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ABSTRACT

In this paper we present a systematic method of
configuring group-multicast rings with randomly selected
nodes on binary n-cube multiprocessors. The method
configures rings only with disjoint links so that the selected
nodes can perform multicast communication without
messages collision. Binary n-cube multiprocessors are
typically one-port architectures, which allow a processor
node to send or receive only one message at a time. Being
capable of pipelining messages throughout nodes, rings
offer a practical solution to perform group multicast
operations on one-port architectures. The basic idea behind
our proposed method is to repeatedly merge small rings to
form larger rings. Once a multicast ring is configured,
messages can circulate around the ring without incurring
link contentions. We begin with introducing a basic
network model which specifies path routing on n-cubes.
Then we present some preliminary results regarding
properties of disjoint paths. The concept of the proposed
method is described. Finally, the method is formally
presented and its correciness is verified. The proposed
method presents two unique features. First, it guarantees
that the physical distance between adjacent nodes is limited
to n links on an n-cube. Secondly, it uses only a single
dimension order to route messages across the links towards
their respective destinations.

Keywords: Computer networks, Data communication,
Interconnection networks

1. INTRODUCTION

In many parallel applications, group multicast is an
important communication operation for processor nodes to
exchange data messages [1-7]. Processor nodes pertaining
essential data are selected to form a group. Multicast is
carried out simultaneously by the nodes in the group. Each
of them sends the same data message to every other node,
while different nodes may disseminate different messages.

253

Most of the binary n-cube muliiprocessors are in fact one-
port architectures in which a processor node transmits or
receives only one message at a time. Ring provides a
practical solution to implementing such multicast operations
on the one-port architecture. A ring for group multicast
works like this. Selected nodes are first ordered and
interconnected to form a ring. Messages on the ring will
move uniformly in the same direction. As a group multicast
operation starts, each node sends its data message to the
downstream neighbor. From then on, a node successively
receives messages from its upsiream neighbor, makes copies
of messages, and passes them on to its downstream
neighbor. With a ring, nodes can transmit and relay
messages in a pipelined fashion. Transmission of messages
are so highly overlapped that when messages complete the
trip, each node receives all the messages disseminated from
the other nodes of the group. )

In this paper, we are concerned with configuring
multicast rings with randomly selected nodes on binary n-
cube multiprocessors. It is well known that the binary
reflected Gray code, RGC for short, specifies a ring across
an n-cube [6]. Neighboring nodes in the ring are physically
connected by direct links of an n-cube. It is a perfect
structure for interconnecting all the nodes of an n-cube. But
for group multicast over randomly selected nodes, the RGC
ring has two apparent drawbacks. First, it may cause
excessive transmission latency for messages that circulate
around the nodes. For example, consider the 8-node ring
specified by the RGC for 3-cube. The nodes are arranged in
order of 0 132 6 7 5 4. Suppose that nodes 1, 4 and 6 are
selected for group multicast. In this case, messages from
node 1 to node 6 have to pass through nodes 2 and 3. This
results in unwanted latency. The problem with the RGC
ring is: when nodes are randomly selected for group
multicast, there is no control over the physical distance
between two adjacent nodes selected in the ring. In terms of
link count, the worst-case distance is O(2/%) for an n-cube.
The latency continues to grow, as the dimension of n-cube
increases. The second drawback comes from the difficulty
in routing messages. We need to employ different
dimension orders to move messages among selected nodes.
To explain this, we give a follow-up example of the
previous one. For convenience, we use binary addresses to
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in routing messages. We need to employ different
dimension orders to move messages among selected nodes.
To explaini this, we give a follow-up example of the
previous one. For convenience, we use binary addresses to
label these nodes and assume the least significant bit to
stand for the lowest dimension. A message from node 1 to
node 6 needs to cross over three links: 001—011, 011—=010,
and 010—110, which links correspond to dimensions 1, 0
and 2, respectively. A message from node 6 to node 4 needs
to cross over three links: 110—111, 111—101, and
101—+100. They correspond to dimensions 0, 1 and 0,
respectively. It is obvious that the two dimension orders are
different. This particular example reflects the complication
of routing messages on the RGC ring: there is no single
dimension order in which messages can' move among the
selected nodes. -

Our goal is to find a systematic method o
configuring a ring for randomly selected nodes, without the
two aforementioned problems. The proposed method
allows us to form a ring with disjoint links. It guarantees
that the physical distance between adjacent nodes is limited
to n links, in contrast to O(27) for the RGC ring. Moreover,
the proposed method uses a single dimension order to route
messages across the links towards their destinations.

The subsequent sections are organized in the
following manner. In the next section, we present a basic
network model which. specifies path routing on n-cubes.
We also define some operations for formal descriptions and
provide verification of the proposed method. In Section 3,
we introduce a number of preliminary results regarding
properties of disjoint paths. In Section 4, we formally
present the proposed method, with its concept described at
the beginning and its correctness verified at the end.
Finally, we conclude our discussion in Section 5.

2. NETWORK MODEL AND SOME BASICS

An n-cube consists of 2" nodes. Labeled with n-bit
addresses, two nodes have a direct link if and only if their
addresses differ exactly in one bit position. We assume that
the links of an n-cube are full-duplex. Therefore, two
messages in the opposite directions can be transmitted
simultaneously over a link. To deliver a message, we need
to create a path from the source node to its destination. We
assume that wormhole routing is used to move messages
across the network [8-10]. A message is divided into small
units called flits. Upon receiving a flit, an intermediate
node immediately forwards it to the next node without
waiting for the entire message to arrive. In this paper, we
employ a deterministic routing scheme to determine the
path; it resolves a routing address in the descending order
of dimensions. For example, consider routing a message
from node 011 tc node 100 on a 3-cube. The three nodes
traversed by the path are in the order of 111, 101, and
finally 100.

Wormhole routing is atiractive in its pipelining
nature; when a path is clear, following the header flit, the
succeeding flits fall through intermediate nodes without
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buffering. This greatly reduces transmission latency of
messages. But this attractive feature diminishes
immediately if two paths compete to cross over a link in the
same direction. This results in link contention. In
wormhole routing, if a header flit comes across a link
already in use, the header flit as well as the succeeding flits
are buffered at the starting node of the link. When the link
becomes available, the flits are removed from the buffer and
proceed to the next stop. Link contention will significantly
increase transmission latency of messages. This problem
becomes more severe in the case of group multicast,
because each path is responsible for transferring many
messages disseminated from various sources. In case that
two paths traverse a common link, they will continuously
contend for the link throughout the multicast operation,
causing excessive transmission delay. To accomplish
efficient group multicast, we must avoid creating paths that
compete for links. The proposed method is based on this
principle. It creates paths with disjoint links to transfer
messages, completely eliminating the possibility of link
contention. In the following discussion, we present a
number of definitions and operations for manipulating
addresses of n-cube nodes. They are useful in providing
insight into creating link-disjoint paths.

DEFINITION 1 For two n-bit numbers, X=X, X, ,...Xo and
Y=Y, Van--Yo XY yields a sequence z, ,z, ,...Z,

{0  ifx=y=0andx=y, for all k, i-1>k>0;

z= 11 ifx=y=1andx=y, forallk, i-12k>0;
[ * if x, 24y, for some k, i2k=>0.

The operation | identifies the longest suffix of two
addresses and patches the remaining positions with *’s. For
example, suppose that X=101110 and Y=000110. Then
X{Y= *#*110. Similarly, we define a binary operator for
identifying the longest prefix of two addresses.

DEFINITION 2 For two n-bit numbers, X=x,_,X,.,...X, and
Y=V, 1Vas-Yo XTY yields a sequence z, 2, ...,

[ 0.if x;=y=0 and x,=y, for all k, n-12k>i+1;
z=1 1 ifx=y=1 and x.=y, for all k, n-1>k>i+1;
| * if x,zy,, for some k, n-12k>i.

For example, suppose that X=110101 and Y=110110. Then
XTY=1101*%*. We introduce an operator for indicating
differences of two sequences of symbols {0, 1, *}.

DEFINITION 3 ® is a bitwise operator over the domain
{0, 1, *} with the arithmetic

#| =] ol ®
¥ = O S

1
1
0 *
S




For example, let U=*010**01 and V=*10011*1.
U®V=*110***0. Note that ® operates on sequences of
symbols {0, 1, *}, while  and T operate on n-bit addresses.
In fact, ® is a composite operator that works as exclusive-
OR when two symbols in the correésponding positions are
bits, and it works as a masking operator when one of the two
symbols is an asterisk. We further define two functions that
count specific symbols in the sequences of {0, 1, *}.

DEFINITION 4 Given a sequence z,,2,,...7, of {0, 1, *},
One(z,.,z,,..2,) counts 1’s in z,,Z.,..zy; Asterisk(z,,z,
2--Zg) counts *’s in z,,z,, ,...Z,.

Consider, for instance, a sequence Z=01**010*. One(Z)=2
and Asterisk(Z)=3. Finally, we define a partial order for
comparing two sequences of symbols {0, 1, *}.

DEFINITION 5 Let U= u,u,,...u; and V=v,_,v_,...v, be
two equal-length sequences of symbols {0, 1, *}. We say
U<eV if for every i, n-12i>0,

Du=v,
or (2)u=*and v; = *.

For example, given U=*010**1 and V=1010*01, we say
U<eV,

3. PRELIMINARIES

With all the needed definitions made in the
previous section, we now come to exploring conditions
under which paths on an n-cube become link-disjoint, and
thereby contention-free. For convenience, from now on,
link-disjoint paths are simply referred to as disjoint paths.
We will first identify a number of properties exhibited by
disjoint paths. Later these properties will be used to create
disjoint paths with certain patterns. Of particular interest
and importance is the following theorem. The importance
of the theorem is twofold. First, it serves as a simple test to
see if a set of paths is disjoint. Secondly, it characterizes a
fundamental properiy possessed by all the paths which are
disjoint. And we can use it as a guide to avoid link
contentions, when creating paths for the multicast ring.

THEOREM 1 In an n-cube, Parh(A,B) and Paith(C,D) are
disjoint, if and only if
One((ALC)RBTD))=0.

Proof: Let A=a,_a,,...a,, B=b, b, ...bs, C=C,.(C,1...Cy, and
D=d, d,,..d,. Under the descending dimension order,
Path(A B) traverses intermediate nodes: b, ,a,,3,,...25, b,y
Bo2n3e8ps  Upibpobose..d3g, 6IC. Similarly, Path(C,D)
traverses intermediate nodes: d ¢, , C,5...C5 Gp1d,2€03---Cos
dy1d,0d,5...Co, etc. The necessary and sufficient condition in
which the two paths have a link conflict is that they both
arrive at some intermediate node and leave for the same
node in the next siep. Suppose that a link conflici occurs in
the # dimension. The condition stated above can be
described by the three simultaneous requiremenis:
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(D by biaa=dy ... digcienco,
(2)b=d, and
(3)a=b,

Combining the three requirements, we should have
One((ALC)®(BTD))=0.

On the other hand, if not all the three requirements can be

met simultaneously for every dimension i, 0<i<n-1, then

One((ALC)®(BTD))=0, and vice versa. This assures that

Path(A,B) and Parh(C,D) do not have link conflicts if and

only if One((ALC)®(BTD))=0. +

Let us look an example of contention-free paths. Corbsider
routing the following two paths on a 6-cube: Park(101011,
001010) and Park(011011, 001101). We first take
(1010114011011)=**101 1

and (001010T001101)=001%**,
Combining them, we obtain

One(**1011®001%**) = One(**0***)

=0.

We can say that the two paths are disjoint. To verify our
claim, we show the two paths along with the intermediate
nodes they traverse:

Path(101011, 001010):
101011-001011-5001010
Path(011011, 001101):
011011->001011—001111—001101.

Each underscored bit corresponds to a link traversed by'a
path in the particular dimension. Note that although the two
paths cross at node 001011, they do not compete with each
other to pass the same link. Therefore, no link contention
occurs.

Two conflicting paths, on the other hand, have a
different story. If we carry out the test of Theorem 1 on
them, link contentions will be reflected in the resulting
sequence of the test. To be more specific, we present the
following corollary.

COROLLARY 1 If Path(A,B) and Parh(C,D) are iwo
conflicting paths in an n-cube, then the number of links over
which they conflict is 0”3((A‘LC)®(BTD)).

Proof: Let z,,z,,..7, of {0, 1, *} be the resulting
sequence of (AJC)RBID). If there exists some z=1, it
refers to

(D b,,...ba..a=d,,...d6...Cp
(2) bi= dia and
(3)a=b,

That is, Path(A,B) and Path(C,D) have a link conflict in the
M dimension. Therefore, the number of 1's in
(ALCY®(BTD) yields the count of link conflicts between

Path(A,B) and Path(C,D). 4
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For example, consider two paths on.a 6-cube: Parh(001011,
100110) and Parh(111011, 100101). Let us first figure out
intermediate nodes traversed by the two paths:

Path(001011, 100110):
001011-101011—-100011—100111—100110

Parh(111011, 100101):
111011-101011—100011--100111-+100101.

Note that in the course of routing, the two paths contend to
pass two common links; they are 101011—100011 and
100011100111, Now let us take the test

(0010114111011)®(1001107100101)

=**1011®1001**

= % 1 1**

The two 1’s in the resulting sequence indicate that
Path(001011, 100110) and Parh(111011, 100101) are not
disjoint and have two link contentions in dimensions 2 and
3, respectively.

In the following corollary, we present another
condition under which two paths become disjoint. It is, in
fact, a special case of Theorem 1 but of independent interest
and importance. It refers to two paths which do not cross
each other at any node. Since the two paths each traverse
separate nodes, they would never compete for using the
same link.

COROLLARY 2 1In an n-cube, if Path(A,B) and
Path(C,D) are two paths and if

Asterisk(ALC) + Asterisk(BTD) > n,

then the two paths are disjoint.

Proof: Let z,,z,,...2, of {0, 1, *}be the resulting sequence
of (ALC)®BTD); namely, z,, z,,.z=~(ALC)RBTD).
Since Asterisk(ALC) + Asterisk(BTD) = n, z, 7, ,...z, must
be a sequence of n *’s. Hence, One(z,,z,.
21 Zg)=One((ALC)R(BTD))=0. Thus, Path(A,B) and
Path(C,D) are disjoint. %

So far, our focus is mainly on devising tests for
telling whether paths are disjoint. Next, we present a few
interesting ways of creating disjoint paths under some given
conditions.

LEMMA 1 In an n-cube, if path(A,B) and path(C,D) are
disjoint, then parh(A,D) and path(C,B) are disjoint.

Proof: If path(A,B) and path(C,D) are disjoint, we have
One((ALC)®(BTD))=0. Since T is a commutative operator
and One((ALC)®(DTB)) = One((ALCYSBTD)) = 0, this
indicates that pat/(A,D) and paih(C,B) are disjoint.

%

In plain words, this lemma says that if two disjoint paths
swap their destinations, then the resulting paths are also
disjoint. It can be better understooa ™~y giving an example.
Consider two paths on a 6-cube: Par(100101, 010010) and
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Parh(101101,010110). The intermediate nodes traversed by
them are shown below:

Path(100101, 010010):
100101—000101—010101—010001—010011—010010

Path(101101, 010110):
101101-001101—011101—010101—010111—010110.

Now, if we swap the destination nodes, the two new paths
become:

Parh(100101,010110):
100101 —000101—010101—=010111—=010110
Path(101101,010010):
101101—001101-011101—=010101—-010001—010011—
010010.

From this example, we can make an interesting observation:
The two paths meet at node 010101; after that,
Parh(100001,010110) takes the route which used to be
taken by Parh(101101,010110), and Park(101101,010010)
takes the route used to be taken by: Parh(100101, 010010).
The effect of swapping destinations on the route interchange
can be easily seen in this example. In essence, the two paths
simply interchange their routes at node 010101. The new
paths traverse exactly the same links traversed by the
original paths. Of course, they are also disjoint. But we
should mention here that the simple interchange is due to
the  fact  that  Asterisk(100101L101101)  +
Asterisk(010010T0101 10) =6. Note that the above example
is a special case in which the asterisk sum equals the
dimension count of the 6-cube. Path interchange may not
happen in other cases, especially for two paths which do not
cross each other at intermediate nodes. However, the above
lemma always assures that the two paths, after swapping
their destinations, are also disjoint. Next, let us look at an
interesting result useful in creating disjoint paths.

LEMMA 2 If X, Y and Z are n-bit addresses and
XLy<eXlZ, then X Y<e¥!Z,

Proof: Let X=X, X,1.-Xo, Y=Yn1¥nse-Yo aNA Z=Z, \Z, »...Z.
Suppose that XJ«Y=*‘...*xi...x0, and X¢Z=*...*xj...xo.
Since XJY<eXlZ, J is greater than or equal to i. In other
words, Y and Z have at least i low-order bits in common.
That is, if Y¢Z=*...*yk‘..y0, then £ is greater than or equal
to i, Since XIY=*_ *x...x, and Vi Vo= Xio-.Xg WE
conclude that X! Y<eYlZ. ¢

For instance, let A=101001, B=010101 and C=100101. We
have AlB= ***x01, AlC= ****0]1, and BIC= **0101.
Apparently, AlB<eAlC. And it becomes true that
AlB<eBlC. Now let us turn our attention to the following
theorem. Making use of the previous lemma, it shows an
essential result to the proposed method.

THEOREM 2 In an n-cube, if path(A,B) and path(E,F) are
disjoint, and if there exists a node C such that ClE <e CJrA,
then path(C,B) and path(E,F) are disjoint.



Proof: If path(AB) and path(EJF) are disjoint, by
Theorem 1, we have One((AJzE)®(BTF))=O. To prove that
path(C,B) and path(EJF) are disjoint, we must verify
One((CYE)®(BTF))=0. Since CLE <e ClA, by Lemma 2,
we obtain CLE <e AJE. This implies that

(CLE)R(BTF) <o (AE)®(BTF)
and
One((CLE)®(BTF)) < One( (AVE)Q(BTF)).

Now that One((AVE)®BTF)=0, we must have
One((CYE)Y®(BTF))=0; thus path(C,B) and path(E,F) are
disjoint. ¢

We would like to take a point of view, for this moment at
least:: When two paths are known to be disjoint, by the
simple comparison of Theorem 2, we can easily find a set of
paths which are destined towards the same node as the first
path, and which are disjoint from the second path. Consider
two disjoint paths on a 4-cube: Parh(0100, 1101) and
Path(1010, 1100). Let us just run through the first four
nodes of a 4-cube, {0000, 0001, 0010, 0011}, we obtain

000041010<e 000040100 (TRUE)

000141010<e 000140100 (TRUE)

001041010<e 001040100 (FALSE)

001141010<e 0011{0100 (TRUE).
We can quickly conclude that among these four paths three
of them are disjoint from Parh(1010, 1100): Parh(0000,
1101), Path(0001, 1101) and Parh(0011, 1101). We should
point out, however, that the comparison described in
Theorem 2 provides only a sufficient condition for creating
disjoint paths. In other words, if such a comparison fails, it
does not necessarily mean that the two paths have link
contentions; they could still be disjoint. The importance of
the comparison lies in its simplicity. The comparison
provides a simple means of changing the source node of a
path while keeping it disjoint from other existing paths.
This theorem will be appreciated soon.

4. THE PROPOSED METHOD

This section presents a method of configuring
random nodes to form a multicast ring. The approach of the
method is to merge rings repeatedly io form larger rings. It
is important that the disjoint-path property must be held in
the course of merging. In the following discussion, we first
present some essential results for holding this property.
Later these results will be turned into key steps of the
proposed method. Up to now, we resirict our discussion to
cases with two disjoint paths; we have considered conditions
under which a pair of paths become disjoint and their
intrinsic properties. As our discussion continues, we will
find that these resulis can be easily employed in creating 2
set of disjoint paths. In particular, we are interested in a
form of disjoint paths: they are a set of paths contained in a
subcube.
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As mentioned earlier, we use the descending
dimension order to route paths. When source and destination
nodes of a set of paths are located in a subcube, links
traversed by the paths fall exclusively on links of the
subcube. Based on this, we can make a simple observation:
two sets of paths on two separate subcubes are mutually .
disjoint. Now the question is how to link nodes on two
separate subcubes. Obviously, we need to create paths
across subcubes. However, paths created for this purpose
will have the source nodes on one subcube and the
destination nodes on the other. When paths cross the
boundary of subcubes, they may cause link contentions with
other paths in existence. Next, we will introduce a
systematic method of linking nodes across the boundary of
subcubes.” The method relies on two deliberate selections
for a pair of subcubes and a pair of paths as well. Subcubes
under - consideration for selection have the following
relation:

DEFINITION 6 Two k-subcubes, C, and C,, are said to be
buddy subcubes if for every node XeC,, there exists a node
YeC, such that X and Y differ only at the 4™ address bits.

Note that the above definition restricts buddy k-
subcubes of an n-cube to be two k-subcubes whose nodes
share exactly the highest n-k-1 address bits; this is different
from the general definition of subcubes, which only requires
the sharing of n-k-1 address bits in arbitrary positions.
Apparently, our restriction is due to the descending
dimension order used for path routing. Notation for such
buddy subcubes is described with the following example:
We use {00yy} and {Olyy} to denote two 2-subcubes on a
4-cube; {00yy} comprises nodes 0000, 0001, 0010, and
0011; and {01yy} comprises nodes 0100, 0101, 0110, and
OT11. In Figure 1, we illustratethe the hierarchy of all
buddy subcubes of a 4-cube. Note that buddy subcubes of
variable sizes are boxed.

Now we consider the selection of a pair of paths
from two buddy subcubes and reroute the paths for linking
these subcubes. This will be formally described by the
following theorem. Before proceeding to the theorem, we
give a conceptual description to show how paths are
rerouted for linking buddy subcubes.

{yyyy}

Figure 1. The hierarchy of buddy subcubes of 4-cube.
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As illustrated in Figure 2, suppose that we are
given two buddy subcubes and each of them contains a set
of disjoint paths. And suppose that Path(A, B) and Path(C,
D) are the two paths whose source nodes have the longest
low-order address bits in common than other pairs of paths;
namely, their addresses share the longest postfix. Note that
we intentionally use proximity to symbolize that addresses
of nodes A and C share the longest postfix. The two paths

are selected. Then we interchange their destination nodes to

link the two buddy subcubes. To be more specific, we
create two paths, Path(A, D) and Path(C, B), to replace
Path(A, B) and Path(C, D).

Subcube
#1

Figure 2. Concept of linking two buddy subcubes.

Next,- we need to prove that such an interchange do not
cause contentions with other existing paths of the buddy
subcubes.

THEOREM 3 Let €, and C, be two buddy k-subcubes, Let
{Path,} and {Path,} denote a set of disjoint paths of C, and

C,, respectively. Suppose that path(A,B)e{Path} and
path(C.D)e{Path,} are a pair of paths such that
Asterisk(A\LC)sAsterisk(Xi«W) for all path pairs,
path(X,Y)e{Path,} and path(W,Z)e{Path,}. Then
path(A,D), path(C,B) and the other paths of {Path,} and
{Path,} are disjoint. ‘

Proof: We first prove that path(C,B) and the other paths
of {Path} and {Path,} are disjoint. Aassume that
path(E,F)e{Path,}, A+E, and path(G,H)e { Path,}, C#G.

(1) path(C,B) and path(G,H) are disjoint.

Since C and G are two different nodes of G,, C
and G must differ in some bit position i, 0<i<k-1.
Hence, Asterisk(CLG)zn-k. Since BeC, and HeC,,
B and H must differ in the k" bit position. Hence,
Asterisk(BTH)=l+1. Apparently, we have
One((CLG)YRBTH))=0. As a result, by Theorem
1, path(C,B) and path(G,H) are disjoint.

(2) path(C,B) and path(E,F) are disjoint.
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Because Asterisk(AlC)<dsterisk(X W) for all path
pairs, path(X,Y)e{Path,} and path(W,Z) e{Path,}, we
should have Asterisk(ALC) <dsterisk(CLE). This leads
to CYE<eClA. By theorem 2, we are certain that
path(C,B) and path(E,F) are disjoint.

In a similar manner, we can prove that path(A, D)
and path(E, F) as well as path(G, H) are mutually disjoint.
By Lemma 1, we see that path(A, D) and parh(C, B) are
disjoint. We conclude that path(A, D), path(C, B) and the
other paths of {Path,} and {Path,} are disjoint. 4

THE PROPOSED METHOD

for k:=1tondo
for all subcubes {x,...XY...Y}, Xotr--- %€ {0,1} i
parallel do
if a subcube comprises two selected nodes, A
and B, which are not linked by aring
then Create Path(A, B) and Path(B, A);
else
if a subcube comprises a single ring and a
separate selected node C
then Find Path(A, B) of the ring such that
Asterisk(AYC Subcube VC), for all the
nodes X of
Create Path(2., -, ... . .th(C, B) to replace
Path(A, B);
else
if a subcube comprises two rings
then Find a pair of paths Path(A, B) and
Path(C, D) from the two rings, respectively
such that Asterisk(ALC)<Asterish(XAW),
for all other pairs of paths, Path(X, Y) and
Path(W, Z), of the two rings;
Create Path(A, D) and Path(C,B) to replace
Path(A, B) and Path(C, D);
fi fi fi
od
od

At this point, an explanation of a fine point concerning the
intended semantics of our algorithmic notation is in order.
The proposed method consists of two nested for loops. For
an n-cube, the outer for loop requires sz iterations for
configuring the selected nodes. It proceeds from I to ».
The inner for loop is actually a parallel loop with a variable
number of steps, depending on the iteration count of the
outer for loop; the £ iteration, 1<k<n, contains 2"* parallel
steps, each of which corresponds to a k-subcube. In each
step, the corresponding subcube is examined. A step is
skipped if its corresponding subcube contains a single ring,
a single selected node or no selected nodes at all. Various
actions will be taken to change the configuration. of the
selected nodes in a subcube. The three if statements in the
inner for loop define actions to be taken in the three cases
where reconfiguration is needed:



(1) If a subcube comprises exacily two
selected nodes, then two paths are created
to connect the two nodes into a length-2
ring;

(2) If a subcube contains a ring plus a
separate selected node, then the ring
merges the node;

(3) If a subcube contains two rings, then the
two rings are combined into a larger ring.

In essence, the proposed method is an iférative
procedure; it repeatedly merges rings on buddy subcubes
into larger rings until all the selected nodes are connected to
form a ring. Let us pause to look at an example for
illustrating the mechanics of the proposed method. Then we
will proceed to examine its theoretical aspects. Suppose that
the following nodes are selected for configuring a multicast
ring on a 4-cube: nodes 0, 2, 3, 5, 6, 10'13, 15. Figure 3(a)
shows four snapshots taken at the end of the four iterations.
In each iteration, we mark nodes chosen for changing paths
and label subcubes involved in reconfiguration of rings. To
verify our result, Figure 3(b) shows the links traversed by
the individual paths of the final ring.

Now let us consider the theoretical aspects of the
proposed method. Basically we need to show two things.
First, our proposed method is logically sound; it does
connect the selected nodes to form a logical ring, without
considering path routing. Secondly, each step of the method
does not incur link contentions. We show our first claim by
induction. The proposed method starts with 1-subcubes. At
this point, each 1-subcube contains at most two selected
nodes. If it does, a length-2 ring is formed. At the end of
the first iteration, there are three possibilities for a 1-
subcube: (1) it contains a length-2 ring; (2) it contains a
single selected node; and (3) it contains no selected nodes.
Now suppose that, in the beginning of the &® iteration,
2<k<n, a (k-1)-subcube contains (1) a ring, (2) a single
selected node or (3) no selected nodes. Note that a k-
subcube comprises two buddy (k-1)-subcubes. Two buddy
(k-1)-subcubes in the three forms yield six combinations:
two rings, two separate selected nodes, a ring plus a separate
node, a ring, a single selected node, and no selected nodes.
In other words, these six combinations become the six
possible initial conditions of a k-subcube. The inner for
loop takes care of the first three combinations and produces
aring. The remaining three combinations fall through the
inner for loop without changes. Thus, at the end of the &*
iteration, a k-subcube contains (1) a ring, (2) a single node
or (3) no selected nodes. Therefore, we assert our first
claim,

Now let us consider the second claim that no link
contentions occur at every step in the course of merging
rings. There are three cases in which new paths are created
for merging rings. In fact, the main body -- the third cagse --
has been proved by Theorem 3. The other two cases are
shown by the following theorems.
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0011 0010
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0110——— 3 0010 — 0000

1010 1110 1111
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1101 — 0101 ——> 0111 — 0110
1111 1101
®)

Figure 3. Example of configuring a broadcast ring and
its path routing.

THEOREM 4 Suppose that A and B are two different
nodes of an n-cube. Then Pazh(A, B) and Path(B, A) are
disjoint.

Proof. Let k= Asterisk(AIB). Since A#B, k > 0 and
Asterisk(BTAy>n-k. This leads to

Asterisk(AIB)+ dsierisk(BTA)2n.
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Therefore, by Corollary 2, we conclude that Path(A, B) and
Path(B, A) are disjoint. ¢

THEOREM 5 Let G, and C, be two buddy k-subcubes.
Suppose that Path(A, B) and Path(E, F) are two disjoint
paths of G,. And suppose that C is a node of G, and
ClE<eClA. Then Path(A, C), Path(C, B) and Path(E, F)
are disjoint.

Proof: We need to prove the three paths, namely Path(A, C),
Path(C, B) and Path(E, F), are mutually disjoint.

Path(A, B) and Path(E, F) are two disjoint paths of
C,. Thus we have 0ne((A¢E)®(BTF)) =0. Since Fisa
node of G, and C is a node of G,, we have C1F<eBTF and

One((ALE)R(CTF)<One((AVE)R(BTF)).

Consequently, One((ALE)®(CTF)) = 0; that is, path(A, C)
and path(E, F) are disjoint.

¢, and G, together form a (K+1)-subcube. Since
CJE<eClA, by Theorem 2, we assert that path(C,B) and
path(E,F) must be disjoint.

Lastly, we need to show that Path(A, C) and
Path(C, B) are disjoint. We know that A and B are nodes of

C,, and C is a node of G,. Moreover, C, and C, are two

buddy k-subcubes. Thus A and C must have different

address bits at the & position. So do B and C. These yields
Asterisk(AYC)+ Asterisk(CTB) > n.

By Corollary 2, we are sure that Path(A, C) and Path(C, B)

are disjoint. ¢

5. CONCLUSIONS

We have presented a method of configuring
randomly selected nodes to form rings on the binary n-cube.
Most of the n-cube multiprocessors are one-port
architectures; each processor node can transmit and receive
only one message at a time. The rings are particularly
suitable for them to perform group multicast operations.
Central to the proposed method is a process of merging. It
initially forms some basic rings of length 2. Then it
repeatedly merge rings to form larger rings uniil the final
ring is accomplished. Rings created by the proposed
method constitute paths which share no common links.
Therefore, messages can travel freely om these paths,
without incurring link contentions. This is of great
significance to the multicast operation, known fto be
comrunication-intensive.

The proposed method exhibits two exclusive
features the RGC ring lacks. First, it guaraniees that the

260

physical distance between adjacent nodes is limited to »
links, in contrast to O(27) for the RGC ring. This allows us
to better synchronize and overlap ‘messages transmnission
around the selected nodes. Secondly, the proposed method
eases message routing on the ring. It uses only the
descending order of dimensions to resolve address bits,
while the RGC ring requires variable dimension orders. In
this paper, we assume wormhole routing for n-cube
multiprocessors. The proposed method can be applied io
other n-cube multiprocessors that use circuit switching,
because the link-disjoint property is also preserved in the
case of circuit switching.
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