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Abstract

In this paper we first propose a new design technique
based on Distributed Arithmetic (DA) scheme to
enhance high speed recursive digital filtering. The
proposed design exploits parallelism down to the bit-
level and can outperform the conventional bit parallel
design in both speed and hardware complexity. The
scheme is further improved with the introduction of
algorithm look-ahead transform and design tactics
such as structure pipelining and block processing. The
resultant design features an initiation interval as small

as the delay for computing one data bit.
1. Introduction and related work

In real time DSP applications, systems are
required to process continuous data stream promptly so
that no arriving data will be lost. Initiation interval [1].
which indicates the separation period between the
processing of two successive data. is therefore
considered as an important index to measure the real
time performance. While conventional software
programming on general purpose DSP processors fails
to meet the speed requirements, dedicated VLSI design
has been considered as an effective method to realize
the DSP algorithms with intensive computations. To
enhance the computing speed, various design
techniques such as parallel processing and pipelinig

have been widely employed to shorten the initiation
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interval. These design tactics, however, cannot be
applied arbitrarily to the recursive computing systems
where a minimum initiation interval must be
maintained to observe the data dependence constraints.
In the conventional bit-parallel design scheme, all bits
in a data word are processed atomically. Therefore, the
minimum initiation interval can at best be the delay of
the largest bit-parallel operation in one recursion. In
most cases, this corresponds to a bit-parallel
multiplication. In this paper, we propose a distributed
arithmetic (DA) based design scheme to exploit the
ph..lelism in recursive DSP computiing down to the bit
level. Distributed arithmetic [2] is basically a bit-serial
word-parallel approach. Instead of waiting for the
completion of entire data word, we can initiate the
following recusrion’s computation as soon as partial
data bits of the current recursion are derived. The
initiation interval can thus be greatly reduced with
minimum hardware overhead. Various research on
digital recursive filters have been proposed. In bit-
parallel design approach, the linear systolic array in [3]
can achieve an initiation interval two times the iotal
delay of a parallel multiplier plus two carry propagation
adders. The best known result is given in [4] which has
an initiation interval equal io the delay of two parallel
multipliers. In [5], scattered look-ahead transform is
applied first to create more algorithm parallelism.
Computing concurrency is then implemented via design

techniques such as pipelining or block processing. In
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bit-serial design approach, C.-W. Wu et al. [6] employ
look-ahead transform as well and derive a bit-level
systolic array architecture for a block pipelined second-
order IR filier. Based on a new bit-level inner product
computing scheme, C.-L. Wang et al. [7] also propose
several bit-level systolic array structures for FIR and
IIR filters.

2. ARMA filter and the bit-parallel design scheme

ARMA (Auto Regressive Moving Average) filter

is a typical recursive DSP algorithm widely used in
applications like spectrum estimation. Throughout this
paper, we will use it as an example to demonstrate our
design scheme. The transfer function of an ARMA
filter can be described as
q
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It consisis of a non-recursive MA filtering and a
recursive AR filtering. The MA filter has the difference

H(z)= (1

equation as

4q
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k=1
The AR (or IIR) filter has the difference equation as

P
Y =D ay( - k) +u)) €)

k=1
The resultant difference equation for the ARMA filter

becomes

4 q
y(n)= z a y(n—-k)y+y bx(n—k). (4)

k=1 k=1
The realization of the ARMA filter can be achieved by
cascading an AR filter with an MA filter. Note that
both AR and MA sections can be characterized by an

inner product operation.
3. Distributed arithmetic based ARMA filter designs

Distributed arithmetic structure has been found
useful in the cases such as vector analysis. inner

product and DCT (Discrete Cosine Transform) [8].
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Contrary to the lumped computing in bit-parallel
design, each data word is now accessed bit by bit, from
the LSB to the MSB. Equal-weighted bits of multiple
data words, however, are processed and accumulated
simulianeously to achieve the computing concurrency.
Multiple partial products, one from each data bit, are
now io be accumulated. This differs from the bit-
parallel designs which produce no result at all until the
last accumulation cycle is done. In DA’s approach, the
initiation interval can be greatly reduced in that the
next recursion’s computing can begin as soon as the
current recursion finishes one bit’s computing. We will
next use a four-tap MA filter to illustrate the design
scheme. The design for the AR part can be similarly
derived. By assuming the word length » of x(i) equal to

8, Eq. (2) can be rewritten as

y(H= z;o[bl Xl by Xl by xl  +byxl 120 (5)
The inner product is obtained by accumulating » shifted
partial sums. Each partial sum is the accumulation of
partial products from the bit i of all data wbrds Four
data words are now processed concurrently while the
data bits within the same word are accessed
sequentially. Contrary to the conventional ROM
implementation, we use a multi-operand carry save
adder (MCSA) network for faster generation of partial
sum. Multi-operand adder is used to reduce the levels
of summation. The carry save structure eliminates the
carry propagation process in each accumulation and
defer it to the final stage. The scheme can be
graphically illustraied by Figure 1. To avoid the carry
propagation in each accumulation step, the
intermediate result is split into three bit vectors (one for
sum and two for carries). Together with the four partial
products, there are seven operands to be added in each
bit column and a 3-bit binary is generaied. This leads to
a 7-t0-3 MCSA. If the daia width of the filter
cocfficient b,'s is equal to m. a total of m 7-0-3

MCSAs plus three m-bit latches are required for
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computing one iteration of
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Figure 1: Carry save addition for DA based inner
product operation

W= Zb, -x(j— k). This computing scheme can be

realized by a bi-directional systolic array consisting of
m MCSAs followed by a rear processor as shown in
Figure 2. The m MCSAs are reused n times to complete
one inner product operation and generate a temporary
result in three binary numbers. The final result is
obtained by combining three binaries into one.by the
rear processor. Since all data are accessed bit serially in
the DA scheme, there is no need to perform bit-parallel
summation and the rear processor is simply a 5-to-3
MCSA. The critical path of the design lies in the
MCSA with a delay of three cascaded full adders.

B 1 bit lateh

Figure 2. Basic DA computing module for MA filter

The derived sysiolic array is considered as a basic DA
module which performs pipelined inmer product

operation and can be readily adapied o MA or AR
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filtering. Assume each time step is equal to the delay of
an MCSA. For each computing recursion, it takes »

time steps to finish the partial product accumulation in

the bi-directional array and another » time sieps to

obtain all the bits of the final result from the rear,
processor. If only one such DA module is employed, we

may obtain a two-stage macro-pipelining by
overlapping the computations of two successive

recursions between the bi-directional array and the rear

processor. The initiation interval for both MA and AR
filters is thus equal to » times the delay of an MCSA.

Combining MA and AR filters, the resultant ARMA

filter design is shown in Figure 3.
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Figure 3. ARMA filter design with single DA
computing module

To achieve higher computing. rate, multiple DA
modules can be employed to handle multiple output
data recursions concurrently. The computations of
successive output data words are thus overlapped and
separated by a delay equal to the initiation interval. As
mentioned, the next recursion’s computation can be
initiated as soon as the first bit of the current recursion
becomes available. The minimum initiation interval is
equal to an MCSA delay provided n DA modules are
used. Clearly, there is a trade-off between the initiation
interval and the hardware complexity. In the ARMA
filter case. three faciors will affect the final design, ie.



the word length of input data. the word length of filter
coefficients and the tap order. Tap order m determines
the size of the MCSA. The input word lengith »
determines how many rows of MCSA array are needed.
The coefficient word length » will affect the width of
each MCSA array. Figure 4 shows a filter design with

parameter (n,r,m) = (3,8,4).

[ Rear Processor [ Rear Processor

Figure 4: Word-overlap DA ARMA filter design

In this design, each row of the MCSA array is
responsible for computing one particular bit for all
computing recursions. Final result is obtained from the

rear processor in the form of n-bit binary per time step.
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Figure 5: Word-overlap DA ARMA filier layout view

Each daia bit, nonetheless, corresponds to the results of

different computing recursions. The readers are
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referred to [9] for more circuit details. To evaluaie the
effectiveness of the proposed scheme, the proposed
ARMA filter is implemenied in 0.8 pm single poly
double metal (SPDM) CMOS technology. We choose
the design parameters (n,#,m) = (8,8.4) and employ the
maximum number of DA modules for the highest
throughput rate operation. The chip layout using a
standard cell design is shown in Figure 5. The die size
is 3404.7 by 3097 um” and the HDL simulation with
delay parameters extracted from the layout shows the

design can operate at a speed as high as 142.8 MHz.
4. Algorithm look-ahead transformation

The proposed DA scheme can be further
improved if look ahead transform is incorporated.
Look-ahead transform creates computing parallelism by
increasing the dependence distance between two
recurrent computings. Consider a 2-tap DA ARMA

filter with difference equation as follows:

2 2
y(m=3 ay(n-ky+ 3y bx(n-k) (6)
k=1 k=1

By applying the look-ahead transform twice, i.e. 2-siep

clustered look-ahead transform, we have

V) =(a] +2aa,)Y(n-3) +(ala, +a;)yn—4)

+ u(n) (7a)
u(n) =bx(n—1)+(ab, +b)x(n-2)+ (al ’b, +ap, +
ab)-x(n-3)+(ab, Zb, +ab, )x(n —4) (7b)

The dependence distance in the AR section is increased
from 1 to 3 afier the look ahead transform.
Consequently, three independent computing threads
can be achieved. Note that the number of product ierms
in the AR part (Eq 7a) remains the same afier look-
ahead transform. This means the effective initiation
interval can mow be reduced by a facior of 3. The
number of product terms in the MA part (Eq 7b),
nonetheless, will increase linearly with the look-ahead

steps. Since they are not part of the recursive loop. they
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can always be speeded up at the cost of extra hardware
complexity. After look-ahead transform, two design
techniques can be applied, i.e., structure pipelining and
block processing [10].

5. Structure pipelining and block processing for DA
ARMA filter

In structure pipelining, increased dependence distance
after look ahead transform means a finer grained
pipelining. Different computing threads are then
processed in a pipelined interleaving manner. Assume
the dependence distance is 3 after look ahead transform.
Refer to Figure 6, since MCSA is the most time
consuming processing element in the design, we may
apply the retiming procedure and divide each MCSA
into 3 stages. The clock period, as well as the initiation
interval, can now be reduced to about one third. The
speed up is almost equal to three if we neglect the setup
and hold time delays of the latches. The incurred
hardware overhead in this case is relatively small. Note
that the MA part is enlarged from 5-to-3 MCSAs to the
7-t0-3 MCSAs. The final timing diagram of the word-
overlap DA is given in Figure 7. In block processing,

duplicated hardware and the number of the computing

2(27)_2°

multiple computing threads are processed separately in
threads is referred as the block size. For a size L block
processing, a block of L input samples can be processed
concurrently and generate a block of L output samples.
Consider the same 2-iap 2-step look-ahead ARMA
filter example, thr differenvr equation in Eq (6) can be

rewritten as
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Figure 6 : The design of look-ahead DA ARMA filter
after cut-set retiming
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V(3k) = A y(3k = 3) + A,v(3k - 4) + u(3k)

#(3k) = Bx(3k — 1) + B,x(3k - 2) + B,x(3k - 3) + B,x(3k — 4)

Y3k +1) = 4, v(3k = 2) + 4,v(3k = 3) +u(3k + )
u(3k +1) = B,x(3k) + B,x(3k - 1) + B,x(3k - 2) + B,x(3k - 3)

Y3k +2) = A, y(3k — 1) + 4,3k = 2) + u(3k +2)
u(3k +2) = B,x(3k + 1) + B,x(3k) +B,x(3k - 1)+ B,x(3k - 2)
(10
where 4; and B; are precomputed coefficients. Three
basic DA ARMA filter modules are employed to
compute three systems of difference equations in
parallel. The data dependence graph (DG) for a block

size 3 AR filter is shown in Figure 8.

Projection Vector ‘

Flgure 8 : DG of the block size 3 AR filter

Note that each shaded circle represents a data word
processed bit serially. The white circle represents DA
inner product computation. Similarly, the dependence

graph of the MA filier is given in Figure 9.
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& Projection Vecior

Figure 9 : DG of the block size 3 MA filter

Mapping along the indicated projection directions leads
a systolic array design as shown in Figure 10.
Compared with the structured pipelining design where
only one 3-stage pipelined DA ARMA module is
employed, three modules are needed im the block
processing case. For the word-overlap design given in
section 3, similar speed up can be obtained as well. The
corresponding timing diagram is given in Figure 11.
Apparently, the speed up in structure pipelining design
is mainly attributed to deeper pipelining while the
speed up in block processing design is mostly due to
parallel processing. The choice between these two
techniques depends on granularity of basic computing

module.
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Figure 10 : Full blown version of a block size 3 two-tap DA ARMA filter
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Figure 13 : The timing diagram of word-overlap block processing DA ARMA filter

6. Performance comparison and conclusion

In this section. a performance comparison
between various DA designs is given. The bit-parallel
design proposed in [4] is used as the comparison basis
to other DA designs. It has the shortest initiation
interval and the least hardware complexity among other
known designs using the bit-parallel approach. The
comparison is based on the following four criteria, 1)
critical path delay or clock period 2) initiation interval
3) hardware cost and 4) design cost, which is the
product of initiation interval and hardware cost. All the
figures derived in the comparison are subject to the
delay or circuit complexity of a full adder. We also
assume both input data and filter coefficients are 8-bit
wide and neglect the delay and circuit overheads of
laiches. The comparison result i1s shown in Table 1,
where LA, BP, SP. WO represent look ahead, block
processing. structure pipelining and word overlap

schemes, respectively. Compared with the delay in the
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bit parallel design. the clock period for the basic DA

module is only equal to 37, . Since output data is bit-

serial, 8 clocks are required to obtain an output word,
which makes the equivalent initiation interval equal to

8 clock periods. i.e. 24 ¢, . Even through its speed up is

not prominent when compared with the bit parallel
approach, the hardware cost, however, is much smaller.
The word overlap DA design version basically achieves
speedup at the cost of extra hardware (ie. using
multiple basic DA modules). Four versions of look-
ahead transform designs are included in the
comparison. It is obvious that structure pipelining is
more hardware efficient than block processing design
provided the resultant pipelining stage is reasonably
large to ignore the latch overhead. Overall, the best
speed performance design in this comparison is the
look-ahead DA version with block processing. The
lowest hardware cosi design is the basic DA ARMA

filter. We also conduct a speed comparison with other



commercial machines such as TI DSP processor. Sun
Sparc workstation and Pentium PC. The result is given
in Table 2. The speed of the basic 4 tap DA ARMA
filter design (the slowest VLSI version) is derived from
HDL simulation with delay parameters extracted from
the standard cell layout. In DSP processor case, the
assembly program is hand coded and optimized. The
codes for both Sparc and Pentium ﬁacMnes are written

in C and compiled with optimization. The numbers in
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the table are the average of 10 runs. Again, the speed
performance is one to two order of magnitude faster
than the commercial machines, which proves -the

effectiveness of ouf designs.

Lt basicDA | TI320 | Sparc 20 | Pentium
Platlorms § vy o | C40-50 | model 51 | 133
maton } 4, o | s00ns | 2522ns | 4024ms

interval

Table 2: Speed comparison with commercial machines

Design bit-parallel |basicDA| WO LA+SP | LA+BP | LA+SP | LA+BP
design DA DA DA WODA | WODA .
critical path 14 3 1 3 1 3
initiation interval 28 24 8 8 1 1
hardware cost 256 68 544 94 281 748 2244
design’ cost 7168 1632 1632 748 2244 748 2244

Table 1 : Performance Analysis of proposed DA and bit-parallel designs
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