Distributed
Processing, Oct. 1994, pp. 603-610.

F. P. Preparata and J. Vuillemin, "The cube-connected
cyeles: a versatile network for parallel computation,”
Communications of the ACM, vol. 24, no. 5, pp. 300-
309, 1981.

C. P. Ravikumar, A. Kuchlous, and G. Manimaran,
“Incomplete star graph: an economical fault-tolerant
interconnection network," in Proc. of the Int. Conf. on
Parallel Processing, vol. 1, 1993, pp. 83-90.

M. R. Samatham and D. K. Pradhan, "The de Bruijn
multiprocessor networks: a versatile parallel processing
and sorting networks for VLSL" JEEE Trans. on
Computers, vol. 38, no. 4, pp. 567-581, 1989,

M. Y. Su, G. H. Chen, and D. R. Duh, "Topological
properties of incomplete WK-recursive networks," in
Proc. of the IEEE Second Int. Conf. on Algorithm &
Architecture and Networks, 1996, pp. 130-137.

M. Y. Su, G. H. Chen, and D. R. Duh, "A shortest-
path routing algorithm for the incomplete WK-recursive
networks," Technical Report NTUCSIE 95-07,
National Taiwan University, Taipei, Taiwan, July
1995.

M. Y. Su, G. H. Chen, and D. R. Duh, "A linear-time
algorithm for computing the diameters of incomplete
WK-recursive networks," in Proc. of the Int. Conf. on
Parallel and Distributed Systems, 1996, pp.90-97.

M. Y. Su, G. H. Chen, and D. R. Duh, "Broadcasting
on incomplete WK-recursive networks," in-Proc. of the
Int. Symp. on Parallel Architectures, Algorithms and
Networks(I-SPAN), 1996, pp.375-381.

G. D. Vecchia and C. Sanges, "A recursively scalable
network VLSI implemeniation," Fuiure Generation
Computer Systems, vol. 4, no. 3, pp. 235-243, 1988.
G. D. Vecchia and C. Sanges, "An optimized
broadcasting technique for WK-recursive iopologies,”
Future Generation Computer Systems, vol. 4, no. 3,
pp. 353-357, 1989/90.



