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Abstract

The Lucas sequence (or equivalently,
Dickson polynomial) has important applications
in cryptology. In the first part of this paper, we
will investigate distribution properties of Lucas
sequences over GF(p) where p is a prime, and over
Zy where n is a product of two primes. We will
show that all elements of the Lucas sequence can be
classified into two disjoint subsets according to
their Legendre symbols. In the second part, we
will show how to utilize those distinct properties
of Lucas sequences to design Lucas public-key
cryptographic algorithms. The performance of
these cryptosystems is more efficient than
cryptosystems based on the exponential function.

I. Introduction

 The exponential function has played an
important role in most public-key cryptosystems,
such as the RSA scheme [1], the Diffie-Hellman
public-key distribution scheme [2], the ElGamal
scheme [3], the DSA [4], etc. For an exponential

function over Z,, we can write f,(x)=a"
,X€Z, , where (¢ is a fixed element in Z,. The

element (" can be regarded as the xth term in the
linear recurring sequence with the minimal
polynomial f(x)=x— (¢ and the initial state is 1.
Here we list some well-known properties of the
exponential function:

@ o
o =a", x,yeZ,.

satisfies a commutative law:

(ii)) Homomorphism: 0" = o or”.
(iii) If n is a prime number, we write p instead of

1. Given ¢, be Zp and a* = b, where x is an

unknown variable in Zp, then solving the
exponent x is equivalent to solve the discrete
logarithm in Zj. It can be solved in time
Lp[1/3; (64/9) /3+O(1)], for . p—seo, where
Lplu, vl=exp(v(log p*(log log p)1-%) [5].

(iv) Let the order of & be t. Then &¢* is a one-to-
one and onto (bijective) map from
§={0,L...1-1} to {a'|x e 5}.

Property (i) has been used in the Diffie-Hellman

public-key distribution scheme, property (ii) has

been used in the ElGamal digital signature

scheme, property (iii) has been used for building a

one-way trapdoor function, and property (iv) has

been used for ensuring the system's maximal
security especially when the order ¢ is a large
integer.

In 1984, Muller and Nobauer [6-7] proposed
public-key cryptosystems based on Lucas sequences
(or equivalently, Dickson polynomials ) over Z,.
Smith [8-9] improved Muller and Nobauer's
public-key systems in 1993. Since then, a series of
papers [10-15] studied Lucas sequences and their
applications in cryptology.

A Lucas sequence can be represented as

V= { V. }k ,o Which elements are given by

V=&V, —V,,, n22, in Z (1)
with éeZn’ Vo=2, and V, =& [6]. We also
denote V as V(&). A Lucas sequence in Z is a
2nd-order linear recurring sequence over Z_ with
the minimal polynomial f(x)=x’>—&x+1 and
the initial state (VO,VI) = (2,5 ) We also list

similar properties of the Lucas sequence:
() The index function of a Lucas sequence
satisfies a commutative law [6]:

V,(V,(8) = Vo (€)= v, (v, (&)).



@ V,.,,=V.V,-V.,

(iii) Given &, f€Z, and Vk(é ) = f3 where kis
an unknown variable, we define the discrete
index problem as to solve the index k in the
equation Vk(é) =f3. Suppose that n is a
prime number and f(x)= x'=Ex+1is a
reducible polynomial over GF ( p), then
solving the discrete index problem can be
changed into solving the discrete logarithm

GF(p) [13]. If

f(x)=x*~&Ex+1 is an irreducible

polynomial over GF(p), then solving the
discrete index problem can be changed into

solving the discrete logarithm in GF ( pz)

According to the reference [13], the best
scheme to solve the discrete logarithm in

GF(pZ) needs running
Lp[1/3; (128/9)13 + O(1)].

By comparing these basic properties, we
can say that if the index function of Lucas sequence
has the same bijective property as the exponential
function, all cryptographic systems based on the
exponential function can be converted into
cryptosystems based on the Lucas sequence.
Unfortunately, the bijective property of the Lucas
sequence has never been discussed in the open
literature. ‘

In section II, we will prove that the index

functions of the Lucas sequence V(é) over GF ( p)
with period t is a bijective map from

S={0,1,..0 1/ 2]} to {V,(E)lx € S}. Therefore

the index function of Lucas sequence over GF(p) is
a bijective map if we only consider elements in the
first half period (we call the "folding period" of
the Lucas sequence). We will also investigate
distribution properties of Lucas sequences over Z,
where 7 is a product of two primes. We will show
that all elements of the Lucas sequence can be
classified into two disjoint subsets according to
their Legendre symbols.

- The evaluation of the Lucas function
(V_(m),V,,,(m)) needs 2log, n multiplications
[7,8], where n is the modulus. On the other hand,
the evaluation of the exponential function m*

needs 1.5log,n
improve the

problem in

time

multiplications. In order to
efficiency of Lucas-type
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cryptosystems, we should realize that Lucas
sequence is generated by an irreducible polynomial
of degree 2 and we should utilize a state, which
consists of two consecutive elements, instead of just
a single element. Unfortunately, all current-
existing Lucas-type cryptosystems only utilize a
single element each time. Thus, these Lucas-type
schemes are less efficient than schemes based on
exponential functions, such as the RSA scheme and
the ElGamal scheme. In Section III, we propose
Lucas public-key cryptographic schemes which
utilize two elements. These proposed schemes are
more efficient than schemes based on the
exponential function. In- addition, we show that
Lucas function is the most suitable candidate for
designing cryptosystems based on two different -
security assumptions.

Remark. Reader is referring to see [16] for some
basic theories of finite fields and linear recurring
sequences over finite fields .

II. Distribution Properties of Lucas Sequences

Since Lucas sequences over GF(p) are 2nd-
order linear recurring sequences over GF(p), we
will take a different approach to investigate the
distribution properties of Lucas sequences. The
following Theorem states a relationship between
elements in GF (pz) and coefficients of the

minimal polynomial of Lucas sequence over GF(p).

Theorem 1. Let @ be a primitive element of
GF(p*) and f(x)=x"—&x+1 €Z [x]. Then, itis
either |
Case 1. the polyngmial f(x) is reducible over
GE(p) and & # 2 if and only if

E=a+a™ where a=0")(0<r<p-1; (2
or
Case 2. the polynomial f(x)
GF(p) if and only if

E=B+B" where f=" (0<s<p+1). (3)

is irreducible over

Proof.
Case 1. Suppose that (2) is true. Since

af ' =@M =1 we have @€ GF(p), and
f(x)=(x-a)x—a™). Sof(x) is reducible over
GF(p).

If f(x) is reducible over GF(p) and we let
a,,i=1, 2, be two roots of f(x) in GF(p), we have
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¢=a,+a,and o 0, =1. Consequently o, = ¢;".

Since ¢, € GF(p), and ®"" is a primitive element
of GF(p), there exists a positive integer r such that
o, =",

Case 2. Suppose that (3) is true. Since f§ = @*?™,
we have f§ & GF(p). This concludes that f(x) is

irreducible over GF(p).
If f(x) is irreducible over GF(p) and we

let ﬂi .1 =1, 2, be roots of f(x) in the extension
GF(p*) of G F (p),
§=p,+B,and BB, =1. These two roots of f(x)
are conjugate with respect to GF(p). We can write
B, =P¢.So BP* =1. Thus the order of f, divides
p + 1. Since ®"is an element with order p + 1 in

we have

GF (pz), then there exists a positive integer s
€{l,...,p} such that §, = @*"™. QED.

Lemma 1. Let V() and V({) be two Lucas
sequences over GF(p) with periods p—1 and p +1
respectively, then V., (5) = Vi (é’ ) =9,

Proof. Let @ be a primitive element of GF(p*),

o= @"" and f=@"". From Theorem 1, we can
write

Vk('é):ak-i-a—k, §=0H‘C(", kzO,l,-.. (4)

V(&)= +B", c=B+B, k=0,1,.. (5)

HpP -2 _
=-1, we have
Vv

W2 o ~(p-1i2
(p—t)/z(‘!v:) =0" T +a
— P2y -

'Sirice @

2 —(p2-1)/2
= @2 I _

>
Similarly, we have V,,,,,({)=-2. Q.E.D.

From the proof of the above Lemma, we
have the following result immediately.

Corollary 1. For any Lucas sequence V(Ej) over
GF(p) with period t, we have Vi J( f) =-2

Lemma 2. With notations in Theorem 1 and
Lemma 1, letting

R={0" ™" + & " |1<i<(p+1)/2} and

R={o" + o™ "™ |1<i<(p-1)/2},
then GF(p)=IRURUL{2,-2}.

Proof.
For £ e GF(p) and & #12, we construct a
polynomial f(x)=x>-&x+1.
(i) If f(x) is reducible over GF(p), according to
Theorem 1, there exists a positive integer r with
0<r<p-1,such that £ =% +@® ", Notice
that @@ 4 @V = PEHD 4 oy =@Hp-)
O<i<(p-1/2. (6)
Therefore we can write
E="™ +0™", 0<r<(p-1)/2,
which shows that £ € R.
(ii) If f(x) is irreducible over GF(p), and since
OV 4 @V = DD D
O<i<(p+1)/2. (7)
Similarly, we can write
E=0"" + ™", O<r<(p+1)/2,
which gives £ € IR.
By combing (i) and (ii), we have
VEeGF(p)= e IRURL{2,-2}.
That's GF(p)cIRURU{2,-2}. (8
Since [R|<(p—1)/2-1and |[IR|<(p+1)/2-1,
then
[IRU RU{2,-2}| <|IR|+|R|+2

- )
SPT”—1 pTl—1+2=p=|GF(p)|.
Together with (8) yields that
GF(p)=IRURgJ{2,—2}.
Q.E.D.

Let QRyp represents the set of all integers
between 1 and p - 1 that are quadratic residue
modulo p, and QNRp represents the set of all
integers between 1 and p - 1 that are quadratic
nonresidue modulo p. The Legendre symbol is

defined as J(a/p) =1 if a € OR, or J(a/p) = -1 if
ae QNRP. From Lemma 2 and Theorem 1, the
following result comes immediately.

Theorem 2. With notations in Lemma 2, we have

() RNIR=Q.



2 -—
(ii) 56R®J(§ 4)=1<:»
p
f (x) =x- Ex +1 is reducible over GF(p)

& per(V(E) | p-1.

2_
(iii) &e[R@J(g 4):—1
P

& f(x)=x? — Ex +1 is irreducible over
GF(p) & per(V(&)) | p+1.

Corollary 2. Let V(E) be a Lucas sequence over
GF(p) with period ¢. Then

7w k= V,(£), k= 0,1,...,{%J
is a bijective map from S:{k | k =0,1,...,|_t/2j}

to L={V,(&)| kes}.

Proof. We only need to prove V,(&)# V, (&) for
0<k=k<[t/2].
Case 1.t | p -1. Thus the minimal polynomial
f(x)=x*-Ex+1 of V(&) is reducible over
GF(p). From Theorem 1, we can write
E=@" 4 @, O0<r<(p-1)/2. Thus
elements of V(é) can be represented as

Vk(ﬁ) =o' + 0o, where o= """,

O<r<(p-1)/2.

Consequently, V,(£)e RU{2,-2} for any k with
0<k<|t/2]. From Theorem 2 - (i),

V(&)= V(&) if 0Sk=k<[2/2]. (10
Case 2. ¢ | p + 1. Similarly, by using Theorem 1

and Theorem 2 - (i), we have L < IRU{2,-2}
which implies (10) is also true. Q.ED.

Remark. If V is a Lucas sequence over Z; with
period £, then Vi =V}, 0 <k < [#/2] (see [15]).

Together with Corollary 2, we have the following
corollary.

Corollary 3. For any Lucas sequence V over GF(p),
each element in GF(p) either appears two times
exactly in one period of V or doesn't appear.
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Corollary 4. Let V() and V({) be two Lucas
sequences over GF(p) with the same period ¢. Let

L(z)={V,(z)) 0<k<|2/2]}, then
L(§)=L(?).

They are either a subset of IR orR.

Proof. From Remarks of Theorem 1 and Corollary 2,
the result comes immediately.

Next we want to generalize Corollary 2 to
Lucas sequences over Z,.

Theorem 3. Let V(i) be a Lucas sequence over Z,
with period ¢, where n=pg and p, g are two

primes, S={kk=112,.,[¢/2]}

L= {VA(‘S) | ke S}. For the following map from $
toL

and

mk—V(&), keS
there has at most two different k and k' in S such

that V(&) =V,(£).

Corollary 5. We use same notations as in the
Theorem 3 and let T={0,1,2,...,p+q}, then

mk—V/(E), keT

is a bijective mapping.

Above results can be derived based on the
Corollary 2 and the Chinese Remainder Theorem .
The proof will be given in the full paper.

III. Efficient Lucas Public-Key Cryptosystems

Generaliy speaking, there are two types of
Lucas cryptosystems. The first type of Lucas

systemis over Z , wherep is a large prime. Thus,

it is the extension of the well-known Diffie-
Hellman [2] or ElGamal cryptosystem [3]. The

second type od Lucas cryptosystem is over Z ,

where 7 is the product of two large primes. Thus,
it is the extension of the well-known RSA
cryptosystem [1]. In the following, we will show
how to utilize those distinct properties of Lucas
sequences that we have derived in section II to
design Lucas-type public-key cryptographic
algorithms. The performance of these
cryptosystems is more efficient than cryptosystems
based on the exponential function.
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A . Diffie-Hellman-type Lucas Public-Key
Distribution Scheme over Z,

Diffie-Hellman-type  public-key
distribution scheme based' on Lucas sequences was
proposed by Smith [11] in 1994. But, this scheme is
less efficient than the or1g1nal Diffie-Hellman
scheme [2].
Proposed scheme: In our Diffie-Hellman-type
scheme, there are public parameters (72,€) , where
n=pq, p and g are two large primes randomly
selected by a trusted party, and
f(x)=x"~Ex+1 is a polynomial over Z,. The
trusted party can destroy these p and g after
publishing the parameter n. Each user i needs to

randomly select a secret key x; €[L,n—1] and to

compute a publickey y, =(V, (5) 141 9)}
Let us assume that users A and B want to
~ share a common secret key K, ;. Then A needs to

access B's public key y, =(V,, &),V B+](§)) and

to use his secret key Xx, to compute
V,, ENY, o (V,, () and

(VxA( B+1(§)) A+1( B+1(§))) Similarly, B
needs to access A's public key
(VxA &),V 41 (£)) and to use his secret key

Xy to compute (V,_ (V_ ((5)) a1 (Vs (6))) and

B

Vo, (Ve a OV, (Ve (O

Theorem 4: The common secret key between A and

Bis K, , =(K|,K,,K,,K,), where

K=V, (V. EN=V,(V, (&),
2=V V(8= V ( +1('§))
K V., (V, +1(§)) Ven(V, (8)),

and K, =V, ,(V, +1(§)) Vr,,+1(VvA+1(é))
Proof: ItlsobV1ous QED.

Security:  Since all computations are over Z ,

these four subkeys (K|,K,,K,,K,) are all
independent without knowing secret primes p and
g.. The security of this proposed scheme is based
on the factoring problem. Complete discussion of
the security will be given in the full paper.

Discussion: According to [13], the factoring
problem over Z  and the discrete logarithm
problem over Z, have the same level of security
if the sizes of p and n are the same. We need to
point out that, in our scheme, the size of the
common secret key is 4log,n bits; but in the
original Diffie-Hellman scheme, the size of the
common secret key is log, p bits.

B. RSA-type Lucas Public-Key Cryptosystem Over
Z

n

In 1984, Muller and Nobauer [6, 7] proposed
public-key cryptosystems based on Lucas sequences
(or equivalently, Dickson polynomials ) over Z, ,
where n is the product of two large primes. Smith
[8, 9] 1mproved Muller and Nobauer's public-key
system in 1993.

In Muller and Nobauer scheme, the
receiver has secret keys (p, g, d) and public keys

(n, ), where n = pg, p and ¢ are two large primes,
ed mod f(n)=1,

Ln)=(p-1)(p+1)(g-1)(g+1), To send an
encrypted message to the receiver the ciphertext is
c=V,(m) in Z,. The ciphertext can be recovered
by the intended receiver by computing
V,(V.(m))=V,(m)=V,(m)=m in Z,. The
problem of this algorithm is that in order to
satisfy the equation ed mod £(n)=1 the
deciphering key becomes too large. Thus, it slows
down the deciphering speed.

In 1993, Smith {8, 9] realized that the size
of the deciphering key can be reduced by selecting
four message-dependent deciphering keys as

ed,=1modR; (1<i<4) where R (1<i<4)
are given in Table 1. Notice that the period of the
Lucas sequence V(m) over Z is a factor of one of
numbers R, 1<i<4. Smith deciphering
algorithm needs to compute four values
V,(V.(m)=V, (m)=m,, 1<i<4,

then determine which one is the right message m
according to a specific format. The problem of this

algorithm is that it needs to repeat the same
deciphering procedure four times.

Proposed scheme: First, we would like to show
how to utilize Theorem 2 and Corollary 4 that we

10



have derived in section II to speed up the
deciphering process by four times.
From Theorem 2-(ii), -(iii) and Corollary

4, we know that Legendre symbols of m’—4 and

(v. (m))2 —4 for both primes p and g are the same.
Thus, the intended receiver can use the ciphertext
V, (i) to determine the periods of both V, () mod
pand V,(m) mod g instead of using the message .
Therefore the proper deciphering key can be

determined uniquely in terms of the ciphertext.
We list this procedure in Table 1. For example, if

2 2
V,(m)) —4 |4 -4
](_e_(__l)_ =1andj_(e(—m))___ =-1,
p q
then the decipher key is d,. ie.,
V,, (Ve (m))= V. (m)= V,(m)=m.
So this approach speeds up Smith's deciphering

algorithm four times.
We assume that the receiver has secret

keys (p,q,d,.d,,d;,d,) and public keys (n, e),
where n = pg, p and ¢ are two large primes,
ed,=1modR, (1<i<4), where R( 1<i<4)
are given in Table 1. To send an encrypted message
m=(m,,m,) to the receiver, the ciphertext is
computed as '

my, =m, ®m,, where @ is the
exclusive-or operation
(V. (mlz )’ Ve (mnz))r

= Ve(mlz), and

6= Ve+1(mlz) RLTE
We want to point out that all computations are
computed in Z,. Ciphertext ¢ =(¢;,c,) is sent to
the intended receiver.

To decrypt the ciphertext ¢ =(¢,,¢,), the
receiver uses his secret key (p, q) to determine

2

¢ —4

Legendre symbols of both J( ) and

-

q
receiver selects a proper deciphering key d; such
that ed; =1mod R, and computes

(v, (cl )’ Viu (Cl )) '

4
J( ). Then, according to Table 1, the
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mlzzmiz@m‘l'

Theorem 5: (71,1, = (m;, ).

Proof: it is obvious. QED.

Discussion:  In the encryption (or decryption)
operation, each encryption can encrypt 2log,n-
bit message. Thus, it requires 1 multiplication per
1-bit message. The RSA scheme requires 1.5
multiplications per 1-bit message.

Security:  Since V,(my,)=mj, +my;, we have

(ms,)* - Ve(mu)mf2 +1=0. To solve my,
without knowing the factoring of n is
computational infeasible. In addition, to solve

my, from my;, needs to solve the discrete
logarithm. On the other hand, since

Ven(m)= mnVel(”’ﬁz) ~Va(my), it
infeasible to derive V, (mm) without knowing

m, and V,_, (mu)

is

In addition, since

C, =Ve+l(m12)-m1, the attacker can derive
V,,.(m,) with the knowledge of 1. But, to

Ve+1(m[2) needs a proper
deciphering key d;,. We will include the complete

derive m,, from

discussion of the security analysis in the full
paper.

C. Lucas Public-Key Cryptosystem Based on Two
Cryptographic Assumptions

One common feature among all existing
cryptosystems, such as RSA [1] and the ElGamal
cryptosystem [3], is that the security is based on
just one cryptographic assumption, such as
factoring or discrete logarithms. Although these
cryptographic assumptions appear secure today, it
is still very likely that a clever cryptanalyst will
discover an efficient way in the future to factor
integers or to compute discrete logarithms. Thus,
cryptosystems based on the corresponding
assumption will surrender their security suddenly.
To enhance security is the major motivation for
developing cryptosystems based on multiple
cryptographic assumptions. This is due to the
common belief that it is very unlikely that
multiple cryptographic assumptions would
simultaneously become easy to solve.

11
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In 1988, McCurley [17] proposed the first
cryptosystem based on two dissimilar assumptions,
both of which appear to be hard. Instead of using
an arithmetic modulus p in the original Diffie-
Hellman public-key distribution scheme and in
the FlGamal cryptosystem, it uses a modulus n
that is a product of two primes. Breaking the
system requires the factoring of n into two primes,
p and g, and the ability to solve discrete
logarithm problems in subgroups of Z, and Z,.
Thus, it is impossible to select proper moduli, p
and g, to achieve the same difficulty for these two
assumptions. This results in two disadvantages:
(1) larger key size; and (2) longer computation
time. In 1994, Harn [18] proposed a public-key
cryptosystem based on two assumptions by
selecting a special modulus p=2p‘q'+1, where p, p’
and g" are all primes. He and Kiesler [19] had a
proposal to enhance the security of ElGamal's
signature scheme with two assumptions. But, the
security of the proposed scheme has been
disproved in [20, 21].

Lucas-type cryptosystem with two assumptions:
Horster et al. [22] has proposed a Lucas-type
signature scheme in 1995. As a result of their
scheme, the signature generation (one evaluation
of Lucas function) and signature verification (three
evaluations of a Lucas function) are slightly less
efficient than that of the original ElGamal
signature scheme over GF(p). In this paper, we
propose a generalization of the ElGamal scheme
which requires only two evaluations of a Lucas
function in signature verification.

System setup: Each user selects two large primes,
p and g, where p+1=2p’, g+1=2q',p’ and g’ are
primes, and computes n=pg. Then selects

0,1# ¢ el2,n-1] that V,(§)#2,
V.(&)#2, V,.(§)=2, and V, ,(§)=2. ie.
flx)= ¥ — Ex+1 is an irreducible polynomial

over GF( p) and GF(q). Each user selects x,
with O<x<n-1, as his private key and computes y=

such

Vt(éj ) as his public key. (£,n,y) are each user's
public keys and (p, g, p'. ¢', x) are each user's
secret keys.

Signature generation: If the user wants to sign the
message me[l, n-1], he chooses a random integer

kell, n-1}, computes r= Vk(§ ) mod n, and solve
the signature equation,

x=(m'+r)k+s mod (p+1)(g+1), for the
parameter s, where m'=h(m), and h() is a

public-known one-way hash function. The tuple (7,
s) is the signature.
Signature verification: Any verifier can check if

Y Vo )+ Vi) = WV (E)V,(£) +4 mod
. The correctness of this verification can be easily
checked according to Theorem 1 in [22].

Discussion: Breaking this system requires: (1)
factoring n into two large primes, and (2) solving
the discrete logarithm problem in two subgroups of
Zp2and Zg2. 1f we select two large primes, p and ¢,
with 614 bits each, then their product is 1228-bit
long. According to [13], the difficulty of solving
the discrete logarithm problem in the subgroup of
Zp2, with a 614-bit prime p, is equivalent to the
difficulty of factoring a 1024-bit composite integer.
Thus, in our proposed system, it is possible to
reduce the difference between security levels for
these two assumptions and to maintain the
efficiency of the implementation.
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Table 1
) 2 deciphering
(V (m)) -4 (V (m)) -4 key Rj
e
J J

p q

1 1 4 R =(p-1)(g-1)

1 -1 d, R,=(p-1)(g+1)

-1 1 d, Ry=(p+1)(g-1)

- ! 4 R, =(p+1)(g+1)
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