Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The Design And Implementation of An Object-Oriented Trace-Driven
Simulator for Superscalar CISC Processors

C.C. Hsu*, D.C. Wang*, 8.S. Shang*, S.E. Chang**, C.T. Chang*
Computer & Communication Research Laboratories *
Industrial Technology Research Institute
Chutung, Hsinchu, Taiwan, ROC
Information and Computer Engineering Department **
Chung-Yuan Christian University
Chung-Li, Taiwan, ROC

Abstract

Developing a superscalar complex-instruction-set-
computing (CISC) processor requires trade-off of various
design alternatives. In this paper, we present a trace-
driven simulator to help us deal with that difficult,
iterative task. The simulator was written in C++ and well-
structured so that it can be easily reconfigured for
evaluating various. design trade-offs. The reconfigurable
parts include numbers of pipeline stages and functional
units, sizes of internal queues and buffers, latencies of
each functional unit, and various scheduling and control
schemes. We demonstrate its flexibility and versatility by
simulating four DOS benchmark programs and reporting
their results.

1. Introduction

In the initial designh phase of a superscalar CISC
processor [2, 3], there exist many design alternatives. One
major problem in designing such a processor is to
determine which microarchitecture to adopt and what
level of performance it can achieve. It is hard to make
various design trade-offs without thorough analysis.
Hence, how to optimize cost and performance of an
architecture becomes a very challenging task. For
example, in such a processor how many and what
functional units are needed, how these functional units are
connected, and how large the sizes of internal queues are,
are all important issues. To provide essential information
to answer these questions, a processor simulator is usually
imperative.

To provide a flexible simulation environment to
evaluate various design alternatives, we develop an
object-oriented simulator that is configurable by simply
modifying processor design parameters. The simulator

121

was written in C++ [4] and is well-structured so that each
individual module can be easily replaced if any design is
changed. Intel Pentium Pro [8, 9, 10], which supports
speculative and out-of-order execution, in-order
completion, and precise interrupts, is used as the baseline
processor model in the simulator. In that processor, x86
instructions are first translated into fixed-length primitives,
called p-instructions, and then executed by an underlying
reduced-instruction-set-processing (RISC) core. Design
issues regarding a superscalar CISC processor can be
found in [1].

Though the module for instruction decoding in the
simulator is for x86 instruction set, it can be easily
replaced for any other instruction set, either CISC or
RISC. Furthermore, the simulator has wvarious buili-in
configuration options, and supports a few types of system
components and various system interconnection structures.
Thanks to design modularity in the simulator, additional
options and features can be easily added as needs arise.
The flexibility and versatility of the simulator make it
possible to evaluate various processor design alternatives
rapidly.

The rest of the paper is organized as follows. Section 2
introduces the software simulation environiment. Section 3
describes various modules in the simulator. Section 4
presents a case study of a superscalar CISC processor and
reports some simulation results. Section 5 summarizes our
contributions.

2. Simulation Environment

There are several approaches to evaluating system
performance. One approach is to build real hardware that
directly executes programs for measurement. Though
hardware execution may obtain wvery accurate
performance information, it takes much time and costs a
lot, and is not suitable for a design requiring iterative fine-

Proceedings of International Conference
on Computer Architecture

tunings. Another approach is to use mathematical and
analytical models. Though mathematical derivations take
less time and cost little, they usually are not detailed
enough and accuracy in resulis is often questionable.
Another approach is to use a trace-driven simulator,
which mimics cycle by cycle concurrent system activities.
One advantage is that programs are not actually execuied
but processed, which achieves an acceptable accuracy in
results with a reasonable amount of time in development.

Trace-driven simulation provides a balance between
accuracy and development effort, and is adopted in our
processor simulator. Fig. 1 shows the overall simulation
environment used. Program binaries are first executed and
trace-collected by a debugger. Next, a processor
configuration file is provided to determine processor
internal structures in the simulator. The processor
simulator then processes iraces and reports simulation
results.

Executable
Program
program execution traces
Debugger >
_ Simulation
Resuits
Processor
Simulator
S0
Configurations

Figure 1 Simulation environment.

Fig. 2 illusirates our baseline processor model. Tt
includes separate instruction and data caches (IC, DC); a
branch target buffer (BTB); an instruction fetcher (IF);
plural x86 instruction decoders; a p-instruction queue; a
reorder buffer (ROB); a reservation station (RS), whether
ceniralized, disiributed, or hybrid; a memory reorder
buffer (MOB); associated control modules; and plural
function units, such as an address generation unit (AGU),
integer arithmetic logic units (ALU), a floating-point (FP)
adder, and so on. This model covers a wide range of
processor architectures, including scalar and superscalar
ones.

In the baseline model the pipeline stages, according to
their functions, are classified inio seven tasks: instruction
fetch, instruction decode, p-instruction login, p-
instruction issue, p-instruction execute, result complete,
and retire. Each task may require one or several pipeline
stages to implement and take a various number of cycles
to realize and the associated information is defined in a
configuration file. Table 1 describes the functions
performed by each task .

122

]?r':r"‘i‘ Instruction
Bty Cache
———
_ Register Reorder
Instuction File Buifer
Fetcher
Reservation Station (centralized, distributed, hy brid) j(_

{

Integer

y J |
e Branch| Shift Integer| | FP FP FP

Unit ALU || Unit HeTl ALU | | Adder||Divide | Muttipti
|
Memory Reorder Buffer
(MOB) v

. |

Data Cache

Figure 2 Baseline superscalar CISC processor model.

Load || Store v
Unit AGU

Result Arbitrator

Task Function Description

Fetch Fetch instructions from the instruction cache.

Decode Decode instructions, being translated and stored into
the p-instruction queue.

Login Read p-instructions, being register-renamed via the
ROB and logged into the RS.

Issue Dispatch ready p-instructions to available functional
units.

Execute |Execute p-instructions and may require multiple cycles
to complete.

Complete |Arbitrate results from functional units and store them
back to the ROB.

Retire Retire completely executed instructions and update
processor state in order.

Table 1 Tasks performed in the baseline
processor model.

WHILE {nof finish) {
// Retire
rob.Retire();
// Resuli Complete
Function_unit.Check_Resuli();
/1 Check results at functional units

// Retire instructions at the ROB

// Execute
Function_unit.Login{uinst);

// n-Insiruction Issue
vinst = RS.Issue_Instruction(};

// n-Instruction Login
rob.Login{uinsi);
RS.Login(uinst);

// v-Instruction Decode
Decoder.Decode(inst);
vinst = Decoder.Check():

// nstruction Feich

inst = Fetcher.Check_result(); // Get inst. from cache.
CYCLE++;

/] Execute p-Inst,
/1 Issue w-inst. at the RS

// Rename p-lnst. at the ROB
// Login p-Inst. at the RS

// Decode instructions
// Translate into p-inst,

Figure 3 Flow for imitating concurrent pipeline
activities in the simulator.

In order to simulate in sofiware concurrent events in the
processor model, quenes are employed to isolate each task,

similar to what hardware registers are used to isolate
pipeline stages in a pipelined processor. Each task has a
queue to temporarily hold its execution status, and the
depth of the queue determines the nimber of pipeline
stages for that task. To simulate progress in pipelines,
queues are repeatedly checked and processed in inverse
order, i.e., retire, complete, execute, issue, login, decode,
and fetch. As shown in Fig. 3, in each iteration status
propagates from a task to the next, imitating pipelining in
the processor model.

3. Simulator Design

The simulator comprises several modules, including the
fetcher, instruction cache, branch target buffer, decoder,
reorder buffer, functional units, reorder buffer, memory
reorder buffer, data cache, and result arbitrator. Each
module buffers appropriate information and controls
various manipulations. They are described in details as
follows.

3.1 Fetcher, Instruction Cache, and Branch
Target Buffer

The fetcher, along with the instruction cache and
branch target buffer, is responsible for instruction fetch,
as depicted in Fig. 4. The fetcher has an internal queue,
whose reconfigurable size determines the number of
pipeline stages it has, and operates by sending an address
to the instruction cache and branch target buffer to check
whether a cache miss or branch instructions are detected.
The instruction cache module records tags for recently
used blocks. When receiving an address, the cache
module searches its tag memory to verify if this address
matches any tag. If a mismatch occurs, the fetcher stops to
wait until pre-determined, reconfigurable cache miss
cycles are expired.

BTB Module
pDanch
i Prediction
i%tﬁrgsg Information
Fetcher :
Module Fetching | Instruction Cache
Program WI‘;:}Z“‘V Address Module
10
Traces o Tag RAM

% Cache
Internal Miss
Queue e

Cache
Control

Data output

L Decoder Module ’

Figure 4 The interaction among the fetcher, BTE, and
instruction cache modules.

192

Joint Conference of 199§ International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

The branch target buffer [5, 6] module is responsible
for branch detection and prediction. Since traces contain
only correct instruction execution path and exclude
incorrect path following mispredicied branches, whether a
branch will be taken or not has already been determined.
To mimic branch misprediction penalty, a lock
mechanism is used in the fetcher. If the execution path
following a branch does not accord with the path
predicted by the branch target buffer, the lock mechanism
stops the fetcher from reading traces until the branch
reaches and is processed by the branch unit. Since in the
simulator only a branch instruction is processed when a
branch misprediction occurs, this is not the same as the
real situation where a few instructions following the
wrongly predicted path are processed.

3.2 Decoder

The decoder module performs instruction decoding by
table look-ups, as illusirated in Fig. 5. An instruction
queue, comprising two buffers arranged in a circular ring,
is used to match speed difference beiween the fetcher and
decoder. When instructions in a buffer are being decoded,
additional instructions from the fetcher are placed into the
other buffer. If the instruction queue is full, the decoder
will prevent the fetcher from sending.

Decoder
Module Insit ECinl’l Queue

i - -i i p-instruction
Ins%gg&on Instuction Decoder # urlrs;{;;gtwn queue

Format

Sizer || Check
Operand || Code
JV Check ||Generate

C

Locking
Control

[
tﬁ?ﬁﬁueu ol
e i—lj translater [T

Figure § The structure of the decoder module.

The decoder decodes object code in the queue by
looking up the instruction table, and then translates them
into equivalent- p-instructions by looking up the p-
instruction table. Translated p-instructions are placed into
the p-instruction queue and when it is full, the decoder
must stop decoding. Like the fetcher, the decoder has an
internal queue for storing concurrent status,

3.3 Reservation Station and Functional Units

The reservation station in the baseline model can be
configured as centralized, distributed, or hybrid. To
support these options, several functional unit modules are
associated with a reservation station module, called a

Proceedings of International Conference
on Computer Architecture

hybrid module. Fig. 6 shows the structures for the
functional unit, reservation station, and hybrid modules.

tunctional Unit &
Reservation Station & Hybrid Modules

Functional Units Group Module -

h 8 1 RS
oy

o
1ZOCTH-

Functional Unit Module —
Private RS Hybrid RS p‘ID

Global RS pir E{—] E_:J

Tatency | Internal Queue

Controller | [T T 1T | i n
]
e]
J

|__;|__4__1__

Figure 6 The structures for the functional unit,
reservation station, and hybrid modules.

Each functional unit module includes a private
reservation station, an internal queue, and a latency
control mechanism. Private reservation stations are used
to support the distributed reservation station option. Each
hybrid module includes several functional unit modules
and a local reservation module, which is shared by all of
them within. Local reservation stations are used to
support the hybrid reservation station option. Only one
global reservation station exists, which is shared by all
functional unit modules, and is used to support the
centralized reservation option. Two pointers are provided
for each functional unit, facilitating the accesses to a local
and the global reservation stations, respectively.
Depending on what reservation station option is chosen,
each functional unit will access an appropriate reservation
station, be it private, local, or global.

The reservation station is responsible for scheduling
and dispaiching p-instructions. The reservation station
locates p-instructions that are free of data dependency and
dispatches them to idle functional units for execution.
Ideally, the reservation station could schedule any p-
instruction out of order, subject only to data dependency.
However, certain restriction imposes upon scheduling
rules because of requiring a sequential memory access
order. That is, stores must be issued with respect to their
program order. Loads between two consecutive stores, in
contrast, can be issued out of order. Other than that, loads
must be issued in order.

Every functional unit does not actually execute p-
instructions. Instead, they are held in a queue for several

124

cycles, determined by the time needed for executing them.
When the latency for executing a p-instruction expires,
the functional unit sends a completion signal to the result
arbitrator. The result arbitrator handles <concurrent
complete resulis and determines sequences of reporting
them back to the ROB, subject to a predetermined,
reconfigurable structure of internal interconnection buses.
Details will be discussed later in this section.

We need to consider hardware resources usage when
the distributed reservation station option is chosen. In
many case$, only one of the functional umnits in the same
hybrid module is able to receive a p-instruction per cycle,
because of their sharing the same dispatching bus. In
some cases, functional units, such as load, store and AGU,
each have their respective dispatching buses, and each are
capable of receiving a p-instruction per cycle. This is
because memory accesses occur very frequently in a
superscalar processor, therefore to improve memory
access capability exira hardware is mostly justifiable.

3.4 Reorder Buffer

The reorder buffer records the order of p-instructions
and performs register renaming and speculative execution.
Fig. 7 shows the structure of the reorder buffer. Since
there is no real instruction execution in the simulator, we
chose not to implement register renaming for the sake of
simplicity. However, we do support dependency checking,
which determines if instructions cannot be issued due to
dependencies with previous instructions. For some
instruction sets, X86 instruction set in particular,
instructions use flags or partial registers as sources. In
these cases, reorder buffer also needs to support flag
dependency checking and partial register dependency
checking.

The retirement conirol in the reorder buffer checks the
last several p-instructions in the retirement window.
However, different instructions may be translated into
different numbers of p-insiructions, and the reorder buffer
must retire p-instructions in program order and handle
precise inierrupts, therefore the p-instructions translated
from the same instruction as well as in the retirement
window must all be completed before they can be safely
retired. Consequently, the reorder buffer checks if the p-
instructions in the retirement window are compleied or
not. Furthermore, if the last p-instruction in the retirement
window is not the last p-instruction of an instruction, the
reorder buffer waiis till all the translated p-instructions
have been completed.

A retire scheme may require the reorder buffer to wait
for all instructions in the retire window to finish, and
hence can become a bottleneck for system performance.
So, we designed another retirement scheme that allows

partial retirement, i.e,, the reorder buffer can retire those
p-instructions in the retire window which were translated
from the first instruction and have been completed.

Reorder Buffer Module

Login
Control

Store Instr.
Check

Retire
Control

Figure 7 The structure of the reorder buffer module.

3.5 Memory Reorder Buffer and Result
Arbitrator

The memory reorder buffer contains storage for
facilitating the simulation of load, store and load forward
operations. The structure for the memory reorder buffer is
depicted in Fig. 8. It controls memory reference
operations and maintains data access in instruction order
to support precise interrupt and data store to memory in
program order. When p-instructions pass through the load,
store and address generation unit, they are stored. But
before loads are stored, they must be checked against the
stores addresses for possible load forwarding.

The result arbitrator receives the output from the
functional units, MOB and data cache and controls the
sequences of writing results produced by the functional
units back to the ROB. Because there is a limited number
of result buses connected to the ROB, if the number of
results produced by the functional units is larger than
what ROB can handle, some information may be lost.
Thus, we need the result arbitrator to control this
writeback sequence. On the other hand, to avoid some
results waiting too long to be written back to ROB, the
result arbitrator adopts the round-robin policy for the
writeback.

Memory Reorder Buffer Module

Login Retire | [Load Foward
Control | | Control Check

Storage

Data Cache Module }iisult Bus
Result Arbitrator

Cache
T
sg RAM | Module

Figure 8 The structure for the memory reorder buffer
module.

125

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

4. X86 Superscalar Processor Example

In this section, we show how to use the previously
described simulator to simulate an x86 superscalar
architecture, such as the Intel Pentium Pro. The pipeline
stages of the baseline processor are shown i Fig. 9, while
the system configuration is depicted in Fig. 10. A
configuration file for this processor is shown in the
Appendix. In this simulator, we assume that the
instruction and data caches are prefect, i.e., no cache
misses. The branch target buffer is perfect as well so that
there is no miss for the branch prediction. We use this
simulator to examine two things: how flag dependency
degrades system performance, and the trade-off between
full retirement scheme and partial retirernent scheme.
DOS™ debugger was used to collect program trace. Table
2 shows the profiles of benchmark programs that we
collected trace for.

BTB Instruction uop i ion Check i
A Fetch %86 Decode Generate Login RS Issue Execution Result Retire

r ll’lm 172 | 1F3 Tll)l { D2 [r‘ D3 iLoginT]ssue
Figure 9 The pipeline stages in the baseline
processor model.

Result Arbitrator

Figure 10 System configuration for simulation.

These benchmarks include a CPU performance test
benchmark, a C compiler, an application program and a
graphic display program. They were run on the simulator
for the following 4 cases, and the results are shown in
Table 3.

Case 1. The ROB uses full retirement scheme with flag
dependency check.

Case 2. The ROB uses full retirement scheme without
flag dependency check.

Case 3. The ROB uses partial retirement scheme with
flag dependency check.

Proceedings of International Conference
on Computer Architecture

Case 4. The ROB uses partial retirement scheme
without flag dependency check.

From Table 3 changing the retirement scheme can
improve performance up to 1.71%-7.66%. On the other
hand, not checking the flag dependency can only improve
performance up to 0.91%-2.72%. Hence, we conclude
that changing the retirement scheme can better improve
systiem performance than without checking flag
dependency. And this improvement due to allowing
partial retirement accounts for about 4%.

Another item we wanted to investigate on the simulator
was the parallelism of the benchmark programs. To obtain
the program parallelism, we maximize the machine
parallelism by letting each functional unit have one bus
connected to the reservation station, i.e., each functional
unit has its own group and each functional unit can
receive one p-instruction from the reservation station. The
simulation results are shown in Table 4 (assume ROB
entry number is 40). As the requirement of full retirement
and flag dependency check being relaxed, the issue rates
for the four benchmark programs tend to increase with
one exception that the issue rate for benchmark bee in
case 3 is larger than that in case 4. After analyzing their
statistics in issuing p-instructions, we found that though
enforcing flag dependency check stalls certain p-
instructions, a certain number of subsequent p-
instructions in benchmark bce were able to bypass, which
accounts for an increase in its issue rate. This indicates
that flag dependency in benchmark bec is less tightly-
coupled as compared to the other three benchmarks.

benchmarks | x86 inst. | p-inst. | p-inst./x86 inst.
bee 100000 | 233847 2.3385
bytem16 | 100000 | 231801 2.3180
jpg2gif 100000 | 330555 3.3056
gifshow 100000 | 233014 2.3301

Table 4 Average number of p-instructions per x86
instruction for each benchmark.

From the issue rate history, we found that the program
parallelism falls between 1 and 4 p-instructions, which
implies that program execution time is limited by the
program parallelism. At most 4 p-instructions can be
issued in a cycle. From Table 5 we see that on an average
an x86 instruction is translated into 2.3 to 3.3 p-
insiructions. Therefore, the program parallelism is 1.2 to
1.7 x86 instructions. This explains why allowing partial
retirement in ROB can just improve performance up to
7%.

5. Conclusions

126

In this paper, we presented an object-oriented trace-
driven simulator to help designers determine various
system parameters encountered in a superscalar CISC
processor design. Its behavior is configurable through
configuration files to accommodate different design
considerations and trade-offs. To demonsirate its
flexibility and versatility we simulated four DOS
benchmark programs on the simulator to investigate the
performance impact of partial retirement scheme and flag
dependency checking.

As far as the four benchmark programs were concerned,
we found that flag dependency in these benchmarks is not
serious, and thus checking the flag dependency just
slightly lowers system performance. Second, allowing
partial retirement improves system performance up to 7%,
with an average of 4%. Finally, the program parallelism
of these benchmarks was found to be small, roughly 1.2-
1.7 x86 instructions.

Trace-driven simulation is very efficient in that it only
concentrates on simulation control rather than execution.
We believe that our simulator has successfully served the
purpose of helping designers explore different alternatives
of the design issues facing them, and estimate the
prospective performance if they chose to use a particular
implementation.

References

[1] S.S. Shang, et al., "Design Issues in Developing A
Superscalar CISC Processor,” Technical Report,
ITRI/CCL, 1996.

[2] Mike Johnson, Superscalar Microprocessor Design,
Prentice Hall, 1991.

[3] JL. Hennesy and D.A. Patierson, Computer
Architecture: A Quantitative Approach, Morgan
Kaufmann Publisher Inc., 1990,

[4] Allen L. Holub, C+C++ Programming with Objects
in C and C++, McGraw-Hill Inc., 1992,

[5] Johnny K. F. Lee and A.J. Smith, "Branch
Prediction Strategies and Branch Target Buffer
Design," IEEE Computer, Jan 1984, pp.6-22.

[6] C.H. Perleberg and A.J. Smith, "Branch Target
Buffer Design and Optimization," IEEE Trans. on
Computers, Vol. 42, No. 4, April 1993, pp. 396-412.

[7] Tom R. Halfhil, "Intel's P6," Byte Magazine, April
1995, pp.42-58.

[8] Sebastian Rupley and John Clyman, "P6: The Next.
Siep?," ‘PC Magazine, Sep. 1995, pp. 102-137.

[9] Linley Gwennap, "Intel's P6 Uses Decoupled
Superscalar Design," Microprocessor Report, Feb 16,
1995, pp. 9-15.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Benchmark | Total. | Branch | Uncond. | Cond. | Call/Retmun | Taken Not Static
Inst. Inst. Branch | Branch Taken Branch
bee 5643843 | 687440 143 541060 | 58504/87733 | 0.6807 0.3193 150
byteml16 | 3667451 | 451595 | 27369 | 298100 | 90100/36026 | 0.5192 0.4808 364
jpg2gif | 1396510 | 300528 | 25156 | 275372 0/0 0.6098 0.3902 53
gifshow | 5665958 | 676854 | 64477 | 445882 | 78324/88171 | 0.5084 0.4916 594
Benchmarks Description Command Line
bee Borland C++ command line compiler bee bgidemo.c
bytem16 Byte magazine CPU performance test benchmark bytem 16
ipg2gif JPG to GIF transfer program ipg2gif piciure.gif
gifshow GIF display program gifshow picture.gif
Table 2 Benchmark statistics and descriptions.
bee bytem16
Exec Time | Speedup | Speedup | Speedup ~ | Exec Time | Speedup | Speedup | Speedup
case 1| 96744 1.0000 case 1| 106108 1.0000
case 2| 94888 1.0196 | 1.0000 case 2| 103300 1.0272 | 1.0000
case 3| 93021 1.0000 case3| 98556 | 1.0000
case 4| 93289 1.0370 0.9971 case 4] 97083 1.0930
gifshow jpg2gif
Exec Time | Speedup | Speedup | Speedup Exec Time | Speedup | Speedup | Speedup
case 1| 118772 | 1.0000 case 1{ 205917 1.0000
case2| 117706 | 1.0091 | 1.0000 case 2| 202986 | 1.0144 | 1.0000
case 3| 114912 | case 3| 201613 | 1.0000
case 4| 113591 case 4| 198220 0240 |

Table 3 The simulated execution cvcles of each benchmark with a 40-entry ROB.

casel case2
benchmark |Exec. Cycles |Average Issue Rate benchmark[Exec. Cycles |Average Issue Rate
bce 94467 248 bee 94393 248
bytem 1% 103730 223 bytem16 102526 2.26
jpg2gif 197819 1.67 jpg2gif 195891 1.69
gifshow 116846 1.99 gifshow 116685 2.00
case3 cased
bce 92452 2.53 bee 94033 2.49
bytem16 97277 238 bytem16 96635 2.40
jpg2gift 193212 1.71 jpg2gif 191164 1.73
gifshow 111679 - 2.09 gifshow 111455 2.09

Table 5. Average issuing rate for each case.

127

Proceedings of International Conference

on Computer Architecture

Appendix. A configuration sample file for
Pentium Pro class processor.

Instruction_Cache
size_bytes
bytes_per_block
associativity
miss_penalty

Data_Cache
size_bytes
bytes_per_block
associativity
miss_penalty

Branch_Target Buffer
Two_Bit_Counter
entries
associativity

Central_Window

Fetcher
pipe_stage
buffer_size
buffer_entries

Decoder
instance
pipe_statge

Reorder_Buffer
entries
login_no
retire_no

Integer TU
function_group
instance
issue_latency
result_latency

Integer Mul I MULT
function_group
instance
issue_latency
result_latency

Integer_Div I_DIV
' function_group
instance
issue_latency
result_latency

Shifter
function_group
instance
issue_latency
result_latency

// Functional Unit Define
// Function name/ mnemonic name

reservation_station_depth 4

/I The Machine Conﬁguratibn File

16384
32

4

4

16384
32

4

4

/Iprediction mechanism, e.g. GAg, etc

128

4
40 // reservation station type

4

0 // binding group
1 // no. of instances
[1,1,1]
(1, 1,1]

// distributed RS no.
0
1

[10, 10, 10]
[10, 10, 10]

reservation_station_depth 4

reservation_station_depth 4

0
1

[20, 32, 45]
[20, 32, 45]
0

1,2, 4]
0,2, 4]

reservation_station_depth 2
Integer IU
function_group 1
instance 1
issue_latency [1,1,1]
result_latency [1,1,1]
reservation_station_depth 4
Branch BU
function_group 1
instance 1
issue_latency [1,1,1]
result_latency [1,1,1]
reservation_station_depth 4
Address_Gen AGU
function_group 2
instance 1
issue_latency [1,1,1]
result_latency [1,1,1]
reservation_station_depth 4
Load LOAD
function_group 2
instance 1
issue_latency [1,2,4]
result_latency [2, 3, 5]
reservation_station_depth 4
Store STORE
function_group 2
instance 1
issue_latency [1,2,4]
result_latency [2,3,5]
reservation_station_depth 4
Float_Add
function_group 3
instance 1
issue_latency [1, 1,4]
result_latency [2,2,6]
reservation_station_depth 2
Float_Mul
function_group 3
instance ol
issue_latency [1, 1, 4]
result_latency [4, 5, 6]
reservation_station_depth 2
Float_Div
function_group 3
instance 1
issue_latency [12, 19, 32]
result_latency [12, 19, 32]
reservation_station_depth 2
Float_Conv
function_group 3
instance 1
issue_latency [1,1,4]
result_latency [2,2,4]
reservation_station_depth 2

128

