TERENTAEZEGEERGE

FEIHRIERESIERE T
AN ACTIVE APPROACH TO SOFTWARE MAINTENANCE

RIEE
William C. Chu
EFREERATEMAIA

Department of Information Engineering

Feng Chia University
Taichung, Taiwan, R.O.C.
chu@fcu.edu.tw

HE

HERRHKF * BN IFHEL —EF AT e
7 A— BB EREVCELE - LICCEE T
TEENE - LR LT T E AR BB i
LEFERE A P IEFERTET T BERIRAF T » B ST
FHPT BRI TSEZFE R - [T » FE=C
B LIEERGEIE F R LB
A BEBAI L H BRI — » R (R AR 7E 8 -

MseT: SRARMERE, SR, SR, TTHESENE

Abstract

We propose an active approach which is a continued
quality improvement process to improve software
maintainability. By using a | formal inference
methodology to re-write existing sofiware, the
correciness of program can be preserved and many
imbedded errors can be revealed. Meanwhile, the
semantically unreachable statements and possible
incorrect semantics can be revealed, the size of software
be reduced, writing style be unified, and the iotal
software cost be indirectly reduced.

Keywords: Software Maintenance,
Inference, Maintainability

Transformation,

1. INTRODUCTION

Although software engineering technologies have been
used to improve the design of software systems, in real
world, most of software systems are still
underdeveloped. Also, on-going program maintenance,
e.g. patches and newly added code, can result in even
worse software systems. Most existing software systems
are very difficult to understand and maintain due to their
improper representations or designs. Studies show that
nearly 80% of all software resources are allocated to
improving existing systems [1].

Software maintenance activities

include error

==
v/

Chih-Hung Chang

D-31

BIER,
Hongji Yang*

*Computer Science Department
De Monfort University
England
*hjy@dmu.ac.uk

corrections, enhancements of capabilities, porting, and
software transformation. Traditionally, software
maintenance activities were requested when problems
happened. Most of maintenance approaches are usually
designed for solving one maintenance problem at a time.
Maintainers are discouraged to improve software as a
whole due to the high cost and complexity of software
systems. As a result, software size is getting bigger and
bigger and quality is getting worse and worse.
Traditional maintenance activities have the following
characteristics, we call it passive maintenance.
@ The system is diffuse. Parts and pieces are scattered
about, and little in the way of or ganization is visible.
Whatever organization once existed is in the process
of breaking down.
An inventory of the system is either lacking or is too
lengthy. In either case, it is al most impossible for
anyone to overview the system and, thus, to police it.
No one is responsible for policing the system
anyway.
The volume of the system always increases, never
decreases.
Work on the system is driven purely by customer
demand. As in war, periods of boring nonactivity are
interspersed with periods of frantic activity.
During the frantic times, the system plays the role of
enemy. It resists change to the utmost. Nothing can
be done without ten attendant complications.
Inconsistencies between original systems premises
and current requirements develop which cannot be
resolved because the original systern cannot be
modified safely.
As a result, software size is getting bigger and bigger
and quality is getting worse and worse. Without proper
management, very likely, fixing one maintenance
problem may introduce more maintenance problems
later. In this paper, we propose an active maintenance
approach, which has the following characteristics:
@ Itis carefully and thoroughly organized.
@ Excellent means of overview have been provided.
& Organization is scrupulously maintained, implying
that the system is supervised.
@ Obsolete components are ruthlessly tracked down
and eliminated.

TERENTAFEZEREREGR

e A policy of self-initiated internal enhancement is
followed under which any component of the system,
including programs, can be modified.

Active maintenance can be viewed as a sort of
continuous, low-key recovery project. Conversely, a
recovery project can be thought of as a concentrated
dose of very active maintenance. At either end of the
scale of activity, the aim is the same.
A detailed description of our active maintenance
approach is given in section 2. In section 3, some
experimental results will demonstrate the feasibility of
our approach. In section 4, will compare our approach
to other research in this field. In the final section, we
will summarize our research.

2. ACTIVE MAINTENANCE

Behind the “maintenance iceberg” lies the reality of
incomplete system development, that is, a huge, mostly
unsuspected potential for continuing the development of
the average system. Active Maintenance (AM) is a
treatment that-aims at completing this development. We
use a technique known as Inferential Systems Analysis
(ISA). which stipulates that the system in question
already be known to work, at least to some degree. This
stipulation is unavoidable because ISA attempts to
improve a system through a process of. revision that
preserve its functionality, much as the process of
revising a rough draft preserves its meaning. Since the
revision only repeats what the original copy says, if
what a system says is untrue-- that is, if the system does
not work correctly -- then neither will its recovered
image.

Of course, AM would be nearly worthless if it could
only be performed on systems that already well
designed and ran perfectly, or if it is required that every
bug in a system be perpetuated like a fly in amber.
Fortunately, neither is the case. Rather we must be a

Condition Semantic Elimination
Transformation —> Propagation —> Inconsistency —> and
P29 Checking Indication

-

little loose and define a “working system” as one that
“mostly™ works. Nevertheless, with or. without bugs, a
working system is the only kind that can be analyzed.

2.1 Inferential Software Analysis (ISA)

Inferential Software Analysis (ISA) is a methodology
by which both the design and the implementation of a
system can be simultaneously analyzed and revised. As
shown in Figure I, ISA is based on the iterative
application of certain semantic equivalent
transformation rules, conditions lion techniques, and
semantic inconsistency checking, and invalid semantics
elimination to source codes. ISA, in general, has the
momentous property that they can be applied without
either expert or global knowledge of the system at hand;

D-32

instead, the analysis progressively teaches the analyst
about the system. For this reason, an ISA analyst is

Virizinat Progrem
R d Luop
- i s Y. then
H= PR i
! & iee Iy gt tore
4. thea —att
N ot Ko st e
s o enet aep ?
e | ot T e | apt o
| -l
e oo .
o o codd
A el esad botsps
ek o e had
Al
ntf
et b
[N Vo :
o ¢ G then Ay end Geet oI ten
H s Y Fowa 2 theu sets 1
a2 dmn ot ndtt H
e * 2t by 1
eadt sep 4 - sy § N en Pops
PRy é - i
. [do. then x LN
A 203 then eudit :
haad X ebe i
e i
¥ ot Ad]
s e entit
H wudd
Y end tmrpt
|end 1o .y e
ol tong:
7y Vebile ST or o2 daop
While ST o} i 21 asp il ;":‘;. w2 g PRRRTYA
L4ttt ot . e
2 - o dultlwes Atep #
ry wp fmactstl s .
il e nld
e = 43 e -t . L3
\
; it o it
HEEEY "o ot lept
: e
nd fuop:
sl cvsalt:
T Whia NOT . o602 hnp
; & . en
N
i else
J s
i el
i _gnd bty

more like an editor of technical papers than he is like a
technical writer.

Much of ISA is based on the principle that even when
little is known about a thing’s purpose of function, it
can ofter be recognized to have a simpler form.
Software fragments can sometimes be demonstrated to
be equivalent without fully comprehending the function
of either. Software fragments sometimes can also be
demonstrated to be equivalent irrespective of their
surrounding contexts (which may differ).

Figure 2 shows an example of ISA process applied to a
loop statement with nested if statement constructs. In
the original program, the exit condition of loop
statement is not explicitly represented in the syntax. The
purpose of applying ISA process is to rewrite to this
program fragment, so the evit condition can be
explicitly represented. In this example, ¢/ and ¢2
represent boolean expressions; X and Y are either a
single statement or a sequence of statements. The
transformation in step 1 expands jf statement with exit
statement into two /f statements with nu// statements,
where we assume X statement does not affect ¢2
condition. In step 2, if statement with s/l statement is
simplified. Step 3 switches two if statements, where we
assume X does not affect ¢2. In step 4, we factor the
condition ¢/ to statements of then part of if statement,
where we assume statements in the then part do not
affect the value of ¢/. Step 5 simplifies condition part of
nested instatement. Step 6 transforms loop statement to
while statement. Step 7 propagates condition to each
statement. Step 8 checks semantic consistency. In the
final step, the syntax of redundant if condition checking
is eliminated. From this example, we have noted that
transformation also requires pre-condition checking.

PERENAFEREFEEGE

Some pre-conditions have to be assured before a
transformation rule can be applied.

Although we can argue that explicitly revealing the exit
condition in the syntax is nothing better than the
original form, it does propose another clear way of
program representation and, if applied to entire software
system, unify the writing style.

Some ISA Rules

Before we list some of transformation rules, let's define
notations used in the following discussion. Let X and Y
be a statement, a sequence of statement, or null
statement, “X;Y"" denotes that the execution of X is
followed by, where *;” is the delimiter of the sequence
of statements. A symbol, say A :, represents a label and
serves as an entry point of control flow of a program. A
loop statement is represented by loop X end loop. C, C
I, and C2 are boolean expressions and [] is denoted as a
pre-condition.

Some Transformation Rules

Rule 1: loop X; exit when C; Y; end loop < loop X if
Cthengoto A:;Y;endloop; A:

Rule 2: loop X; if C then goto A:; Y;end loop Vi
V. X:ifCthen goto A:;Y:goto V::V:

Rule3: A:X; V:YigotoA: < X; V:Y:X;gotoV:
Ruled:goto V:; V: & V:

Rule 5:if Cthen X else Y <« if NOT C then Y else X
Rule 6: A:If Cthen X; goto A : <> while C loop X;
end loop

Rule 7:if C or NOT C then X endif < X

Rule 8: if C then X else Y endif « [X dose not affect
C]if C then X else null endif; if C then null else Y endif
Rule 9: X;Y < [Xand Y are semantically independent]
Y:X

Rule 10: if C then X:Y endif <« [X does not affect C]
if C then X endif; if C then Y endif

Rule 1 1:if C | then if C2 then X endifendif < [C 1
does not affect C2] if C 1 and C2 then X endif;

Rule 12: if C then X else null endif < if C then X
endif

Rule 13:if C then null else X <« if NOT C then X
endif

where we informally define semantic independence of
two statements X and Y as follows: if the execution
order X and Y does not affect execution results, X and
Y are semantic independent.

Some Condition Propagation Rules

Rule 14: [C 1]if C2 then X else Y endif « if C2 then
[C 1and C2] X else [C 1 and NOT C2] Y endif

Rule 15: [C] X;Y < [X does notaffect C] X; [C] Y
Rule 16: [C] X;Y & [X affects C] X;
{update-condition(C,X)] Y

Where function update-condition takes condition C and
statement X as input and returns an updated condition
based on semantics of X statement. For example, the
pre-condition "a >0 " in "[a > 0] a=I; b=I" will become
“"a = 1" after the execution of statement "a=1", where the
condition a=1 is returned by update-condition ([a>0],
a=1).

D-33

Some Elimination Rules

Rule 17: [C]if NOT Cthen X = ®

Rule 18: {C] if C then X endif < X

In appendix A, we show two more ISA examples, one is
a Fortran program fragment and the other is a command
procedure. Two examples being reclaimed all show
much more clear and smaller results.

3. EXPERIENCES

Active Maintenance pays for itself over the long run by
decreasing maintenance costs; hence, a shori-lived
systems, with only a short maintenance tail, is an
unlikely target for this treatment. The cost of actively
maintaining a system is sensitive to the amount of
verification demand for it. One never wants to let a
customer exaggerate his real needs in this respect,
because during the project every component will have to
be modified and put into service, perhaps repeatedly.

As a classroom exercise, to formally demonstrate the
purely inferential character of this approach, the author
has recovered a Fortran program of about 2200 lines,
starting with no inkling of its purpose and no
documentation other than its listing and a sample of its
output. The program was reduced to fewer than 500
lines.

Experience gained from similar work on nearly a
hundred programs, derived from many applications,
strongly suggests that the average application program,
when it is thoroughly recovered, loses over half its
volume. Most of reduced volume were the redundant,
inconsistent, or dead-code statements. From our
experience, with the continued improvement process the
cost of software maintenance had been much less.
Therefore, we claim that maintaining a robust software
system is much cost effective than curing a “sick”
system.

3.1. What's Wrong with Programs?

What is wrong with the average program that leads to
over half of it being discarded? While this subject could
fill a book, it can summed up by saying that most
programs suffer from various sorts of indirectness. They
spend too much time beating around the bush and not
coming to the point. The business that the program is
supposed to carry on is overwhelmed by its busyness
with itself —a trait that might be described as "software
narcissism".

One common instance of useless processing is
unnecessary copying of- data back and forth inside a
program. One wonders how many CPU hours are
wasted each year on pointless shuffling of data. Another
related practice is. unnecessary transformation of data:
converting data into mysterious formats or codes before
they are used, when they can be used just as efficiently
in their original form. Sometimes, the only effect of
encrypting data in this way is the need to decrypt them
again.

Overly conditional writing is the rule in present day
programming practice. Almost no programming

hEREN\AFEEEIEREE

problem is as “iffy" as it first seems. Incorrect

identification of the unit of work often leads to a lot of
trouble. One form of this is the Big-Array style of
program. A Big-Array program brings all the data in the
world into memory at once, so that it will be easily
accessible in case it ever discovered what to do with it.
This style of programming seems to be founded on the
idea that a programming problem can be solved by
overwhelming it with sheer computational power.
At the opposite extreme is the Half-a-Loaf style of
programming. Here, the data necessary to perform a unit
of work are fetched in pieces, and the program spends
most of its time trying to figure out what fractional stage
of the work cycle it is in. People in this camp seem to
prefer writing “ifs” instead of “while’s™.

Say to say, specimens of meticulously “goto-less”

coding are prize trophies in the present exhibit. Program

flags and switches are too often used as convert means
of implementing explicit branches.

This is very unfortunate because reliance upon internal

logical variables practically guarantees that real solution

to the problem at hand will be missed. eliminating flags

“is difficult, but it increases comprehensibility like

nothing else.

One's goal in recovering a program should be to

eliminate everything in it that is not directly related to

the business of the program, in other words, what the
“customer understands and cares about. The ideal

program is one whose every statement translates
straightforwardly into an assertion about the customer's
business that the customer could immediately agree was
both true and relevant to the job he has in mind.
"Business-centric”" style is correct: egocentric style is
not. .
We- believe many programmers suffer from
Representation-Fixation: the unnecessary and
undesirable distinction between objects and their
representation within the program. Variable names that
end with suffixes such as code, proc, flag, or ptr, show
an undesirable preoccupation with representation. This
trait in programmers suggests an overly literal, poorly
abstractive, mind set. It is reminiscent of the psychology
conditioned by programming in assembly language,
where the definite tendency is to think of a symbolic
identifier as naming the memory address of a datum,
rather than as naming the datum itself. This is precisely
contrary to the essential idea of data abstraction

Clarity of format is another important area where

programs at present often fall down. Touching only

briefly on this subject, one should answer question like
these while recovery is in progress:

e Are all names as well chosen as they could be? Have
all names been checked or just the names of
variables?

@ Is there enough white space in the program. A
program can be nearly unreadable, without it.

@ Do I understand all the comments in the program? If
not, will anyone else?

3.2. Debugging Programs

D-34

We believe that most program bugs are the result of
unclear expression, that is, inadequate iteration of the
program draft. Although, strictly speaking, it is
impossible to infer the existence of any bug, since this
would require knowledge of the program's intent, active
maintenance is nevertheless a practical means of
locating and removing bugs. Indeed, debugging is an
almost inevitable outcome of thorough recovery.

The author once discovered several dozen,
suspicious-looking files in a system he was maintaining.
After much effort it was determined that these files were
nowhere used and, in fact, had never been used during
the two years they had existed. Forty cylinders were
released.

A program under recovery is like a visibly shrinking
carpet. The bugs hiding under it are either automatically
uncovered by the process, or they resist the shrinking,
which also reveals their presence. For instance,
statements may knot up into a logical tangle that defies
every effort to pick apart. Once a few strings in the knot
are carefully cut, the reduction of the program can be
resumed. This involves extra-inferential decision, of
course, but the recovery process, plus common sense,
do at least offer clues as to what they should be.
Heretofore unrecognized bugs can be discovered in this
manner.

One might be concerned that compressing a program
beyond a certain point would start to complicate, rather
than simplify, it. However, experience shows that there
is little real danger of a program becoming too densely
written, in other words, of brevity defeating clarity.

In fact, the importance of studying trade-offs between
goals has generally been exaggerated. All the commonly
accepted desirable attributes of program text,
understandability, reliability, maintainability, seem to be
characterized more by mutual reinforcement than by
mutual exclusion. They are aspects of a single
super-attribute, called quality. An unfortunate corollary
to this is this is that whatever degrades a system in one
of these aspects, will also degrades it in other aspects as
well.

4, RELATED WORKS

Much research has been worked on transformation for
program development [2-9] Transformation from initial
specification to final program has the correctness merit.
Only few research has been applied transformation for
software maintenance. Balazer suggested a method to
modify original specification and then re-implement it
[7]. A Maintainer's Assistant has applied transformation
to existing source codes. It's ultimate objective is to
facilitate the transformation of existing source program
to high level specification. It restructured source code to
an easily understood representation by improving
control flow, removing dead code, and introducing a
good procedural structure. The application of
transformation rules were metrics guided. However, it
did not apply semantics propagation to remove logically
unreachable or redundant statements. Pleszkoch etc

REERE S

applied semantic propagation to control variables,
which are boolean variables whose purpose is to control
program flow in decision and iteration structures and
eliminated logically non-traversable path, a control path
through the program logic that cannot possibly be
traveled during execution, from structured programs [9].
Chu and Patel incorporated software engineering
principles, such as localization, information hiding, and
abstraction to program transformation and restructuring
[10,11). Kozaczynski etc classified program
transformation to text-level, syntactic-level,
semantic-level, and concept-level transformation. Their
tools support automated concept recognition by defining
concept pattern in the transformation rules. This
approach greatly elevates the levels of transformation
specification [12].

In all these cases, maintenance activities are held to
solve one problem at a time. Active Maintenance
approach reduced the maintenance efforts of evolutional
software systems by transforming under-developed into
“quality software systems with reduced size and unified
style.

5. SUMMARY

The Active Maintenance approach is proposed to reduce
software maintenance cost by refining source codes.
The applicability of this approach is due to the
under-development of source codes of software systems
and improper patches during maintenance phase. Most

software systems present dnfterent styles, unnecessary

complexity, redundant codes, logically unreachable
statements, etc. which all directly reduce software
maintainability. Traditional passive maintenance
approach usually solve one problem at a time, but may
also introduce more problems later. Although
maintenance activities usually modify small portion of
source code, they require to read and understand
relatively large portion of source codes before a proper
modification action can be taken. Therefore, the
representation and quality of source code will affect
maintenance efficiency. From our experience, with the
continued improvement process the cost of software
maintenance had been.much less. Therefore, we claim
that maintaining a robust software system is much cost
effective than curing a "sick” system.

By using a formal inference methodology to re-write
existing software, the correctness of program can be
preserved and many imbedded errors can be revealed.
Meanwhile, the semantically unreachable statements
and possible incorrect semantics can be revealed, the
size of software be reduced, writing style be unified,
and the total software cost be indirectly reduced.

Current approach has been manually applied in more
than a dozen projects and has shown its feasibility of
cost reduction on software maintenance. Qur next step
is to implement this approach, so the transformation can
be automatically applied.

D-35

g

htn
~

FEEIEHeH

6. REFERENCE

{1} Lientz, B. and Swanson, “Software Maintenance
Management,” Addison Wesley, 1980.

[2] Bauer, F. L., Moller, B., Partsch, H. and Pepper, P.,
“Formal Construction by Transformation-Computer
Aided Intuition Guided Programming,” IEEE Trans.
on Software Engineering, Vol. SE-15, No. 2, Feb.,
1989.

[3] Bull, T., “An Introduction to the WSL Program
Transformer,” [EEE Conference on Software
Maintenance 1990, San Diego, California, Nov.
26-29, 1990.

[4] Feather, M. S., “A Survey and Classification of
Some Program Transformation Techniques,” in
Program Specification and Transformation, 1987.

[5] Partesh,. H. and Steinbrugen, R., "Program
Transformation Systems," Computing Surveys, Vol.
15, No. 3., Sept., 1983,

[6] Yang, H. "The Supporting Environment for a
Reverse Engineering System-The Maintainer's
Assistant," [EEE Conference on Software
Maintenance 1991, Sorrento, ltaly, 1991,

[7] Balzer, R., "A 15 Year Prospective on Automatic
Programming," IEEE Trans. on Software
Engineering, Vol. SE- 11, No. 11, pp. 1257-1267,
Nov. 1985.

APPENDIX A

Example 1. Fragment from Filght Test System
BEFORE
C COMPUTE STTM. MLM (MISSILE LAUNCH MODE).
C LTE, TFL. ACM, LAM,
STTM=0
IF (ACTLZ .EQ. 1) GOTQ 180
IF (LM .EQ. 1),GOTO 160
IF (LM.EQ. 3) GOTO 170
250 IF(FLT(7) .LT. 15 GOTO 255
XRSKA=84
IF (RSKA .EQ. 13.2) XRSKA =132
IF (ACMS .EQ. 1 .AND,
* (LM .EQ. 0 AND (HPRF .EQ. | OR .LM.EQ. 2))
* .AND.RL.LT. XRSKA) GOTO 180
IF (HPRF .NE. 1 GOTO 180
MLM =1
IF (LM .EQ. 0) GOTO 190
TFL=9.08
GOTO 200 -
190 TFL=8.12
200 IF(ACTLAU NE. 1) GOTO 210
MLM=2 .
IF (LM .NE. 0) GOTO 220
TFL=.79
GOTO 210
220 TFL=1.81
IF (LM .GT. 1) GO TO 230
STTM=1
230 LTE=3
GOTO 240
160 IF (MODE .EQ. | OR MODE .EQ.3) AND. HPRF .EQ. 1)
*GOTO 250
LTE=3
180 IF ((COS(EL(! ¥R)*COS(AZ(1 /R) .GE. 966) LTE=I
IF (IFLT(7) .L.T. 16) GOTO 260
LTE=3
IF(ABS((N/RL1 *COS(HDGI/R) + E/RL1 *SIN(HDGI/R))

FREEE A+ AEREH AR EE

*COS(PITCH/R) 1 -D/RL I *SIN(PITCH/R)) .GE9639) LTE=1

GOTO 260
170 LTE=l
260 MLM=3
TFL=-.05
IF (MLM .EQ. 3) ACM=1
LAM=0
IF(MLM .EQ. 3.0R. IRID.EQ. 0) GOTO 245

240

IF(MLM .EQ. 3 .AND. HI .LE. 2600 .AND. RMTAS .LT. 1)

GOTO 244

IF((TYPE .NE.1.OR. HT .GT. 2600) .AND. TYPE .NE. 2)

GOTO 245
IF(ECM .LT. 2 .AND. RMTAS .LT. 1) GOTO 244
IF(ALPHAL .LT. 90.) GOTO 245
244 LAM=1
245

AFTER

C COMPUTE STTM. MLM (MISSILE LAUNCH MODE), C LTE.

TFL, ACM. LAM.

STTM=0

MLM=3

LTE=3

TFL=-.05

IF (ACTLZ) THEN

LAMBDA=LAM_P(1)*COSHI+LAM_P(2)*SINHI
LAMBDA = LAMBDA*COSPI -LAM_P(3)*SINPI
IF (ABS(LAMDA) > .9659) LTE=l

ELSE IF (LM .EQ. 3) THEN

LTE=I

ELSE IF(ACTLAU) THEN

MLM=2

TFL=1.81

IF (LM .EQ. 0) TFL=0.79

IF(LM.LE. 1) STTM=1

ELSE

MLM=1|

TFL=9.08

IF(LM .EQ.0) TFL=8.12

IF(LM .LE.) STTM=1

ENDIF

ACM=(MLM .EQ.3)

LAM= NOT. ACM .AND. (IRID .NE. 0) AND (TYPE .EQ.
* 1 .AND HT .LE. 2.6) .AND (ECM .LT. 2 AND RMTAS .LT.1
* OR. ALFL .GE. 90.)

Example 2. Command Procedure Fragment
BEFORE

$ on warning then exit
$ifpl.egs. " 1" then goto kbatch
$ifpI.egs. "2" then goto kprint
$if pl.egs. "3" then goto klgpunt
$ exit

S KBATCH:

$ on warning then goto dintry

$ on error then goto dintry

S START

$ifp2 .eqs. "" then goto ask

$ goto haltit

$ ASK:

$ inquire p2 "Job_number"

$ goto start

$ HALTIT:

$ stop/entry='p2'sysSbatch

$ goto ok

$ DLNTRY:

$ on warning then goto dintrypq
$ on error then goto dintrypq

§ del/entry="p2’ sysbbatch

D-36

$ write sysSoutput "Pending job deleted”
$ exit

$OK:

$ write sysSoutput "Job deleted.”

$ exit

$ KPRINT:

$ STARTP:

$ on warning then goto dintrypq .

$ on error then goto dintrypq

$ifp2 .eqs. " then goto askp

$ goto haltitp

$ ASKP:

$ inquire p2 "Job number"

$ goto startp

$ HALTITP:

$ stop/queue/entry="p2' sysprinter

$ goto okp

$ DLNTRYP;

$ on warning then goto dintrypq

$ on error then goto dintrypq

$ del/entry="p2' sys$print

$ write sysSoutput "Pending job deleted.”
$ exit

$ OKP: write sysSoutput “Bad job number."
$ exit

$ KLQPRINT

$ STARTLQP:

$ on warning then got dintrylqp

$ on error then goto dintrylqp

$if'p2 .eqs. "" then goto asklqp

$ goto haltitiqp

$ ASKLQP:

$ inquire p2 "JOb number"”

$ goto startiqp

$ HALTITLQP:

$ stop/queue/entry="p2' Iqp

$ goto oklgp

$ DLNTRYLQP:

$ on warning then got dintrylgp

$ on error then goto dintrylqp

$ del/entry="p2' Iqp

$ write sysSoutput "Pending Job deleted.”
$exit

$ OKLQP:

$ write sysSoutput "Job deleted.”

$ exit

$ DLNTRYLQPQ:

$ write sysSoutput "Bad job number."
$ exit

AFTER

$ifpl .eq. I then q := sys$batch
$ifpl.eq. 2 then q == sysSprint
$ifpl eq. 3 thenq;=Iqp

3

SWHILE: if p2 .ne. O then goto END WHILE

$ inquire p2 "Job Number?"

$ goto while SEND_WHILE:

$

$ msg = "Job has been stopped."
$ on error then continue

$ stop 'q/entry="p2'

$

$ if $severity then goto end_if
msg = "Pending job deleted.”

on error then msg = "Bad Job nutuber.”

delete 'q’ /entry="p2'
SEND_IF:
$ write sys$output msg
$exit

