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Abstract

Although performance evaluation tools are popular
for analyzing and predicting throughput of computer
systems, existing evaluation tools usually have a difficult
and  time-consuming modeling process because (1)
modeling requires specific mathematical background; (2)
most modern systems are too large and complex to be
modeled directly; and (3) modeling for exploring various
alternative designs always takes time and patience.
Moreover, existing tools do not support well the capability
for finding the bottleneck and its cause of a target system
being evaluated. To address the above problems, in this
paper we propose a subsystem-oriented approach to
analytical performance modeling of computer systems. The
whole approach is built ‘on a subsystem-oriented
performance evaluation methodology and tool, which are,

in turn, based on a subsystem specification language.
1. introduction

The use of evaluation tools to analyze and predict
the performance of computer systems is now widespread
(1,256,709 11]. These tools incorporate various
different techniques, such as simulation [2, 3] and
analytical models [1, 9], are suitable for the performance
modeling and evaluating such computer systems. There
have been published a number of performance evaluation
tools [2, 4, 5, 6, 7]. One of the recent work Experimenter
[7] is a performance evaluation tool that supports
structured experiments for evaluating complex computer
systems and enhancing the reuse of previously developed
performance models. DESIGN [4] is a software evaluation
tool to provide a user-friendly system for both specifying
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and analyzing software designs. The Graphical Modeling
and Analysis (GMA) tool [5] focuses on automatically
generating performance models for communication
networks, and allows users to manipulate a schematic
diagram of network configuration via a high-level
graphical interface. Others apply simulation techniques. As
well-knowing example is SES/workbench {2]. It is that a
high-level simulation tool; its simulation model is based on
the - probabilistic distributions to characterize workload
parameters, and is composed of a sequence of transactions,
nodes, and arcs. These analytical and simulation tools are

useful to designers.

However, most of existing performance
evaluation tools usually have a difficult and
time-consuming modeling process and lack a

bottleneck and
identification [11]. First of all, performance analysis

straightforward method for cause
requires strong mathematical or statistical background for
developing performance models. Second, large and
complex target systems always aggravate the difficulty in
developing performance models. Third, it always takes a
long time in redeveloping several analytical models to
evaluate various alternative designs. Finally, lacking the
capability of bottleneck analysis is the other major problem
associated with existing performance evaluation tools.

To address the above problems, we developed a
subsystem-oriented performance evaluation - methodology
(SOPEM) and realized it with a subsystem-oriented
performance evaluation tool (SOPETOOL). In SOPEM,
we use a subsystem specification language (SSL) to
describe target systems. In general, a computer system is
consisted of several subsystems, such as cache, bus, and
memory; these subsystems will invoke or serve various
types of arriving requests.



The subsystem specification language SSL is the
key to achieving a simple performance modeling process.
It is subsystem-oriented and allows designers to specify
specification parameters of each subsysiem and arriving
requests, such as subsystem name, service time, request
names, and visiting probabilities of requests. Moreover, it
allows an architectural designer to characterize a target
system without any mathematical modeling experience.
Particularly, it realizes the model reuse feature and makes
the tasks of reusing previously developed SSL models
simple and straightforward.

SOPEM is an iterative performance evaluation
methodology. Its evaluation process works as an iterative
cycle in which (1) its kernel language SSL is used to model
a target system; (2) the SSL model is translated into
computer program based on mean value analysis (MVA)
equations [9, 10, 12]; (3) performance results are obtained
by running the program; (4) the designer analyzes these
results to identify bottleneck and cause; and (5) the
designer modifies the SSL model to conduct more
evaluations until the target meets the performance
requirement.

SOPETOOL ¢ implements SOPEM's idea. It
exiracts subsystem specifications from an SSL file, relieves
designers of painful efforts of doing performanece modeling
by coding a program in a regular programming language,
shortens the time for performance evaluation and
bottleneck analysis, and shows performance results in
easy-to-read textual explanation and graphic chart. Briefly,
it is composed of four important stages: parsing, code
generation, iterative computation, and results presentation.
On the whole, it is a powerful performance evaluation
environment to support easy and fast performance
evaluation process as well as the capability of bottleneck
analysis.

The remainder of this paper, is organized as
follows. Section 2 contains an overview of the
subsystem-oriented performance evaluwation methodology
SOPEM. In Section 3, we- iniroduce the subsystem
specification language SSL. Section 4 presents an SSL
model example of a shared bus multiprocessor system. In
Section 5, we give an overview of the subsystem-oriented
performance evaluation tool (SOPETOOL). Section 6
contains the conclusions of this work.
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Fig. 1. Tterativ ¢ evaluation procedure of SOPEM

2. Overview of SOPEM

As mentioned earlier, SOPEM works in an
iterative cycle for performance evaluation and design
modification for  computer systems. It consists of several
basic stages for the iterative evaluation and modification,
as illustrated in Fig. 1. The abstraction stage is to identify
important architecture aspects and produce a conceptual
model. The target system modeling stage outpuis a target
SSL model based on the conceptual model. During the
automatic code generation stage, the SSL model is
translated into a computer program. Performance
evaluation stage runs the program and yields the desired .
performance data. During the bottleneck analysis stage, a
bottleneck subsystem and its cause are identified and
displayed. Then, the design specification alteration stage
removes the bottleneck by changing design parameters and
correcting the problem based on the bottleneck
information. Finally, during the system model modification
stage the target SSL model is modified for starting another
iteration or ending the whole evaluation process if the
performance goal is met.

3. Subsystem Specification Language (SSL)

SSL is a subsystem-based language in which
subsystems are basic definition uniis. The subsystem
specification for performance modeling is related to
various types of arriving requests. Each request type has a
particular set of visiting probability, service time, whether
it will include other subsystem's holding time, ... eic. These
parameters can be direcily specified by using SSL. For
specifying these parameters values, a set of keywords are
predefined for consiructing an SSL model.
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Several important specification parameters must
be given within an SSL model. First, we must specify the
probabilities of arriving requests (e.g., the probability of
memory-read request arriving at Abus). Second, we must
specify the service demand, which is the average service
time of a request (e.g., 2 bus clocks for Abus to serve a
memory-read request). Third, since some requests may
hold more than one subsystems, we must specify which
one's holding time will be included. Finally, if special
functions of some particular hardware behaviors are
needed, we may specify the FUNCTION to include an
executable program file as a procedure.

An SSL model is composed of a set of assertions,
including one SYSTEM-NAME, several SUBSYSTEMs,
and one END. An assertion is one or more statements to
define some specification parameters. The
SYSTEM-NAME assertion defines the system name. The
SUBSYSTEM specify major hardware
components of a target system. The last assertion in any
SSL file must be END. The END tells the SOPEM that
there are no more assertions to be asserted. An example
model illustrating the SSL syntax is given below:

assertions

SYSTEM-NAME: system-name;

SUBSYSTEM [SubsystemName="subsystem-name',
NumberOfRequester=integer,
ServiceTime=real, BlockRequest(RequestName="request-name’),
.k

SUBSYSTEM [SubsystemName='subsystem-name',

_ ServiceTime=real+U(Additional Time=real),
BlockRequest(RequestName="request-name’,
ServiceTimeOfTheRequesi=real, Probability=real,
Utilization=Default+W(SubsystemName="subsysiem-name’),
QueueLength=Default+W(SubsystemName="subsystem-name'),

WaitingTime=Default+
FUNCTION('filename@subsystemname/subsystemname’),

NonBlockRequest(RequestName="request-name’,
ServiceTimeOfTheRequest=real+U(Additional Time=real),
Probability=real,

Utilization=Default+W(SubsystemName='subsystem-name'),

QueneLength=Default+W(SubsystemName='subsystem-name’),
WaitingTime=Default+
FUNCTION('filename@subsystemname/subsystemname’)),

4. SSL Model of a Shared-Bus Multiprocessor System
4.1. Overview of a shared-bus multiprocessor system

We consider a muliiprocessor system, called XMP [9,
11], with several processors, main memory subsystems,
and /O subsystems connected together by a shared bus
consisting of an address bus and a data bus. Each processor
has a private cache from which it normally reads and to
which it normally writes. However, if the private cache
does not contain the necessary data item, a request to tl;e
shared bus occurs. The request, which may be a memory
read or write, is queued until the shared bus is ready. In
such a system with multiple caches, the same information
can be shared and may reside in a number of copies in the
main memory and in some of the caches. In addition, the
processor executes I/O instructions to obtain /O status or
to program a DMA (Directed Memory Access) controller
for data transfer between main memory and an I/O device.
The target architecturé adopts a two-level cache structure
for reducing bus traffic. We assume that each processor is
equipped with an on-chip cache to reduce the off-chip
requests. In this paper the on-chip cache is referred to as
the L1 cache, while the off-chip one as the L2 cache.

The XMP architecture is consisted of L2 cache, Abus,
Dbus, and memory subsystems. Fig. 2 presents a queueing
network model of the XMP architecture. A number of
processors and a DMA coniroller are represented as 'delay’
nodes; the delay denotes the time needed for processor
activity between two consecutive instruction executions.
The subsystems are represented as 'service' nodes; each
service node is equipped with a parameter which indicates
the subsystem access time (including the queueing delay
time and hardware processing time).

delay node:

Fig. 2. Queueing network model of the XMP system
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The following iypes of requests are included in the
XMP model:

% L1-hit, representing that the processor requests and
obiains the data in its on-chip cache without
additional delay.

¢ [L]-Miss, representing that the processor requests a
data which fails in the L1 cache.

¢ [2-hit, representing that the data access of the
processor fails in the L1 cache and succeeds in the
L2 cache without issuing a bus request.

% Miss, or read-miss, representing that the processor
requests a data which is currently not in its L2 cache
and must access memory via the Abus.

¥ rep, or memory-reply, representing that the memory
subsystem puts the requested data onto the Dbus
when the memory read operation is complete.

4 icl, or invalidation, representing that the processor
writes and hits a 'shared' state line, and then its L2
cache issues a signal via the Abus to invalidate other
cache line copies.

¢ wb, or writeback, representing that the L2 cache
must write back a dirty cache line into the memory
via the Abus and Dbus. The memory write operation
completes asynchronously.

¢ dma, or DMA-transfer, representing that the DMA
coniroller transfers data to/from memory via the
Abus and Dbus.

Note that the L1 _hit, LI-Miss and L2_hit requests flow
directly back into the processors and are not included in the
models of the subsystems.

From Fig. 2, we can see that the request types of
all subsystems include LI Miss, Miss, icl, wb, dma, and
rep. L1_Miss and icl will visit the L2 cache; L1_Miss is a
blocking request, because the processor waits until it
receives the response to the instruction issuing the request.
There are five request types that visit the shared bus; two
of them, Miss and icl, are blocking ones. Three request
types, Miss, wb, and dma, visit the memory subsystem;
only the Miss request will cause the requester to be
blocked. Note that the icl is a blocking request to the bus,
but a nonblocking one to the L2 cache. This is because (1)
no data response is required for the ic/ request, and (2) the
tag update in the L2 cache will not cause any delay to the
requester.
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4.2. SSL model of XMP

The SSL model of the XMP system is shown in Fig. 3.

'@TEM-NAW,: XMP \

SUBSYSTEM [SubsystemName="CPU', NumberOfRequester=8,
ServiceTime=0.8
BlockRequest(RequestName="T11_Miss') |;

SUBSYSTEM [SubsystemName="L2', ServiceTime=2.0,
BlockRequest(RequestName="Miss',

ServiceTimeOfTheRequest=Default,
Probability=0.20, Utilization=Default,
QueueLength=Default, WaitingTime=Default),
NonBlockRequest(RequestName='icl',
ServiceTimeOfTheRequest=Default,
Probability=0.104, Utilization=Default,
QueueLength=Default, WaitingTime=0.4),
SUBSYSTEM |SubsystemName="Abus',
ServiceTime=1.0+U(Additional Time=2),
BlockRequest(RequestName='Miss',
ServiceTimeOfTheRequest=Default,
Probability=0.20,
Utilization=Default+W(SubsystemName="Dbus"),
QueuelLength=Default+W(SubsystemName="Dbus'),
WaitingTime=Default),
BlockRequest(RequestName='icl', ServiceTimeOfTheRequest=Defanlt,
Probability=0.013, Utilization=Default,
QueueLength=Default, WaitingTime=Default),
NonBlockRequest(RequestName="wb',
ServiceTimeOfTheRequest=Default,
Probability=0.03,
Utilization=Default+W(SubsystemName=Dbus"),
QueueLength=Default+W(SubsystemName=Dbus'),
WaitingTime=Default),
NonBlockReqguest(RequestName='dma',
ServiceTimeOfTheRequest=Default,
Probability=0.03,
Utilization=Default+W(SubsystemName="Dbus"),
QueueLength=Default+W(SubsystemName=Dbus'),
WaitingTime=Default) |;
SUBSYSTEM [SubsystemName="Dbus',
ServiceTime=4.0+U(Additional Time=2),
BlockRequest(RequestName="rep’,
ServiceTimeOf TheRequest=Default,
Probability=0.20, Utilization=Default,
QueueLength=Default, WaitingTime=Default),
NonBlockRequest(RequestName="wb,
ServiceTimeOfTheRequest=Default,
Probability=0.03, Utilization=Default,
QueueLength=Default, WaitingTime=Default),
NonBlockRequest(RequestName='dma’,
ServiceTimeOf TheRequest=Default,
Probability=0.03, Utilization=Default,
QueueLength=Default, WaitingTime=Default) };

SUBSYSTEM [SubsystemName="mem’, ServiceTime=7.0,

BlockRequest(RequestName="Miss’, ServiceTimeOfTheRequest=9.0,
Probability=0.20, Utilization=Default,
QueueLength=Default, WaitingTime=Default),

NonBlockRequest(RequestName='wb',
ServiceTimeOfTheRequest=7.0,
Probability=0.03, Utilization=Default,
QueueLength=Default, WaitingTime=Default),

NonBlockRequest(RequestName='dmaR’,
ServiceTimeOfTheRequest=9.0,
Probability=0.03, Utilization=Default,
QueueLength=Default, WaitingTime=Default),

NonBlockRequest(RequestName="dmaW',
ServiceTimeOfTheRequest=7.0,
Probability=0.03, Utilization=Default,
QueueLength=Default, WaitingTime=Default) ;

END

\\1:"1& 3. SSL Model of the XMP multiprocessor systiin}
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5. Overview of SOPETOOL
5.1. Structure of SOPETOOL

SOPETOOL is an integrated tool for performance
evaluation. It consists primarily of four stages: parsing,
code generation, iterative computation, and resulis
preseniation, as shown in Fig. 4.

Parsing is to break down an assertion or statement
into its parts and process additional information. It is done
by a keyword-based parser, which works word by word,
using space and comma as delimiters. The processed word
is brought into a buffer, where additional information is
extracted. The extracted information is siored into internal
tables with respect to particular keywords. These keywords
have SYSTEM-NAME, SUBSYSTEM, SubsystemName,
Utilization, END, FUNCTION(), U(), W(), ... etc.; internal
tables have Specification table, Udata table, Wdata table,
and Function table. Udata table siores the additional
information related to U() keyword; similarly, Wdata and
Functibn tables store the additional information related to

W() and FUNCTION(Q) keywords, respectively. Other

additional information of remaining keywords are stored
into the Specification table, as shown in Fig. 4. Finally,
when the END keyword is detected, code generator is
triggered.

The code generation stage is to generate an
executable program based on MVA equations [9-12] and
SOPETOOL internal tables. The internal tables supply all
important specification with respect to a target system as
input/output parameters to MVA equations. Most of
MVA's parameters are feiched from the Specification table
and performance results are also stored into the
Specification table. Others related to wuser defined
parameters, such as external function call name, additional
information, are gotten from Udata, Wdata, and Function
tables. In summary, during this stage, MVA. equations are
translated into a program according to target system's
specification stored in SOPETOOL's internal tables for
performance evaluation.

The iterative computation stage is to run the
generated program for obtaining performance resulis and
processing user defined information. During this stage, a
heuristic iterative algorithm is applied to converse the
performance results. Moreover, the wser defined
information is also processed to generate particular service
time, utilization, queue length and waiting time. In addition
to processing user defined information, SOPETOOL also
provides a general mechanism that permits designers to run
These external
procedures must be compiled into executable files; and
then these files can be run by SOPETOOL during the
iterative computation stage. Returned values from an
external procedure are also saved into the Specification
table. Note that the communication between SOPETOOL
and the external procedure is implemented by using two
data files.

At the end of iteration, performance results are
presented. SOPETOOL shows the rtesults in textual
explanation for presenting real quantity and graphic chart
for presenting easy-to-undersiand data.

their own computation procedures.

Performance
resulis, such as response time, subsystem access time per
request (SATPR), utilization, queue length, and waiting
time, are presented in texiual values. The result of
bottleneck analysis is shown in bar chart or pie chart.

Fig. 5 shows the main butions of SOPETOOL
user interface. These butions are 'Subsysiem access time',
'‘Show data', 'Queue length', 'Waiting time,' and 'Exit'. The
'Exit’ button allows an option to stop and exit SOPETOOL.
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The 'Queue length’' and 'Waiting time' buttons are used to
show the number and time of each type of requests waiting
in all subsystems. The 'Show data’ button can be used to
display the input parameters defined in the SSL model. The
'Subsystem access time' button is for displaying subsystem
access time [9, 11, 12] of all subsystems and for the
bottleneck and cause identification.

5.2. Application Example of SOPETOOL

To demonstrate the ease and usefulness of
SOPETOOL in performance evaluation and bottleneck
analysis. In this section we employ SOPETOOL to
evaluate a pafticular shared bus multiprocessor (SBMP)
system composed of -CPU, L2 cache, Abus, Dbus, and
memory subsystems. The SBMP architecture and its SSL
model have been introduced in Section 4, respectively. The
evaluation process begins by feeding the SSL model file
into SOPETOOL; then performance results are collected.
Fig. 6 shows the average instruction execution time of a
processor and SATPRs of all subsystems; we can find that
the memory subsystem contributes a longest SATPR to
processor execution. Therefore, the memory subsysiem is
the botileneck as shown in the bar chart of Fig. 7 and the
pie chart of Fig. 8.

6. Conclusion

: In this -~ paper, we have presented that
subsystem-oriented performance evaluation methodology
(SOPEM) is a systematic performance evaluation
methodology, which consisis mainly of a process for
organized development of computer systems.A The process
includes initial abstraction, ‘modeling target system,
generating execution code, evaluating system performance,
identifying bottleneck and cause, and followed by a
correcting architectural design stage for performance
improvement. SOPEM's three main tasks are: modeling a
target system in subsystem specification language (SSL),
analyzing the performance resulis, and modifying the SSL
model for more evaluation iterations. These tasks will
iterate until the system meets a set of predefined
performance criteria.

Moreover, we have iniroduced a performance
evaluation tool, nme]y SOPETOOL, based on SOPEM.
With SOPETOOL, we are able to estimate large
performance models in a relatively easy way. SOPETOOL
analyzes a performance model written in the SSL and
process the model in four stages: parsing, code generation,
iterative computation, and resulis presentation. Finally,
SOPETOOL is employed to evalnate a shared bus
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multiprocessor system and performance results are
presented in both text and chart.
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