Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

A Scheme for Enhancing Transmission Rate
on Asynchronous Secure Communication

Hyon-Cheol Chung
Electronics and Telecommunications Research Institute

Abstract

In asynchronous communication data of 00h ~
1Fh are used as all kinds of control characters, and
7Fh also is wused as control character in some
protocol such as kermit. Therefore, data of this area
must be converted to other form for transmission to
prevent the misconception as control characters. This
thesis presents several methods for character
conversion that prevent the lengthening of data and
enhance the overall efficiency of communication by
transmitting with a certain conversion and without
adding special characters on control-like characters
occurring when data are transmitted with ciphering
onto asynchronous communication path. For such
conversion, the scope of transmitted data was
supposed and efforts were made not to exceed that
scope. Experiments showed that this method is better
in communication speed than the existing ones and
that ciphering has no problem by confirming the
randomness of ciphered data.

1. Introduction

The wuse of BBS(Bulletin Board System) by
telephone line is sharply increasing recently due to
the development of hardware/software and the propa-
gation of personal computers. As most BBSs commu-
nicate using mainly asynchronous protocol, the use of
asynchronous protocol increases continuously.

With the increase in the use of asynchronous
protocol, the informations on it are in urgent need of
protection. This paper refers to a scheme for
processing control characters, one of the consider-
ations in protecting informations on asynchronous
data. Generally in asynchronous communication the
data are transmitted in characters each of which
consists of 7 or 8 bits. The characters those have the

value of 00h ~ 1Fh or 7Fh in lower 7bits are control

‘characters used for function or flow conirol in
asynchronous protocol such as kermit. Characters with
these code values can appear among binary data.
Characters with the same value as control characters
being not actually control characters [1][2][3], are

defined as control-like characters. If control-like
characters are transmitted as they are, they are
recognized as control characters by communication
nodes and let communication elements perform control
operation resulting in ‘the loss of data of one byte.
Especially, in cases of cipher communication or the
transmission of compressed data, many data can be
lost in re-conversion of data due to data of one byte
lost in communication. To solve this problem, these
control-like characters must be converted to other
form and the original data must be obtained by
certain re-conversion on the receiver's side. Generally
the method of executing exclusive- or({OR) the data
byte and 40h after the addition of '# (23h) offered
by kermit protocol is used a lot[1][2]. This method
has the disadvantage that in the worst case too many
of '#s are added. Of course text data themselves do
not have control-like characters but in case data are
converted to cipher, control-like characters can not but
occur in volume because text data become binary
data, almost random numbers. Also in the case of
binary data, although terminals already added '# and
processed control characters, if ciphering is performed
at data conversion part they become binary data again
so they must be processed in duplicate and the length
of data gets longer.

Recently as the speed of processors gets faster,
and pre-transmission processing such as ciphering
causes no interference with the overall speed of
communication or the rate of transmission. However,
if one node on communication path receives data with
a certain rate of transmission and sends them by
attaching more data to them, many loads will hang
on to a certain node and certain section as in (Fig.
1) regardless of the speed of the processor. And the
frequency of flow controls occurring due to the
overloads will decrease the speed of communication.
This is because the lowering in the speed of
communication can not be avoided for the rate of
transmission on to the next node is constant no
matter how fast the processor of that mode processes
the ciphering/deciphering of data. In order to solve
this problem, this paper presents methods to enhance
the transmission rate and to process without additional
characters to the control-like characters occurring

117

Proceedings of International Conference
on Cryptology and Information Security

when data are ciphered and transmitted.

For efficient unfolding of the thesis, section 2
introduces methods of processing conirol-like
characters in kermit protocol and describes problems
in cipher communication, section 3 presents methods
of processing control-like characters without additional
characters by executing exclusive-or in nibbles, and
section 4 presents methods of using the operation
with the modular addition, not exclusive-or. Section 5
presents and analyzes the experiment for each method
and its result and section 6 concludes.

&y

(ii) J (i) (iv)
17

Public

P

(a) (b) Network (e) (d
Data Data Host or
TASVI?C' | Conversion Conversion Async.
ermimal =y Unit Terminal

(Fig. 1) Typical asynchronous communication
network

2. Encoding control-like characters in kermit
protocol

Kermit protocol is an asynchronous protocol
designed for file transmission. This protocol is
operated in procedures similar to XMODEM]|2]. This
protocol can process not only ASCII but also binary
files and this section refers to the method of
processing control-like characters at the time of
transmission/reception of binary files.

If control-like characters appear while files are
transmitted, kermit uses the method of transmitting by
adopting value 40h and exclusive-or on them and
then inserting ‘# into the front. Generally control
characters are defined in between 00h and 1Fh and
they are converted to values of between 40h and 5Fh.
And the other control-like character, 7Fh is converted
to 3Fh by performing exclusive-or with 40h.
However, as these values are overlapped with data of
values between 3Fh and 5Fh, which can not be
distinguished from original values between 3Fh and
SFh on the part of receiver and so ¥ shall be
transmitted first before the converted value and then
" the applicable characters. This way the receiver
obtains the original data by adopting 40h and
performing exclusive-or for next characters right after

118

removing '# met in receiving data. This ¥ also must
be distinguished from the original #' so that data will
not be lost even though the receiver removes "#. For
this the transmitter shall transmit one additional %'
followed by the original '# and the receiver shall
adopt only '# of even numbers in case ‘# appears
sequentially[1][2]. (Fig. 2) shows the process of
processing kermit's control-like characters on binary
data..

while(1) {
Getch(byte);
ch = byte & Ox7f;
if (ch<0x20 || ch==0x7f) {
byte = byte " 0x40;
Send_char('#);
}
else if (ch == "#) Send_char('#);
Send_char(byte);

} :

(a) Processing Method on Sending

while(1) {
Getch(byte);
if (byte == "#) {
Getch(byte);
ch = byte & Ox7f;
if (ch !="#) byte = byte * 0x40;

Accept(byte);

(b) Processing Method on Receiving

(Fig. 2) A method of processing conirol-like
characters on kermit protocol

However, if the file to be transmitted is data the
almost random numbers like ciphered data, the data
to be transmitted/received increase too much due to
added '#. In other words, in case of 8§ bit data, '#
must be added one by one on data '#, 7Fh and
between 00h and 1Fh in lower 7bit. The section of
control characters among 256 characters iriggers the
increase of data by the probability of 68/256. Also in
case of 7 bit data, ¥ must be added one by one on
data '#, 7F, between 0Oh and 1Fh. The section of
control characters among 128 characters results the
increase of data by the probability of 34/128. This
value means burden of additional transmission/
reception of data more than 1/4 in addition to the
original data. If this communication is plain one not
ciphered/deciphered it's no big problem as control-like

characters are processed and then transmitted at the
transmission part but in case of cipher transmission/
reception things are different. In a structure like (Fig.
1) the communication terminal(a) at the transmission
part will transmit data after control-like characters are
processed to data conversion part(b). At data
conversion part the data must be ciphered and then
control-like characters must be processed on data
becoming random numbers again in the same way. At
this time communication terminal transmits at a
constant rate and if data conversion part increases
these data by 1/4 and transmits the bottle neck
phenomenon occwrs. If this is the case, data
conversion part(b) on the transmitter may have to
flow-control continuously not to lose data, which in
turn lowers the overall speed of communication
greatly. Comparison of real communication speeds is
presented in section 5.

3. Processing control-like characters using exclusive
-or in mibbles

One of the most popular method of ciphering data
by stream cipher is just exclusive-or with key
stream[6][7][8]. The method in this section is similar
to popular method in the sense that it uses
exclusive-or with key stream. But, it is a little bit
different with popular method in the sense that it
treats data in nibbles. This section presents a method
of transmission in combination with the original data
value at the time of ciphering, which takes advantage
of the points that text data do not have the value
7Fh and between 00h and 1Fh. It means that even

the binary data reaching the data conversion part have

been converted to process control-like characters at
terminal, so the data reaching the data conversion part
do not have the value 7Fh and between 00h and 1Fh
in lower 7bits.

3.1 Method of executing exclusive-or in nibbles
once

The data conversion part of (Fig. 1) performs
exclusive-or to cipher data from the transmitter in
byte with key stream created at the ciphering part.
And if the value of lower 7bits is between 00h and
1Fh then lower 3bits of upper nibble are adopted as
they are and perform exclusive-or with key stream for
the rest bits. For the control characters in the range
of 00h ~ 1Fh, the lower 3bits of upper nibble is Oh
or lh and that of lower nibble can be anything
beiween Oh ~ Fh. In other words, the values not to
become control-like characters, can only be larger

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

than 'l1' in lower 3bits of upper nibble and be smaller
than 7Fh in lower 7bits. As in pre-conversion
characters the lower 3bits of upper nibble is 2h ~ 7h,
the converted data are not control-like characters even
if lower 3bits of upper nibble is adopted as it is at
the time of data conversion. And as the lower nibble
of converted data is a value converted by exclusive-or
this byte itself is different from the pre-conversion
value. For 7Fh of ciphered value, only first bit have
to be ciphered. Same methods must be executed in
ciphering as in deciphering. First, operation of
exclusive-or on key and data is executed and then if
the upper nibble of deciphered data is '0' or 'l' the
upper nibble of data. prior to deciphering must be
adopted. Because the source data can not be '0' or 'l'
in lower 3bits of upper nibble. For 7Fh of deciphered
value, only first bit have to be deciphered.

In case this method is used, the length of data
did not increase when text data were converted to
binary and transmitted and so the flow-control at the
transmitting part has sharply decreased and the overall
rate of transmission has greatly increased. (Fig. 3)
represents a brief algorithm of the method of
processing control-like characters using exclusive-or in
nibbles. Same algorithms can be applied in both
transmission and reception.

while(1) {
Receive_char(byte);
Getkey(key);
ch = byte " key;
temp = ch & Ox7T;
if (temp < 0x20) {
ch = byte * (key & 0Ox8f);
if ((ch&0x7f)==0x7f) ch = byie"(key&0x80);

}
else if (temp==0x7f) ch = byte"(key&0x80);
Send_char(ch);

|

(Fig. 3) Processing control-like characters with
single XORing

The above-mentioned method causes no problem
in the speed of communication but there is a high
probability that the upper nibble will concur with the
original value of data compared to normally ciphered
data. While the probability is 1/16 that the upper
nibble of normally ciphered data concur with that of
the original (in case the upper nibble of key is '0")
using this method includes the case in which the
upper nibble of ciphered data is '0' or '1' and so the

119

Proceedings of International Conference
on Cryptology and Information Security

probability becomes about 1/16 + 1/8. This makes the
invasion from a third party look likely but it is hard
to verify that it actually is. That is because the upper
nibble of data appearing as control-like characters at
the time of ciphering is not always mapped as a
constant value but appears different depending on the
value of source data. However, if the source data are
binary which processed control-like characters it is no
problem as the source data themselves have
randomness, but in case of text data they can lose
randomness as a certain range of data appear often.
This problem can be solved by method presented in
the next section.

3.2 Method of executing exclusive-or in nibbles
twice :

If the exclusive-or in nibbles is executed once by
the method presented in the fore section, the
probability that the upper nibble concur with source
data is about 1/16 + 1/8. As the frequently appearing
data are invariable in case of text data, if this
method is used, ciphered data in which upper nibble
and source data concur can appear in a certain area
(e.g., 41h ~ 7Ah) in volume. If this happens, the
series of ciphered data can lose randomness.

To solve this problem the method of adopting the
same conversion method once again can be used.
Namely, after exclusive-or is executed on ciphered
data with another key stream. If the lower 7bits of
this value is smaller than 20h, the upper nibble is
adopted as it is and the lower nibble adopts ciphered
value. And if the lower 7bits of this value is 7Fh,
just only first bit have to be ciphered. In this
method, the points that key stream must be created in
double and that the operation of exclusive-or must
also be in double work as overhead but in
asynchronous communication of about 19,200 bps do
not affect greatly as the speed of recent processors is
fast. Deciphering in clause 3.1 must be processed
twice in deciphering too. In case this method is used
the probability that the upper nibble concur with that
of source data is decreased to about (1/16 + 1/8)* =
9/256, which is lower than 1/16 of the method using
normal exclusive-or and so the problem appearing in
the method mentioned in clause 3.1 is solved.

As data once ciphered have randomness compared
to source data, the ciphering method using exclusive-
or twice has far better randomness than the one
executing exclusive-or once. In the method executing
exclusive-or in nibbles once the processes of
transmission and reception are the same but in the
method executing twice, during deciphering the second

key must be used first among two keys. Because this
method did not adopt simple exclusive-or but can go
through different processes in nibbles.

For example, when 'key_1' and 'key 2' are 55h
and 66h and 'ch' is 44h they are ciphered to 37h by
this method. If 'key 1' is used first and deciphered it
becomes 74h and so desired value can not be
obtained. 'key_2' must be used first to obtain 44h.

4. Processing control-like characters using modular
additions

The fore-mentioned methods use exclusive-or of
key stream and data, generally used much in
ciphering. The reason why exclusive-or is used much
in ciphering is because it is fast in deciphering and
convenient to program[6][7]. But in asynchronous
communicationconsidering control characters the scopes
of data must be compared each time and exclusive-or
must be done twice on data of the probability 1/8
with this method. In addition to this, the method in
which exclusive-or was done once on text data has
some problem in randomness of ciphered data and the
method in which it was done twice performs 6
exclusive-or's and 4 comparisons on one byte in the
worst case and thus can have some overhead in
performance speed. The ciphering by the use of
operation with modular addition[6], which will be
mentioned in this section, has little overhead in
operation speed compared to these methods and no
problem in randomness of data. Basic concept of
methods in this section is that the source data can
have the value in the range of 20h ~ 7Eh or AOh ~
FEh. So the number of elements of domain is
190(BEh). To cipher and decipher the data, refer to
the following equation.

Enc = remap((map(Src) + Key) mod 190) 1)
Src = remap(map(Enc) + (Count * 190) - Key) (2)

If encrypted data are smaller than key in
equation(2), increase count and compare before
calculation. The encrypted data obtained in equation(1)
are unique on constant source data and key and the
source data having one of 190 values in equation(2)
are unique on determined encrypted data and key.
Therefore, ciphering/deciphering using this equation is
normally performed. Function 'map' performs
subtracting 20h or 41h from the argument, and
function ‘remap' performs adding 20h or 41h to the
argument.

120

4.1 Method of organizing the domain of key
stream with 256 elements

This method is to create the data of 00h ~ FFh
with key stream for use to cipher data in byte and
the brief description of the method of
ciphering/deciphering is as follows.

First in ciphering as (a) of (Fig. 4) represents,
deduct 20h or 41h from data and map the data to
00h ~ BDh. And add the mapped data into key value
and then operate modulus with 190. Then this value
has the value between 00h ~ BDh and if 20h or 41h
is added to this value the data become ones without
control-like characters.

In deciphering the process opposite to ciphering
can be performed as (b) of (Fig. 4) represents. In
deciphering, deduct 20h or 41h from ciphered value,
and when this value and key value are compared, if
the ciphered value is smaller, add 190. Deduct key
value from this value and add 20h or 41h again to
get source data. Here adding and deducting 20h or
41h is inserted for convenience to cipher and to
decipher using modular addition.

while(1) {
Receive_char(ch);
if (ch < 0x80) ch = ch - 0x20;
else ch = ch-- 0x41;
Getkey(key); /* 0x00 < key < Oxff */
ch = (ch + key) mod 190 /* Oxbe */;
if (ch < 0x5f) ch = ¢ch + 0x20;
else ch = ch + 0x41;
Send-char(ch);
!

(a) Conversion scheme on sending

while(1) {
Receive_char(ch);
if (ch < 0x80) ch = ch - 0x20;
else ¢ch = ch - Ox41;
Getkey(key); /* 0x00 < key < Oxif */
while(ch < key) ch = ch + 190;
ch = ch - key;
if (ch < Ox5f) ch = ch + 0x20;
else ¢ch = ch + Ox41;
Send_char(ch);

}

(b) Conversion scheme on receiving

(Fig. 4) Processing conirol-like characters with
modular addition-(i)

121

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

4.2 Method of organizing the domain of key
stream with 190 elements

The method mentioned in clause 4.1 is a good
one in the safety of data and is better than the one
introducedin section 3 in the complexity of calculation
and is similar to that of clause 3.2 in randomness of
ciphered data. However, the ciphered data do not
have randomness as much as key stream because of
redundancy of key stream. For example, two key
values 00h and BEh produce the same ciphered data
for one source data. This redundancy occurs on 66
key pairs(00h and BEh, 0lh and BFh, .. , 41h and
FFh) because of modulus 190. It means each key. pair
produce the same cipher data from same source data.

This section introduces the method of maximizing
randomness from ciphered data by performing
ciphering/deciphering using the procedure similar to
clause 4.1 and the key created by making the domain
of key stream O00h -~ BDh(189). It is similar to clause
4.1 in ciphering except that 'Count' of equation(2) is
0 or 1 in deciphering. As mapped source data and
key of equations (1) and (2) is 0 ~ 189 each, the
sum of the two data is 0 ~ 378. When this is
operated with 190 by modulus two by two values fall
between 0 ~ 189. As pair of value (0,190) is
mapped to 0, (1,191) to 1 and (189,378) to 189,
ciphered data have randomness as much as key. (Fig.
5) represents the method of ciphering/deciphering
using key having the value between O ~ 189. The
scope of key value can be set at the time of key
creation but the case of using the algorithm of key
creation between 0 ~ 255 is supposed and described.

5. Experiments and verifications

sections 3 and 4 reviewed the method of ciphering
not to generate control-like characters whereas this
section presents the measured speed of data
transmission in cipher communication using the fore
mentioned methods and represents the measured
randomness of ciphered data to show using these
methods that the ciphered data have not been
weakened. The source data used in each experiment
is a C program source of 1 Mbyte.

5.1 Communication speed for each method

In the environment of (Fig. 1) text, data of
80Kbyte were transmitted in 9600 bps and 19200 bps
for experiment. In this experiment (a) and (d) of both
terminals in (Fig. 1) used 486DX and communication
program used ‘procomm'. Communication protocol

Proceedings of international Conference
on Cryptology and Information Security

used kermit and 8 bit data. Ciphering used stream
ciphering and data conversion part used 8 buffers of
256 byte and when buffer was full or data forwarding
character was input the ciphering transmission was
used. The main processor of data conversion unit
used MC68000.

while(1) {
Receive_char(ch);
if (ch < 0x80) ch = ch - 0x20;
else ch = ch - Ox41;
do {
Getkey(key);
} while(key >= 190) .
ch = (ch + key) mod 190;
if (ch < Ox5f) ch = ch + 0x20;
else ch = ch + 0Ox41;
Send_char(ch);

}

(a) Conversion scheme on sending

while(1) {
Receive_char(ch);
if (ch < 0x80) ch = ch - 0x20;
glse ch = ch - 0x41;
do {
Getkey(key);
} while(key >= 190)
if (ch < key) ch = ch + 190;
ch = ¢h - key;
if (ch < 0x5f) ch = ch + 0x20;
else ch = ch + Ox41;
Send_char(ch);
1
(b) Conversion scheme on receiving

(Fig. 5) Processing control-like characters
with modular addition-(ii)

As <Table 1> represents, kermit incurred
tremendous lowering of speed. Theoretically, "if data
conversion part passed without ciphering in 45
seconds, transmission must be completed in 57
seconds, about 1/4 more when kermit is used but,
many flow controls were ocurred due to botile neck
phenomenon in section (ii) of (Fig. 1), which dropped
the communication speed further. Most of the
methods presented in this paper did not drop the
communication speed. Only Double XORed method
dropped a little bit but if faster processor had been
used the speed might not be dropped. This
experiments have been performed 20 times. However,
time measurement was manual and so the record was

in seconds.

<Table 1> Comparison of communication speeds
depending on each methods

122

Cypher/
Plain Cypher Plain
. (By-p
baud Single | Double [Modular| Ker ass)
rate XOR | XOR |Addition| mit
19200bps 45s | 48s 455 | B62s | 45s
9600bps | 85s | 86s | 85s |114s| §5s
52 Randomness of key stream and of data

ciphered normally

To show that key stream used in this experiment
is random enough the most common methods for
evaluation were used such as frequency test, serial
test and poker-8 test and the -significance level in
each experiment was 5%. The frequency test is an
experiment on how evenly '0' and 'l' appeared per
bit, serial test on if possible values on all sequential
bits are evenly distributed, and poker-8 test on the
possible valués from data cut in 8 bits are evenly
distributed[8][9][10]. The latter is same as chi-square
test whose degree of freedom is 255. First it was
experimented that key stream and normally ciphered
data were random enough, to compare the randomness
of key stream with that of series created by the each
methods of processing control-like character. However,
control-like characters were not processed to
experiment and compare randomness. That is because,
if control-like characters are processed, data appear
between 20h ~ 7Eh and between AOh ~ FEh an
appropriate value can not be obtained with experiment
on randomness in bit or byte. <Table 2> represents
the result of experiment on randomness of key stream
using each experimental method and that of ciphered
data without the processing of control-like characters.

As this result suggests, key stream and ciphered
data have enough randomness.

5.3 Randomness of data ciphered using exclusive-or
in nibbles

This clause experiments the randomness of data
created by the ciphering method mentioned in section
3 and presents the result. As the data created by the
method mentioned in section 3 are values between
20h ~ 7Eh and between AOh ~ FEh, the experiment
on randomness in bit or byte bears no meaning.

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

<Table 2> Randomness test for key and cipher data

test Frequency Test Serial Test Poker-8 Test
100bytes | 1000bytes | 1Mbytes | 100bytes | 1000bytes | 1Mbytes | 100bytes | 1000bytes | 1Mbytes
X X X X X X X X X
data\ |10000times| 1000tmes | once |10000times| 1000tmes | once |10000tmes| 1000times | once
St'::;’m 954% | 96.5% |succeed| 95.2% | 94.0% |succeed| 94.4% | 94.5% |succeed
Gipher 0, 0, o, 0, 0, 0,
data 94.6% | 95.1% |succeed| 94.0% | 91.7% |succeed| 93.0% | 90.6% |succeed

Instead of the experimental method in clause 5.2,
chi-square experiment measured randomness with
degree of freedom 189[9]. Chi-square value V is
obtained by equation(3) in which k is the kind of
sample, Ys the frequency that s th sample appeared
and nps the likeliness that s th sample will appear. In
this experiment k is 190. (In reality s = 0 to 189.)

-

s=1

(Ys— nps) 2
np s

€))

In what the value obtained in equation(3) would
be reasonable can be known by standard value
obtained using the degree of freedom in the
distribution chart of chi-square and v the degree of
freedom is determined by k-1. In this experiment the
significance level is 5% and v = 189. As <Table 3>
represents, the method executing the exclusive-or in
nibbles once passed only when randomness was
verified in 100 byte, and long series had not enough
randomness. In methods executing exclusive-or in
nibbles twice, randomness was enough in verification
not only in 100 byte but also in 1000 byte.

<Table 3> Randomness test for data
produced by XORing Method

100bytes [1000bytes|1Mbytes
test
scheme X v X
10000iimes|1000times!| once
Single XOR 94.6% 50.5% fail
Double XOR| 94.2% 92.0% fail

5.4 Randomness of data ciphered using operation
with modular additions

This clause experiments the randomness of data
created with the ciphering method mentioned in
section 4 and presents the result. As the data created

with the method presented in section 4 are values
between 20h ~ 7Eh and between AOh ~ FEh, the
experiment on randomness in bit or byte would be
meaningless. So randomness was measured by
chi-square experiment with the degree of freedom 189
as in the method using exclusive-or in nibbles. As
<Table 4> represents, in case the scope of key is 0
~ 255 it has enough randomness in wverification of
100 but it failed in verification on randomness on
series of 1000 byte and 1 Mbyte. The method with
keys in scope of 0 ~ 189 passed all verifications on
randomness indicating that key stream and randomness
are almost equal. It is reasonable that randomness of
latter method is better because of redundancy of key
as I mentioned in clause 4.2.

<Table 4> Randomness test for data produced
by Modular addition

St | 400bytes |1000bytes | 1Mbytes
X X X
key domain 10000times | 1000times | once
0 to 255 90.5% 48.7% fail

0 to 189 94.2% 95.5% | succeed

6. Conclusion

Binary data transmitted in asynchronous communi-
cation can have same code values as control
characters and are called control-like characters. In
order to perform protocol well these control-like
characters must be converted to other characters to be
transmitted. Generally, 40h and exclusive-or are
executed on control-like characters and '# and then
they are transmitted with '#. This method is defined
in kermit protocol,” in which many '#s are added and
transmission takes much time and thus the frequency
of flow control becomes large dropping the efficiency
of communication further, in case the data are

123

Proceedings of International Conference
on Cryptology and Information Security

ciphered and transmitted for they become almost
random numbers. This paper introduces and analyzes
the method of processing control-like characters
provided by kermit and analyzes the problems
occurring in cipher communication. As a solution to
them, schemes that may enhance the efficiency of
fransmission in cipher communication by processing
control-like characters without additional characters by
presenting two methods of synthesizing key stream
and data were presented. These took advantage of the
characteristics that data sent from terminal to data
conversion part do not have control-like characters.

The first one is for operation of key stream and
exclusive-or in nibbles, the method in which upper
nibble adopts the value of source data if the value
from the operation of exclusive-or is control-like
character. This method performs some more
procedures than the one by kermit but that does not
interfere with communication speed as the speed of
processor is fast enough. Rather, experiment confirmed
the fact that the overall speed of transmission is
much faster in this method than in the one by kermit
requiring additional data by 33/128 for it allows
communication without additional data in a constant
communication speed. As the data obtained by this
method have weak randomness, it was taken care of
by applying this method to data twice. It could be
known that the case in which exclusive-or was
executed in nibbles twice had enough randomness
relatively compared to once and the loss of time
following the increased operation was not big.

The second method is one by the use of operation
with the modular addition, and took advantage of the
characteristics that the source data from terminal do
not have control-like characters. The source data can
have values between 32(20h) ~ 126(7Eh) and between
160(A0h) ~ 254(FEh), and are ciphered by executing
the addition with key and modulus with 190 after
mapping source values to 0 ~ 189. This method does
not yield to the first one in the aspect of time and is
superior to it in the aspect of safety of ciphered data.
It could also be known in particular, that when keys
were in the scope of 0 ~ 189 they had randomness
equal to that of key stream. As a result of each
experiments the last method is the best in the repect
of time and safety.

The methods presented as above did not interfere
with safety of data but bettered the efficiency of
communication. However, as it is hard to verify if
ciphering by this method was more vulnerable to
invasion than one by a normal method, and safety
was demonsiraied by measuring of randomness of
ciphered data.

REFERENCES

[1} Frank da Cruz, KERMIT - A File Transfer
Protocol, Digital Press, pp.206-239, 1987.

[2] Uyless Black, Data Link Protocols, PTR Prentice-
Hall, pp.84-85, 1993.

{31 Young Il Chung, Introduction to PC communi-
cation I, Young Jin Publishing Co., pp. 43-85, Korea,
1988.8.

[4] In Tak Hwang, PC Communication Protocol
Handbook, Kanamsa, pp.326-333, Korea, 1989.9.

[5] Hans-Georg Gohring, Erich Jasper, PC-Host
Communication-Strategies for Implementation, Addison
-Wesley, pp.1-35, 1993.

[6] Electronics and Telecommunications Research
Institute(ETRI), Modern Cryptology, pp.1-102, 1991.
{71 R.ARueppel, Contemporary Cryptology : The
Science of Information Integrity, IEEE Press,
pp.65-134, 1992. '
[8] Henry Beker, Fred Piper, Cipher Systems - The
Protection of Communications, John Wiley & Sons,
Inc. New York, 1982.

[91 Donald E. Knuth, The Art of Computer
Programming - Seminumerical Algorithms, Addison-
Wesley, vol.2, Second Edition, pp.38-113, 1981.

[10] 1J.Good, "On the Serial Test for Random
Sequences", Ann.Math.Statist., vol.28, pp.262-264,
1957.

124

