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Abstract
In this paper, four parallel-in parallel-out systolic
arrays are proposed for computing inversion or division
in finite fields GF(2") based on new variants of Euclid’s
algorithm with the standard basis representation. Two
of these arrays involve O(m’) area-complexity and O(1)
time-complexity. The other two involve O(m) area-
complexity and O(m) time-complexity. They are highly
regular, modular, ond thus well suited to VLSI
implementation. As compared to existing related
systolic architectures: 1) the former iwo and the one in
[14] have the same area and time complexities, but our
proposed arrays involve less hardware area; 2) the
latter two with O(m) area-complexity gains a significant

improvement in area complexity.

1. Introduction

Finite fields GF(2™) have found many applications in
areas of communications, such as error-correcting codes
[1]-[2] and cryptography [3]. In these applications,
computing inverses and divisions in GF(2") is usually
required. Since such computations are quite hardware-
consuming, it is thus desirable to design hardware-
efficient architectures for them.

There have been a number of hardware structures
available for computing inverses and/or divisions in
GF(2™) (see, for example, [4]-[14]). Among them, the
designs in [4]-[7] can only be used to compute inverses
in GF(2™). They are not systolic design and suffer from
the problem of signal broadcasting. Tt should be noted
that the signal broadcasting problem should be avoided
in designing high-speed circuits. On the contrary, the
architectures in [8]-[14] can be used to compuie both
inverses and divisions in GF(2"™) and are designed based
on the concepts of sysiolic array [15]. The area-time
complexity is 0(m3) for those in [8]-[12], O(m - 2™) for
that in [13], and O(mz) for that in [14]. It should be
noted that the existing systolic architectures involve at
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least O(m") area complexity which is still too large for
some applications, such as cryptography, etc,

In this paper, four parallel-in parallel-out systolic
arrays are proposed for computing inversion or division
in GF(2™) based on new variants of Buclid’s algorithm
with the standard basis representation. Two of these
arrays involve O(m’) area-complexity and O(1) time-
complexity. The other two involve OQm) area-
complexity and O(m) time-complexity. They are highly
regular, modular, and thus well suited to VLSI
implementation. As compared to existing systolic
designs for the same problems: 1) the former two and
the circuit in [14] have the same area and area-time
complexities of O(m®), but our proposed arrays involve
less hardware area; 2) the latter two with O(m) area-
complexity are the two with the least area-complexity
so far. Thus, they are quite suited to those applications
with very large value of i, such as cryptography.

2, A new variant of Euclid’s algorithm for
inversion/division in GF(2™)

Let A(o) and B(o) be two elements in GF(2™), G(x)
be the primitive polynomial of degree m, and C(a) =
A(a) / B(ar) mod G(o). Then we have

A@)=a, 0" +a, 0"+ - +a, 4))
Ba)=b, 0™ +b, 0"+ - +b, )
G(x)=x"+g x"" + g, X" e 4+ 2, 3
Cla)=c, 0" +c,, 0™+ - +¢, (€

B(a)C(a)+G@)D() = A(n) (5)
for some element D(o) in GF(2"), where each
coefficient of the polynomials is in {0, 1}. All
arithmetic operations in GF(2™) are performed by taking
the results mod 2, and C(0) is called the inverse of B(a)
when 4(o) = 1.

A. The original Euclid’s algorithm
To perform inversion/division operations defined
above, the following Euclid’s algorithin [2] can be used:
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R=B(a), 5=G(a);, U= A(a);, V=0,
while R=0, do
O =S5DIV R; (* DIV: polynomial division *)
temp=S5- Q- R; S=R; R=temp;
temp=V-Q.U; V=U, U=temp;
end (* V=C(a); S=1%)
One disadvantage of this algorithm is that it does not
involve a fixed number of iterations for computing C(a)
in a given field. This makes it not easily realized using
VLSI techniques.

B. A new variant of Euclid’s.algorithm

B.1 A new algorithm for computing polynomial division
with remainder
The above algorithm is composed of the operations of
polynomial division with remainder - “Q = S DIV R”,
“temp=S~ Q- R; S=R; R=temp”, and “temp=V - Q
- U, V =U, U= temp”. Here, we propose a.new
algorithm for performing the operations efficiently.
Polynomial division with remainder
(» assume m = deg Sand d=deg S—deg R> 0 %)
T = 0; state = 0; count = 0;
fori=1t02ddo
R=a-R;
if state = = 0 then
count = count + 1;
ifr,,==1 then
tmp = R;
R=R+S;
S=tmp; T=U,
state = t;
end
else
T=o0 - Tmod G;
count = count — 1;
ifr,==1 then .
R=R+8,T=T+ U,
end
if count == 0 then
V=T+V, UV,
state = 0;
end
end
end (+* OQ=SDIVR;
temp=S—Q-R;S=ad-R;R=ad-temp;
temp=V-Q - U V=U, U=temp *)
where r,, denotes the coefficieni of o of R. This
algorithm consisis of 2 iterations. Instead of having the
correot answers, R and S are multiplied by . This will
not maiter since we are not interested in the values of R
and S. TABLE I gives an example of the proposed
algorithm, where m=4, R=o’+a, S=c'+ o’ + 1, U

=a+1,V=0"+0,and d = deg § — deg R = 2. With
this case, Q=SDIV R=0o’ + a. After 2d = 4 iterations,
we have the resulis R, S, U, and V.

B.2 A new algorithm for inversion/division in GF(2")
From Sections 2.A and 2.B.1, we observe that

(1) At the beginning and end of the original Euclid’s
algorithm, the degree of 5 is m and 0, respectively (
deg G(a) = m and deg 1 = 0). That is, the total
degree reduction of S is m.

(2) Each iteration of the original Euclid’s algorithm will
decrease the degree of S by d, where d=deg S - deg
R.

(3) Performing each iteration of the original Euclid’s
algorithm using the proposed algorithm in Section
2.B.1 needs 2d iterations.

From above observations, we see that performing the

original Euclid’s algorithm using the proposed

algorithm in Section 2.B.1 needs a constant number of
2m iterations. Thus, we have the new algorithm for
computing divisions in GF(2") as follows:
Algorithm for division in GF(2™)
R=B(a); S=G=G(a); U=A(a); V=T=0;
state = 0; count = 0;
fori=1t02mdo
R=0-R;
if state = = 0 then
count = count + 1;
ifr,,==1 then
tmp =R;
R=R+S;
S=tmp; T=U;
state=1;
end
else
T=0o- -Tmod G,
count = count — 1;
ifr,,==1 then
R=R+S§5,T=T+ U,
end
if count == 0 then
V=T+V, U V;
state = 0;
end
end .
end (* V= C(a) = A(e) / B(o) mod G{(a) *)

TABLE II gives an example of the new algorithm,

where m=4, Glo)=a' +a+ 1, d@) =’ + o* + q,

and B(o) = o’ + o + 1. From this table, we see that at

the step i = 2m = 8, V has the result C(a) = A(a) / B(a)

mod Gla)=o + 1.

By setting A(a) = 1, the above algorithm can be used
to compute C(a) = 1 / B(o) mod G(w), i.e., inverse of
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B(o). TABLE 1II gives an example of computing
inverse of B(ct), where m =4, G(o) = o* + & + 1, A(0) =
1,and B(o) = o+ + 1. At the step i = 2m = 8, V has
the result C(a) = 1 / B(or) mod G(o) = o® + 1.

C. A new algorithm for inversion/division in GF(2")
From the algorithm in Section 2.B.2, we find that

(1) “count = 1” and “state = 1” always occur at the
beginning of the iteration i = 2m. During the
iteration, U is not modified and “U < V" is
performed. That is, after 2m — 1 iterations, U already
contains the resuli C(a).

(2) At the beginning of the iteration i = 2m — 2, either
“count = 0” and “state = 0” or “count = 2” and “state
= 1” occur. Under both situations, U will not be
modified during the iteration. Thus, U already
contains the result C(o) after 2m — 2 iterations.

(3) When the algorithm is used to compute inverse of
B(a), deg T increases gradually. It will increase to m
at the iteration i/ = 2m. Thus, “mod G” is needed to
perform only at the last iteration.

From above, we can discard the last two iterations and

re-write the division algorithm as follows:

New algorithm for division in GF(2™)
R=B(a); S=G=G(a); U=A4(0); V=T=0;
state = 0; count = 0;
fori=1to2m-2do

R=0-R;T=0-TmodG;
if state = = 0 then
count = count + 1;

ifr,,==1 then
tmp = R; 6
R=R+S; (I
S=tmp; T=Uj Q)
state = 1;

end

else
count = count — 1;
ifr,,==1 then
"R=R+8,T=T+U, (n

end

if count = =0 then
V=T+V, UV, (1ID)
state = 0;

end

end
end (* U= C(a) = A(a) / B(o) mod G(o) *)
Besides, it should be noted that “mod G” operation is no
more needed when the algorithm is used to compute
inverse.

3. Key operations of the proposed algorithm
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Before implementing the new variant of Euclid’s
algorithm, we demonsirate how to comipute its key
operations: “R=o - R” and “T'= o - T mod G”. Since R
and T are polynomials with degrees at most 72 and m — 1
respectively, they can be expressed as follows:

m m=-1
R=ra" +r,_a" + -+ +r ©)
m-1 m-2
T=t, 0" +1,,0 "+ - +i, )
Since G(a) = 0, we have
m m-1 m-2
o' =g 0" +g 0+ - +gy (8)
A. “R=q - R” operation
Assume that
' M ] m-1
R'=ro"+r 0" + - +r,
=a R
i+l m
=ro Hr 0+ e R0 )

Since r,, = 0 when the statement “R = o - R” is executed,
the corresponding result can be reduced as

R=r_o"+r_a"" + - +ra (10)
* Comparing (9) and (10), we have ,

=0 (1)

K=r,1<i<m (12)

It is interesting to see that if R is expressed as an (m +
1)-bit word, the result of “R = o - R” can be obtained
simply by shifting left the input data bits one position,
where the rightmost bit is set to be zero and the lefimost
bit is neglected.

B. “T = o - T mod G” operation

Let
T=t o™+t o™+ 0 41!
=o -TmodG
=t o™+t o™+ -+t modG (13)
Substituting (8) into (13) yields
T'=1,,(8,0" +8,,0""+ - +g,)
+ 0"+ e 2
=(t, 8+t )0 +(t, g, o™
+ oo (2,8, T+ g, (14)

Thus, the operation “T = o - T mod G” can be
performed based on the following two equations:
fh=1,,8
=t g+t ,,1<i<m-1

1

(15)
(16)

4. Hardware-efficient systolic array implementations
of the proposed algorithm

A. Signal flow graph of the proposed division
algorithm
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Fig. 1 shows a signal flow graph (SFG) array for
implementing the proposed division algorithm in
GF(2™), where m = 3. This array consisis of 2m — 2
Type-1 cells and 2m — 2) x m Type-2 cells. The
functions of these two types of basic cells are illustrated
in Figs. 2-3. The 7th row of this array realizes the ith
iteration. The Type-1 cell generates the control signals
Cirll, Cirl2, and Cirl3 for the present iteration as well as
computes the values of count and state for tife next
iteration (i.e., count’ and state’ in Fig. 2). The
corresponding functions are given as follows:

Ctrll = (state==0) & (r,==1) a1n
Cul=(r,==1) (18)
Cirl3 = (state == 1) & (count==0) (19)
, Jcount+1, if state =0
count’ = {count -1, if state ==1 (20)
= ((r,, == D& (state == 0))
state = state, if {or ((count = 0)& (state =1)) @D

When the coptrol signals Ctrll, Ctrl2, and Cirl3 are true,
Type-2 cells in the corresponding row execute the
operations of (I), (II), and (III), respectively. Otherwise,
they skip the operations. The operations “+” and “&”
can be easily realized using XOR gates and
multiplexers, respectively. The key operations “R = a -
R’ and “T= o - Tmod G always need to be executed at
every iteration and are realized according to the
methods described in Section 3. The (i + Dth Type-2
cell from the right evaluates the (i + I)th least
significant coefficients of R, S, U, V, and T (i.e., 1/, s/,
u/, v/, and ¢/ in Fig. 3), where 0 < i <m — 1. Besides, it
is noted that the coefficient s,, needs not to be processed
since it always equals to one. After 2m — 2 iterations,
the coefficients of result C(o) will emerges from the
(2m — 2)th row of the array.

B. Systolic array implemeniations of the proposed
division algorithm

By applying the cui-set systolization techniques [16]
to the SFG array in  Fig. 1, a parallel-in parallel-out
systolic array with maximum throughput rate can be
derived. Fig, 4 shows the resuli, where “¢” denotes 1-
cycle delay element. This array can provide one
division result at a raie of one every clock cycle after an
initial delay of 5m — 4 clock cycles.

The 8FG array in Fig. 1 is in fact a dependence graph
(DG) [17). By projecting the DG along the south
direction [17] to get a one-dimensional signal flow
graph (SFG) array and applying the cui-set systolization
techniques [16] to the comresponding SFG array, a
parallel-in parallel-out systolic array with utilization
efficiency of 50% can be derived. Fig. 5 shows the

“*”

results, where means “don’t care”. This array is
conirolled by a sequence 0*1#1%.--1% of length 4m - 4,
and is composed of 1 Type-3 cell and m Type-4 cells.
The functions of these iwo types of cells are illusirated
in Figs. 6 and 7. This array performs one iteration every
other clock cycle. After 5m — 4 clock cycles, the
coefficients of the result C(o) emerge from the botiom
of this array in parallel form. The utilization efficiency
of this array can be improved to 100% by interleaving
the input data as shown in Fig. 8, where b,."s, g,-"s, and
a:’s are the other input data. This array can produce
two results every 4m — 4 clock cycles (i.e. an average
throughput rate of producing one result per 2(m — 1)
clock cycles).

C. Systolic array implementations of the proposed
inversion algorithm

From Section 2.C, the difference between the
proposed division and inversion algorithms is that the
proposed inversion algorithm need not to perform the
“mod G” operation. Thus, the arrays in Figs. 4 and 8§
can be simplified when they are used to compute
inverses in GF(2™). Figs. 9-10 and 11-12 show the
corresponding simplified arrays and basic cells,
respectively. The iwo simplified arrays in Figs. 9 and 10
have the same throughput performances and latency as
those of the two arrays in Figs. 4 and 8, respectively.

5. Conclusions

In this paper, we have presented four parallel-in
parallel-out systolic arrays for computing inverses or
divisions in finite fields GF(2™) over the standard basis.
They are highly regular, modular, and thus well suited
to VLSI implementation. TABLE IV gives "a
comparison of the proposed arrays with those related in
[8]-[12] and [14]. From this table, we can see that 1) the
proposed arrays in Figs. 8 and 10 reach the least area-
complexity of O(m); 2) the array in [14] and the two in
Figs. 4 and 9 have the same throughput performance
and area-complexity. But according to the static CMOS
transistor count estimation [18], the transistor counts of
the arrays in Figs. 4 and 9 are about 66% and 53% of
that of the array in [14], respectively. The above
comparisons support that our arrays are very afiractive
for use in applications with large value of m, such as

cryptography.
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TABLE I
An example of our proposed algorithm for computing
poliynomial division with remainder
(m=4,R=c’+a,S=a*+a*+ 1L, U=0a+1,V=a’+0)

i count state R S U v T
0 0 o+ o a*rol+1 a+l o+ 0

1 1 0 o’ +a? ot ral+1 a+l o+a 0

2 2 1 C+a’+1 ot va’ a+1 ad+a a+1

3 1 1 o at+a’ a+1 o’ +a o’ +1

4 0 0 ol at+ ol o +0o? a+1 o +o
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TABLE I

An example of our proposed algornthm for computing divisions in GF(Z")

(G = ot ra+ 1, Ae)= Crol+o,Blay=a’+a+1)

i count state R S U V T

0 0 o +a+l a ra+l oo+ 0 0
1 1 1 o +1 a +a +0 Craltra 0 C+al+a
2 0 0 o’ +a trotra  Crolra+l drddta L+ot+a+l
3 1 1 o o +a’ Cralta+l a3+a2+cx drol+o+l
4 0 0 o* ot +a? o+l Crolra+l o +al+1
5 1 0 o’ ot + o a+l Cralra+rl  CHat+1
6 2 1 o’ o a+l Crol+a+l a+1
7 1 1 o’ o a+l o raita+l ad+a
g8 0 0 0 ot 0 a+1 Cral+o+l

TABLE II
An example of our proposed algorithm for computmg inversion in GF(Z")
(G(o) = ot +a+1,40)=1,B0o)=c’+0+1)

i count state R S U V T

0 0 oo+l o +o+1 1 0 0
11 1 ol +1 ot ral+a 1 0 1
2 0 0 o +0 ot raltra o 1 o
3 1 1 o of + o o 1 a
4 0 0 o’ ot + 0 o+ 1 o o
5 1 0 o’ of +or ol +1 o o’
6 2 1 o o ol +1 o al+ 1
7 1 1 o o o+ 1 a o +a
g8 0 0 0 o 0 a’+1 a

TABLE IV

Comparison of existing systolic arrays and the proposed systolic arrays for inversion/division in GF(2™)

Item e [81-[10] [11]&[12] [14] 4121%:1.9 g 1:;%8.10
e | 1 | e
I{fytiig ?;:2 {g% [10] i’ZzI?Z /2%3 8m =1 sm =4 sm =4
. H‘fg;iity o) o) o) O(m?) O(m)
A;f;ﬁze o(m’) 0(n) 0(m’) o’y o)
1O format Ser'%al-in Parallel-in Parallel-in Parallel-in Parallel-in
Serial-out Parallel-out Parallel-out Parallel-out Parallel-out
P [ ST o : |
Operation Division Division Division I]:r)ll\;’el:;?:n ?é; I?li:ei::i?:n Ff;gl(g)
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Fig. 1. Signal flow graph for the proposed division
algorithm in GF(2™), where m = 3.
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Fig. 8. Improving the utilization efficiency to 100% by’ iy M w, v
interleaving the input data. Fig. 11. The circuit of Type-5 cell in Fig. 9.
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Fig. 9. Parallel-m Parallel-out systolic array for
inversion in GF(2 ) with maximum throughput rate. Fig. 12. The circuit of Type-6 cell in Fig. 12.
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