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Abstract

This paper evaluates the optimal number of memory
buffers we should include in the memory controller to
improve the system performance. We focus on
shared-bus multiprocessor (MP) systems adopting DRAM
(Dynamic Random Access Memory) as the shared
memory. In order to evaluate the design wradeoff in
various conditions, extensive simulation was conducted
by employing a commercial simulation tool. Using the
MP system model constructed in the simulation tool, we
could evaluate the oprimal number of read or write
buffers in the memory controllers under different
configurations. In addition, it could even combine the
model with trace-file under a slight modification. By
adding optimal number of read and write buffers, the
system performance is shown to increase efficiently and

significantly.

Keywords: Multiprocessor, memory buffer, simulation,

superscalar, address pipeline.

1.Introduction

Although the computational speeds of conventional
uniprocessors have increased dramatically since the first
vacuum tube computers, there is still a demand for even
faster computing power which is far in excess of what

can cwrently be supplied. Many of the proposed

solutions involve the construction of MP(multiprocessor)
systems which provide a shared-address space, allowing
used for

individual memory accesses to be

communication and synchronization. Many research
projects on such MP systems have been presented in the
literature. MP systems are used today to provide better
performance with low-cost and high-performance
MiCcroprocessors.

Currently, most commercially available MP systems
are based on the shared-memory shared-bus
architecture[1-2] (see Fig. 1)

popular for two reasons:

Such MP systems are

1) the shared-bus interconnect is easy to implement[3]
2) the shared-bus interconnect allows an easy solution
for cache coherence problems[4-5]
We are currently involved in a project to build a high
performance MP workstation. The proposed MP system
adopts the architecture in Fig. 1 and using PowerPC 620

as the processors.
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Fig. 1: Shared-memory MP architecture,
We evaluate the optimal number of memory buffers,
including read buffers and write buffer in the memory

controller under different configurations. An effective
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read or write buffer is defined as a buffer which will
affect the system performance if added to the memory
controller. By using the SES/workbench simulation tool
[6], we show that the performance of the MP system is
improved significantly by the utilization of memory
buffers and get the optimal number of buffers in the
target system.

The remainder of this paper is organized as follows.
The motivation and background are given in Section 2.
In Section 3, we discuss the approach for the
improvement of the system performance by adding
buffers in the proposed MP system. In Section 4, the
processor execution model and the system model are
addressed. In Section 5, we evaluate the maximum
number of effective memory buffers. In Section 6, we
use SES/workbench to construct the
environment for the proposed MP system and

simulation

summarize the simulation results. Finally, we have the
concluding remarks and future works.

2.Motivation and background

MP systems have emerged as a key enabling
technology in modern computers, driven by the
ever-increasing demand for higher performance, lower
cost, and sustained productivity in real-life applications.
From 1970 to 1993, the progress in design technology of
semiconductor chips has made the system performance
improved by 30% each year. With the inclusion of
parallel processing technology, the system performance
has increased by at least 70% each year now.

The processors used in the proposed MP system are
PowerPC 620's. PowerPC 620 is a highly integrated
single chip microprocessor. The major differences
between conventional RISC processors and PowerPC 620
processors are the superscalar architecture and the high
performance bus interface which supporis the MP

system[7-8].
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Fig. 2: Bus utilization for three well-kmown
shared-bus implementations.

The PowerPC 620 splits its bus into the address bus
and the data bus. In Fig. 2, we show three well-known
shared-bus implementations and the corresponding
timing charts for the address and data.

The conventional approach (see Fig. 2(a)) employs a
tenured bus in which the memory latency governs the use
of the address because the transfer of address and data
are multiplexed on a common bus. To improve the bus
performance, we could split the common bus into
separate buses so that address-only operations can be
efficiently overlapped with data-transfer operations.
This is known as address pipelining (see Fig. 2(b)).
Another further enhancement of the bus utilization is to
support out-of-order transactions (see Fig. 2(c)), that is,
the data responses do not have to be returned to the
requesting processor in the order that they came out.
The bus utilization for the proposed PowerPC 620 MP
system is based on the split iransaction method in Fig.
2(c).

The more detailed view of the proposed MP system.
architecture based on PowerPC 620 is shown in Fig. 3.
The overall performance is heavily influenced by the
design of the local cache of each processor, the
shared-bus interconnect and protocol, and the shared
memory. The large latency of memory accesses is one
of the major impediments to achieve high performance in
shared-memory MP systems. Adding additional buffers
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is an atiractive technique for hiding this latency by
allowing the overlapping of memory accesses with other
computations and memory accesses. In the next section,
we will present the proposed approach for adding
additional buffers in the MP systems.
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Fig. 3: MP system overview.
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3.Adding buffers in the MP systems

There are two places for adding memory buffers in
Fig. 3. One is between the processor and the bus, i.e., in
the BIU (see Fig. 4), and the other is between the bus and
the shared memory, i.e., in the memory controller (see
Fig. 5). In this paper, buffers in the BIU are in the
processor and thus are fixed so that we would not
evaluate on them. Instead, we evaluate the effect of
memory buffers in the memory controller.

PowerPC 620 has implemented several memory
buffers in the BIT/. There exist two read buffers, three
write buffers, and one intervention buffer which has the
highest priority. Memory buffers in the BIU are similar
to memory buffers in the memory controller.

The intervention operation on bus has become a
popular technique to reduce the read latency. The
definition of intervention is that when a read miss or

write miss bus operation occurs and some processor
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holds the modified data, the modified data will be
supplied by the holding processor. A processor will issue
bus read requests when cache misses occur. The
required data can be sourced from the memory and this is
called "memory reply". It can also be sourced from
another processor and this cache to cache transfer is
called "intervention". Whenever a read request is
acknowledged by reading data from a processor's cache,
the memory- also accepts the cache read response as a
sharing writeback. Therefore, we also include the

intervention in our model to make it more realistic.
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Fig. 4: Memory buffers in the BIU.

In Fig. 5, RAB, WAB, and WDB are added to buffer
the data from the processors to the shared memory. On
the other hand, RDB are added to buffer the data from
the shared memory to the processor. Further, we also use
IDB and IAB to buffer the intervention data which is

used to update the shared memory mentioned earlier.

l Address bus & data bus |
Data Address
l L v
® ) )
@ ) @
@ @ &

DB RDB| © | WDB

Y WAB RAB IAB

Data Address

{ Shared memory ]

Fig. 5: Adding memory buffers in the memory controller.
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RAB |read address buffer

RDB |read data buffer

WAB |write address buffer

WDB |write data buffer

I4B |intervention address buffer

IDB |intervention data buffer

4.Processor execution meodel and system model

We use a simplified processor model and assign
various probabilities to the instructions. If an instruction
is blocked and can not be issued from the instruction
dispatch unit, the processor is idle and the idle period is
called "'processor waste time" Only cache-miss bus
requests or bus control requests to the BIU can appear in
the shared bus.

Merely from cache miss and invalidation operations,
we can not tell a blocking request from a non-blocking
The potential

Whether the
processor can issue another B-request if there is already

request for superscalar processors.
blocking requests are called B-requests.

an outstanding B-request issued by the same processor
depends on if the processor can distinguish different
types of read requests, for example, the data load request
and the instruction fetch request. These two situations
are also considered in the proposed MP system. We
construct the complete‘ system model according to the
bus behavior of PowerPC 620 (see Fig. 6).
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Fig. 6: System model.
We assume that the address and data bus arbitration

mechanisms are fair, e.g., the bus arbitration adopts a

FCFS strategy. If there are several bus requests which
are already received but not granted by the address bus
arbiter, a newly arriving request afier them will wait for
their services by the address bus. After the request is
serviced by the address bus, the request enters the
memory buffers or wakes up another processor to
intervene the data. If the bus is busy servicing a request
while the arbitration for mastership for the next request is
taking place,

completely with the service time and does not contribute

the arbitration time is overlapped
to the time spent by a request on the bus. After the
detailed description of the proposed processor execution
and the system models, the evaluation is described in the

next section.

5.Evaluation of the number of buffers

For the proposed design of memory buffers, the
system performance can be affected by the memory
buffers when some specific bus request patterns occur
We observe the characteristics of bus requests and
evaluate the number of memory buffers. The simulation
part is presented in Section 6, and it can be used to
justify the evaluation here.

There is a model called CMVA (Customized Mean
Value Analysis) proposed in the literature[9-10]. It
assumes that the average task characteristics on each
processor are the same and the relationships among the
mean values of the derived times are stable and
consistent. It is clear that the uniform distribution
assumption is not reasonable, because the applications
usually have non-uniform bus request traces. Moreover,
it is difficult to obtain accurate analytical equations.
Consequenily, our main goal is on evaluating the
maximal number of effective memory buffers by a
simplified analytical analysis and discussing how the
read and writeback affect the

requests System

performance.
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The following parameters are needed for later

discussions:

T4 |the address bus access time of a bus request.

TD |the data bus access time of a block transfer
either for a cache write-back or a main memory
reply.(only burst mode transfer considered)

W4 |the waiting time of the common address bus.

WD ithe waiting time of the common data bus

Firstly, we consider the worst case that all N
processors issue a read request respectively and the
corresponding data are not intervened by another
processor and the time (WD+TD) is large enough for N
read requests to enter R4B in the memory controller.
Then the maximal number of effective RAB in the
memory controller is N because a processor cannot issue
another read request if the previous read request is still
outstanding. The above case is true if the processor can
If the
processor can distinguish two outstanding read requests,

not distinguish two outstanding read requests.

the maximal number of R4B in the memory controller
becomes 2N. Despite the invalidation may use RAB, the
service time is so short according to the bus behavior in
the proposed system that the maximal number of
effective RAB is less than 2.  WAB/WDB is dependent
on the write-back requests. When a processor issues
write-back requests to its BIU, ideally these requests will
not block the processor's computation. But if the time
(WA+TA) is too large and there are not enough
WAB/WDB in the BIU, the next write-back requests can
see the.previous write back request and the processor
will be blocked due to the fact that the WAB/WDB in
the BIU is full However, the WAB/WDB in the memory
controller can be used to eliminate this possibility of
The maximum number of
effective WAB/WDB in BIU depends on the maximum
number of write back requests which the processor can
If there are m WAB/WDB
buffers in the B/U, the maximal number of effective

blocking the processor.

distingnish among them.

WAB/WDB in the memory controller is mN under the
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assumption that the processor has instructions like Flush
and can only distinguish their own m write back requests.
Notice that the probability of replacement or flush is also
a factor of WAB/WDEB. Therefore, the maximum number
of WAB/WDB in the memory controller depends on the
maximum number of WAB/WDB i BIU.

As to the maximal number of effective RDB, we
know that it could buffer the data from the memory to
the processor. As mentioned earlier, the maximum
number of effective RAB in the memory is N or 2N,
depending on whether the processor can distinguish two
different read requests. The maximal number of
effective RDB is equal to the maximal number of RAB,
since the data accessed by the addresses in R4B enters
into RDB.

Although the maximal number of effective R4B in
the memory controller is only a function of N, the
optimal number of R4B in the memory controller is also
affected by the WAB/WDB in the memory controller.
Since for the memory controller, there is no preference
given to the requests in RAB or the requests in
WAB/WDB, the read requests and the write-back requests
enter the memory one by one in turm. Thus, the requests
in WAB/WDB will delay the requests in RA4B, There are
many feedback interactions among these parameters.
Although it is hard to get a function that explicitly
represents their interactions, we know there are two main
With

increasing number of RAB, the possibility that read

factors that affect the system performance.

requests would stay in the BIU and thus block the
processor will be greatly reduced. The result is an
improved sysiem performance. On the other hand, with
increasing number of WAB/WDB, the first one is the
same as the case of R4B and has a positive impact.
Secondly, the larger queue of WAB/WDB means that
more write requests could stay in these buffers. This
means that a read request must now wait for more

requests to be finished. Consequently, the response time
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of a read request becomes longer and greatly increase the
blocking probability. The net effect is underestimated.
By observing the simulation result, we can obtain the
result of their dependency.

6. Simulation by SES/workbench

This paper builds a MP system model using
SES/workbench[6] which could develope of structured
and hierarchy. In

SES/workbench, it sonsisis of transactions and various

models using multiple layers

kinds of resource nodes. The transactions would flow
between nodes according to the specified course and

could be used to represent the instructions. The resource

nodes could represent the system resources such as the’

address bus, the data bus, read buffers, write buffers, and
so on. The advantages are that you could specify the
services strategies (such as FCFS) for the resource nodes
to service the requests. By using SES/workbench, we
could simulate the behavior of MP systems more
realistically and easily. Moreover, due to the modularity
and capability of SES/workbench, we could combine our
model with the trace-driven method under a little

modification.
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Fig. 7: The iransaction path for one processor.
From Fig.7, the complete simulation model is built
for the proposed MP system using split buses based on
PowerPC 620 and memory buffers. Under the various

probability distribution, the averaged wasted time of a

processor in cycles will be taken as the performance
measure. We take a system with 4P (four processors) as
the simulation base because it is typical in commercial
markets for shared bus MP systems. However, the same
methodology can also be applied o systems with more
than four processors connected to the shared bus.

We observe the processor-wasie-time in cycles, the
number of RAB and the number of WAB/IWWDE (see Fig.
15-20) under different memory latencies assuming that
the processor cannot distinguish two outstanding read
requests. In the simulation, bus clock cycles are 2 PClks
(Processor Clock cycles) and hit rate is 98%. Bach
processor has 200,000 cycles to issue instructions: The

processor-waste-time is summed over four processors.

Due to this high hit rate, the number of bus requests will
be small. The difference among different numbers of
memory buffers in the simulation is not obvious if we
look at the percentage of the processor-waste-time over
the total simulation cycles. Thus, we observe the real
value of processor-waste-time rather than its percentage.
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Fig. 8: The effect of read buffers.
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Fig. 9: The effect of write buffers.
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Fig. 13: The effect of write buffers.
From the above figures, it is clear that the
processor-waste-time becomes saturated after adding 2
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few buffers.
latency = 32 or 48 PClks), it saturates at four. On the
other hand, with shorter latency ( Memory latency = 16
PClks), it saturates at two.
combination of read and write buffers which resulis in

With longer memory latency( Memory

There exists an optimal

the lowest processor-waste-time for different memory
latencies. When the memory latency is 32 PClks, the
optimal combination is 2 read buffers and 4 write
buffers. When the memory latency is 16 PClks, the
optimal combination is 2 read buffers and 2 writ?
buffers. When the memory latency is equal to 48 PClks,
the optimal combination is the same as the case when the
memory latency is 32 PClks.

As the memory latency is decreasing, the optimal
number of buffers is decreasing. This is because the
purpose of the buffers is to overlap the bus arbitration
time with the longer memory latency . Although we
know that the more the rtead buffers, the less the
processor-waste-time, the requests in write buffers will
reduce this effect because the service time of read
requests is delayed. Therefore, the faster the memory,
the less the counterpart effect. Such a dynamic
phenomenon is hard to discuss, but we could see the net
effect by simulation. For the case that the processor can
distinguish two outstanding requests and flish operations
are considered( the figures are not shown), we find that
the number of read buffers is saturated at 5, not 8( i.e.,
2N), and the number of write buffers is saturated at 7, not
12( i.e., mN). This is because the altetnative pattern for
two different types of outstanding read requests does not
occur frequently and the probability of flush operations is
not high. With the same methodology, we can analyze
the case for different BIU of the processor and different

. numbers of processors connecied to the shared bus.

Even various bus behaviors can be easily constructed by
the SES/workbench to get a more realistic result.
From the above observation, we conclude that the

optimal number of read or write buffers in the memory
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controller is not necessarily the maximal number of
effective read or write buffers in the memory controller.
And the maximal number of effective read buffers in the
memory controller is at most N or 2N (N is the number
of processors connected to the shared bus), depending on
whether the processor can distinguish the different types
of read requests or not, such as data load and instruction
Jetch. The maximal number of effective write buffers in
the memory controller is at most mN, where m is the
number of write buffers in the BIU of the processor. By
adding the optimal number of read and write buffers, the
system performance is shown to increase significantly.

7.Conclusions and future works

Adding memory buffers is a good idea to buffer the
concurrent bus requests to the memory and to buffer the
data to the requested processor. We determine the
optimal combination of read and write buffers to achieve
higher system performance efficiently by a simulation
tool, the SES/workbench. The intervention idea is also
introduced in the proposed MP system to increase the
performance of the system and the corresponding buffer
problem is solved by introducing an intervention buffer.

We take a simple model tool SES/workbench instead
of the complicated trace driven method. In addition, we
concenirate on the effect of memory buffers which are
affected by the bus requests issued by the processor. The
bus protocol and cache states are ignored. From the
simulation result, it justifies the evaluation by the
proposed processor executing timing model. With the
flexible and maintainable models provided by
SEShworkbench, the construction time of the proposed
MP model is reduced and we could get more realistic
simulation results.

As to future work, if the synchronous DRAM with the
pipelining capability is adopted, it could be modeled as

follows. If the SDRAM has three stages of pipelines, the

processing time of the read buffer and write buffer would
be equal to that of the first stage of SDRAAM. Further, we
could combine RAB with WAB into a single address
buffer in the memory controller, an additional hardware
such as the reordering mechanism is needed. We must

keep two pointers to distinguish between the read
Although this
complicates the hardware design, it reduces the waste of
the address buffers.

method, we will evaluate these effects in the future.

requests and the write-back requests.

Based on the same evaluation
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