PR\ AEREHEReR

L SR 2 O R i R b B R

A Rapid Software Development Environment for Database
Applications with Use-Case Based Requirements

o R
Yaun-Bor Jih Chih-Ping Chu
HITREEATIZER

Dept. of Computer Science and Information Engineering
National Cheng Kung University, Tainan, Taiwan 701, R.O.C.
chucp@server2.iie.ncku.edu.tw

PR
STk R F8 RS ] R A — E R A FAVRRE.
HEZRTRRLALULIE SR RERE , 430RHH —1E
EMNEAEOIRIEZ G EER R AR, Al
B0 S PR &R B FE A A B Bh i SR E
5. BLERSE 248 LRI ARSI E AR

sty BERRERET R, EREG

Abstract

How to reduce the development time and cost of
software has been an important research topic. The
general idea to development is that software should be
developed on basis of components. This paper proposes a
rapid software development environment supporting the
development of database applications with use-case
based requirements. The components, architecture and
working mechanism of this environment are introduced.

Keywords: rapid sofiware development tool, use cases

1. Introduction

Reducing software development cost and time has
been an important topic in software engineering. Several
current research and development areas - object oriented
software development methodology, component-based
development model, and rapid application development
(RAD) tools, etc. are all aimed at such a target. All of
these research or development activities share an idea -
software should be developed on the basis of components
(or objects) [1,8,12,14]. ’

Database-based applications take a large proportion
in  commercial software. In the pasi, database
applications developers more or less suffered such
experiences as high development cost, hard to maintain,
delayed release time, etc. The reasons may account for
the used traditional function-driven design methods.
Function-driven design often makes a system be
composed of function-based modules that are not easily
reusable and hard to maintain.

Objeci-oriented  softiware  design  has  been
demonstrated to be superior to function-driven design in

D-85

some application areas [1] like database management
software. In the process of object-oriented software
development, object’s identification and behavior
analysis is a main task. Use-case driven requirement
analysis, a requirement analysis technique advocated by
Ivar Jacobson at 1967 and has become quite popular
recently [9], can be applied to identify objects and their
behaviors of an application [8,10].

This paper proposes a rapid database-application
development environment that - uses a use-case
specification language to describe requirements, analyzes
this specification and assembles the application under
the support of a component library and template
programs. The rest of the paper is organized as follows,
Section 2 introduces the concepts of use case, a
transaction procedure to a function of an application.
Section 3 describes the proposed development
environment, including the included tools and the
application generation mechanism. Section 4 uses an
example to illustrate the practicability of the proposed
environment. In Section 5 we draw a conclusion and
present future work directions.

2, Use case

Use case is an operation procedure conducted by an
actor to a system’s function. It presents a transaction
process between a system’s actor and the system.
Depending on the application, there may exist many kind,
abstract or concrete, of different actors [8].

A use case is a system usage scenario of a specific
actor. The scenario can be described by the actor based
on his/its usage viewpoints. If we collect all the scenarios,
i.e., use cases, and analyze them, we can understand the
requirement of the system. '

Use-case driven analysis helps to cope with the
complexity of requirements analysis process. An
analyzer can thus focus on one, narrow aspect of the
sysiem usage at a time by independently analyzing
different use cases. In Object-Oriented Software
Engineering, use-case driven requirement  analysis
technique can be used to



PEREN SR e S

Spacibicznon based on
usa cascs
(sequiremaents)

< 5

*

| Deata Diction ‘E

Assemblin,
System [

application £

C—-
...................... Compiler

Database
Application I8
5

Components and Templates

Fig. 1 The system architecture

identify objects and capture requiremenis in system
analysis phase {8,13]. Many existing tools support use-
case based software development methodology [6].

Using use-case driven analysis can capture system’s
requirements, find objects and the inter-object behaviors.
But, how to describe those use cases? In general, natural
language is used to represent use cases. But there also
exist several semi-formal or formal methods to describe
use cases [7]. The methods include DFD (Data Flow
Diagram), STD (State Transition Diagram) or other
graphics tools. However, the graphics methods can not
fully describe the details of use cases, Accordingly, those
methods must be supplemented by some text description.
If we consider simply the expression power of language,
we'll find that natural languages is the best choice to
describe use case. Other merits existed in natural
language include easy-to-write and unnecessary-to-learn,
But, there is a serious defect in natural language, i.e.,
semantics ambiguity.

3. Rapid database-application development
environment

The rapid application development environment
proposed in this section can help programmer develop a
database-related application executed in Microsoft
Windows environment promptly. The following tools are
included in the environment:

1. A formal use case specification language for
describing each use case of the application.

2. An intermediate, design-oriented language for
depicting user-interfaces and lower-level execution flows
of the application that is transformed from the initial
use-case specification.

3. A data dictionary specification for depicting all the
data and their attributes accessed in the application.

4. A component library for saving components (objects)
that are required and reusable in the application.

5. A set of template programs with assembling directives
for guiding the composition of compound window
components, sub-application components and the
application.

6. A translator and an assembling system for converting
‘a use-case based requirement specification into the

source code of the application.

Currently, this environment is built based on Borland
C++ programming environment. Fig. 1 shows the system
architecture of the environment. In the following
subsections we’ll explain the implementation details and
working mechanism of these tools.

3.1 A use case specification language (UCSL)

As stated before, natural language and other semi-
formal, formal tools do have undesired shortcomings
when used to describe use cases. To improve such a
defect, a formal use case specification language UCSL
that eliminates the ambiguity of semantics of natural
language was designed. The purpose of using UCSL
instead of natural language to describe use cases is for
capturing the application requirement explicitly and
concisely, such that the subsequent transformations and
generation of application can be processed mechanically.

We first define the symbols used in UCSL and other
related specifications below.

Bold-faced |Reserved word.
lowercase
XiYl..1 Brackets enclose optional items X, Y, ..
separated by a vertical bar; one of them
must be chosen.
{iL.n Double brackets indicate enclosed contents
can appear zero or more times.
[{X[Y]..]]  |The action to [X]Y}..] can be repeated zero
or more times,
{3 Curly braces indicate enclosed contents
can appear one or more times,
10 Parentheses indicate enclosed contents can
appear zero or one time,
<> Inside < > is listed user-defined ierm.

The syntax of UCSL is presented below, while the
semantics and grammar are shown in [10]. To make the
succeeding transformation (explained later) easy, a few
statements with design features are also included in
UCSL.

project <project_name> with

D-86



FEREAELEHE S H

caption<project_caption>;
actor is <actor_name>,
usecase body
<system_name>,<task_name>.<usecase_name> is
begin
select system <system_name> with caption
<"gystem_caption”>;
display tasks of <system_name>;
select task <task_name> with caption
<"task_caption”>; ‘
display transactions of <task_name>;
select transaction <usecase_name> with caption
<”usecase_caption”>;
display blank record of <task_name>
from category
<dictionary_name>.<database_name>.<table_name>
[[ and
<dictionafy_name> <database_name>.<table_name> |]
where record is <attribute_name>
[ and <atiribute_name> ]J;
fill [record of <table_name>
| { record of
<table_name> <attribute_name> (format
<"input_format”>)}] ;
[[ choose record of
<table_name>.<attribute_name>
either <’caption_namel”> or
<’caption_name2"> ;]]
[ insert display record of <table_name>
(according to <expression>);
| delete display recerd of <table_name>
(according to <expression>);
| modify display record of <table_name>
(according to <expression>);
| query display record of <table_name> match
<attribute_name>;
| browse record of <table_name> list order as
<attribute_name>
[[ and <attribute_name> }] ;
| print a report format
title is <"title_description™>;
header is <”header_description”> with
[table of <table_name> , attribute of
<attribute_name>{blank]
Jength <constant>
I[ and [table of <table_name>, aitribute of
<atiribute_name> | blank]
Jength <constant>]] ;
(footer with
[table of <table_name> , aitribuie of
<attribute_name>|blank]
Jength <constant>
[ and [table of <iable_name>,
attribute of <attribute_name> | blank]
Jdengih <constant>]] ;)
| compound_scenario ]
click button of <"button_caption”> ( prompt is

D-87

<’error_message>);
( catch error message is <"error_message”™>; )
end;
compound_scenario :
[[ if <expression™> compound_scenario endif ;
| if <expression> compound_scenariol else
compound_scenario2;
| while <expression> do compound_scenario done
| repeat <constant> do compound_scenario done
| fill one blanked record of <table_name>;
| change record value of <table_name> with
[<expression>|<arithmetic_expression>|<field_na
me>]
( according to <expression>) ;
| delete record of <table_name> (according to
<expression>) ;
| search record of <table_name> match
<expression>;
| skip <constant> record of <table_name>;
| top <table_name> (according to <expression>);
| bottom <table_name> (according to
<expression>);
| move <table_name> to <table_name> (according
to <expression> );
| caleulate <field_name> all value to
[<field_name>|<variable> ]
([ depend on [<field_name>|<expression>}
[[ s [<field_name>|<expression>] 1] 11;
| prompt is <“prompt_string”>; ‘
| catch error message is <“error_message”>;
| break scenario; ]]

Undoubtedly, compared with natural language, UCSL
has limited expression power. However, in domain-
specific applications this problem may not be that serious
if UCSL is provided with sufficient but limited lexemes.

3.2 An intermediate language - GOWL

Since UCSL is mainly used to describe the
fequirements, it pays only a few concerns on design
description of the application. Undoubtedly, it is quite
hard to translate a UCSL specification into its
corresponding application’s source code (C++). There
exists a big gap between these two languages. Therefore,
to reduce the complexity of the assembling system and
make the whole development environment maintainable,
providing an intermediate language that is used to
describe design details of the application is desired. The
one provided in the environment is named GOWL
because it is for generating Borland OWL (Object
Window Library) source codes.

GOWL is a lower-level (compared with UCSL),
absiraci formal language that describes the application's
IO inierfaces and execution flows. GOWL is mainly
used to express another form, that is transformed from
UCSL, of the application.

In addition, we also need to define a data dictionary



FERENTAERZEEEREER

specification. The data dictionary is used to specify the
data and their attributes used in the UCSL specification
language and GOWL intermediate language. The daia
dictionary specification can be used to generate database
files (in the proposed environment it is .DBF file) and
offer much information required in the process of
assembling application. We first define the specification
of data dictionary and then we’ll present the syntax of
GOWL.

3.2.1 The data dictionary specification

The data dictionary specification needs also to include
the names of database files and tables, in addition to the
names of fields, the atiributes and the type of attributes.
We present the specification of data dictionary below. An
explanation to the semantics and the grammar is shown
in [10].

dictionary <dictionary_name>
{database <database_name>
{table <table_name>
: begin
{<field_name>,<"description”> <type>(,<width>(,<dec
>))} end }
end_database }
end_dictionary

3.2.2 The syntax of GOWL

The GOWL specification plays an important role to the
final assembling process. Its structure includes two parts,
one is project's definitions, defining the menu items of all
sub-systems; another is the description of execution flows
of all subsystems which contains the description of user
1/0 inierface conirols and database file manipulations.
The syntax of GOWL is listed as follows. The semantics
and grammar of GOWL are shown in [10].

project <project_name>
mainwindow <project_name> <“project_caption”>
menu
[[ popup <‘popup_caption™>
{mcnuitem <“menu_item_description”> do
<system_name>}
end_popup 1}
end_menu
end_project

[[system <system_name>

dictionary <dictionary_name>

table <database_name>.<table_name>

[[,<database_name> <table_name>}]

primary ; <field_name> [{,<field_name>]}

[[ foreign : <field_name>[[,<field_name>]] ]}

[[ set relation from <ficld_name> to <ficld_name>]}

window

[{ display <“display_caption™ <field_name>
[[,<"display_caption™> <field_name>}} ]

[[ logic_opt <field_name> <“display_caption™>
value [<constant>]<“string”>]
[[,<“display_caption™> value

[<constant>|<“string”>] ]}
default <“display_caption™>]]

[[ button '

<“button_caption”>[{,<“button_caption>]] ]}

{[ input <field_name>
( format <“input_format”>)( checle_id )

[[, <field_name> ( format <“input_format™> )
(check_id) ]I }}

{[ click <“button_caption”>

[ do [ simple_statement | compound_statement |

<system_name> | done | ]}

end_window

end_system]]

simple_statement:

[ db_insert ( where <expression>)

| db_update ( where <expression™>)

| db_delete ( where <expression™>)

| db_query match [<field_name>|<expression>]

| db_browse <table_name> sort <attribute_name>
[[+ <attribute_name>]} :

| print using <“print_format_file_name™>

( where <expression>) ]

( prompt <“prompt_string”>)~

( exception <“exception_message”>)

compound_statcment:
[[ if <expression> compound_statement endif
| if <expression> compound_statement else
compound_statement endif
| while <expression>do compound_statement
done : '
' | repeat <constant> do compound_statement
done
| new_record <table_name>
| replace [ all ]
<field_name> with
[<arithmetic_expression>|<field_name>]
[[,<field_name> with
[<arithmetic_expression>|<field_name>] ]}
( where <expression™)
| delete <table_name> (where <expression> )
| search <table_name> match <expression>
| skip <table_name> <constant>
| top <table_name> (where <expression>)
| bottom <table_name> (where <expression>)
| move <table_name> to <iable_name> (where
<expression> )
| amount <field_namel> to
[<field_name2>|<variable> ]
[[ depend on [<field_name>|<expression>]
il , [<field_name>|<expression>] ]} 1]
| prompt <“prompt_siring”>
| exception <“exception_message’™>
| break 1]



- compoundstatement of

hERENTAFZEHERGR

Since the database application usually contains
printing functions to print various format reports, so the
report format specification is also included in GOWL.

title <“title_description™>

[date_pageno | pageno_date ]
end_title
header <“header_description”™>
detail

{ [<field_name>,<print_length>|
space,<space_length>] }
end_detail
(footer

{ [<field_name> <print_length>|
space,<space_length>] }
end_footer)

3.2.3 The applicability of GOWL language

In general, a database-based application includes two
kinds of operation: simple data management and
complicated data processing.

The simple data management includes five major
functions: insertion, modification, deletion, searching
and browsing. These functions can be described directly
by using the GOWL instructions: db_insert, db_modify,
db_delete, db_search and db_browse.

The complicated functions occurred in some
applications can be described by using the
GOWL. The’
compound_statement varies with that of dBASEIII
language. dBASEIII’s instructions include interface VO
and data manipulation. In interface VO, the
corresponding GOWL interface instructions are provided.
In data manipulation, all instructions regarding with or
without single record operations can be expressed by the
GOWL's statements. In addition, the program control
flow statements of the third generation language such as
if-, while- and repeat- statements are also included in
GOWL to enhance the semantics expression power. In
Table 1 we list the corresponding statements between
dBASEIII and GOWL.

APPEND [BLANK]

new record <table name>

COUNT [<scope>] if <expression>
[FOR/WHILE amount <field_namel> to
<condition>] [<field_name2>|<variable>}
[TO <memvar>] endif

DO CASE...ENDCASE |if ... else if ... endif endif

DO WHILE ... ENDDO

while ...do ...done

FIND <character string>

search <table name> maich

%

<expression>
GO/GOTO skip <table_name>
<expN>/Bottom/Top <constant>
IF ...ELSE...ENDIF  {if ... else ... endif
REPLACE (<scope>) |replace (all) <field_name>
<field> WITH with [<exp>{<field_other>]

<exp>{[,<field2> WITH {[[,<field2>
<exp2>1]...(FOR/WHIL |with[<exp2>|<field_other>] ]

E<condition>) J(where<expression>)

SKIP (<expN>) skip <table_name>
<constant>

SUM (<scope>) if <expression>

(<expN_list>)(FOR/WH |amount <field_namel> to
ILE <condition>)}(TO [<field_name2>|<variable>]
<memvar list>) endif

TOTAL ON <key field> [amount <field_namel> to
TO <file name> [<field_name2>|<variable> ]

(<scope>)(FIELDS [[ depend on

<field list>) [<field_name>|<expression>]
{(FOR/WHILE i,

<condition>) [<field_name>|<expression>]

i

Table 1. Statements mapping between dBASEIT and GOWL

3.2.4 The UCSL-to-GOWL translator

In OOSE, the use case's description can help one to
identify objects from the description. However, there
possibly exist some common objects among use cases [8].
Therefore, how to merge same objects or distinguish
them is a problem the designer must handle. As there
possibly exist common objects among use cases, in
general, we should wse an approach shown in [7,8] to
check the common objects and functions.

In the proposed environment we adopted a simple
method to distinguish those objects with same names.
The method is to check the user-defined names including
<system_name>, <task_name>, and <usecase_name> in
UCSL. If the three names are same, their functions will
be merged. If anyone is different, another subsystem or
functions will be created.

Each use case description is usually saved in a file.
After we define all use cases, we must use a project file to
save their file names. So, the UCSL-to-GOWL
translator’s task is to read a project file, input all the use
case files, capture all information in the use cases and
store them into a pre-defined internal data structure, and
finally use the information obtained to generate GOWL
specification file.

3.3 The components library

D-89



TERENTAFZEEHERGH

Three kinds of component are observed in database-
based applications. They are user-interface (i.e., window)
components, database components and sub-application
components. User-interface component can be classified
into basic window component and compound

)

Manipuletion

Subsystem.

Fig. 2 The architecture diagram of components

window component (i.e., a window component contains
another simple window components). Fig. 2 shows the
relationship of these three components in which
subsystems 1, 2 and 3 are the sub-application
components. The sub-application components are
composed of the window components and database
components,

The component library only stores -basic window
components and database components. The compound
window components and sub-application components are
assembled at the time the application is being generated.

3.3.1 User-interface (window) components

We choose Borland Co.’s products, OWL (Object
Windows Library), as the source of basic user-interface
(window) components. The reasons and the various
classes hierarchical diagram of window objects are given
in [3,4,10]. The compound window components will be
assembled by basic window components based on GOWL
specification at application-assembling stage.

3.3.2 Database components

Components (objects) for manipulating database in
MS Windows environment have been developed. There
is an abstract database class, DATABASE, with those
virtual member functions that are for basic
manipulations of database file (inserting, modifying,
deleting, ..., etc.). All various database classes (e.g.,
DBASE, Oracle, Informix, Sybase) can inherit from it
and override its member functions to achieve various
database’s functions. We have developed the dBASEIII-
compatible file format. So, we have a class named
dBASE that inherits from the DATABASE class. We use
this class to generate the components for database
operations in various applications. Table 2 shows partial
member functions provided in our dBASE class.

3.4 The assembling mechanism

In this section, we present the principal technique of

D-90

the proposed environment, the assembling mechanism.
The

int
*n),

dBASE::use(char{Open .DBF file, return 1 if]
succeed, otherwise return 0,
Read current record, return
1 if succeed, otherwise 0.

Read Window’s input
control component, tedit;

read a string with length

int dBASE::read();

int
dBASE::ReadInput(char
*fdna, Tedit *tedit, int

leng); leng and field name fdna.
Return 1, if succeed,
otherwise return 0.

int dBASE::REPLACE [Read Window’s input

(char fdna,Tedit*tedit,int |control component, tedit,

leng); read a string with length
leng, and modify the field,
named fdna. Return 1if]
succeed, otherwise return 0.
dsvoid Show the data of field
dBASE::ShowValue(char [named fdna and length leng
*fdna, Tedit *tedit,int  |in Windows’ input control
leng), component-tedit.

int dBASE::del();
int  dBASE::search(char
*fdna,char *s);

Delete the current record.
Search the current record
with field name fdna and
string’s’.

Close file. return 1 if]
succeed, otherwise return 0.

int dBASE::close();

Table 2. An explanation to partial member functions of
the ABASE class

assembling mechanism includes the transformation from
Data Dictionary specification to database file and the
generation from GOWL to application’s source code.

3.4.1 Transformation from data dictionary
specification to database files

Transforming data dictionary specification into
database files (. DBF files) is simple. We use a scanner, a
parser and a semantics analyzer, generaied by lex and
yacc [11], to do this transformation. If the syntax of the
input specification is correct, the DBF files
(corresponding to the tables specification) with the
format will be generated by the semantics analyzer. The
format of .DBF file includes three areas (Fig. 3). The
first area is a header that records the date of file creation,
total amount of records, and other information. The
second area is an array of field’s information, containing
the names of attribute of table, the lengih of each field,
and the data iype (character, integer, date). The third
area is used to store user-input data sequentially. When a
new .DBF file is created, only the first and the second



PRERE AR EH ARG

areas will be filled with proper data.

Offsei(byte)00 . Offsetibyte)
the header of DBF file £ 10 6 17 31

32
- Feldy Fede | reverse

Fdoame e || e | field

Fig. 3 The format of .dbf file
3.4.2 Generation of the application code

The application source code is actually composed of

various sub-application components according to some
specific requirement logic. As stated before, the basic
window components and database components working
for basic operations usually have fixed operation styles
and thus are easily reused. These components can be
created on basis of the component library and c++
programming (2]. However, the sub-application and
compound window components and the application itself
generally having complex appearance or flexible
operation logic are not easily reused. Therefore, it is
needed to use some techniques to construct them. Before
generating the application the following two tools and
associated data structures must be developed in advance.
1. Use lex and yacc to develop lexical, syntax and
semantics analyzers [11] of GOWL specification. The
lexical and syntax analyzers are used o check the
correctness of GOWL specification, while the semantics
analyzer is used to collect the semantics and all related
information and stored them in a default data structure,
This internal data structure contains an array of pointers
that point to different kind of linked list. Each linked list
contains the code information.
2. Develop a full-functioned domain-specific database
application. Based on the code build a hierarchical
template programs (to be explained later) that contain
universal (fixed) source codes, including reusable
components, associated with assembly-directives. As
explained below, the template programs will aid the
generation of complex components and application
source code significantly.

3.4.2.1 A hierarchical template programs

If one wants to build a complete set of templates of
applications, he must first write a complete system code.
Those codes must contain all possible subsystem
functions. After writing complete source codes, the
universal source codes must be identified and extracted
as the schema of templates. For those requirement-
depended codes, special keywords beginning with a
special character such as ‘$’ and with specific semantics

D-91

are introduced to réplace them. The keywords are
assembly-directives. In the process of code generation,
the assembly-directives can be used to generate different
source codes, depending on the reqmremems of input
specification.

To make the composition of apphcahon and complex
components flexible and the maintenance to the template
programs easy, the template programs are organized as a
hierarchical organization. That is, based on the program
structure the templates are classified into the main
program’s template, subsystem templates (including sub-
subsystem templates), and function templates. Some
template programs used in the proposed environment are
listed in {10].

The scheme regarding how to use the temple programs
to aid the generation of the application and complex
components is described in the next section.

3.4.2.2 The assembling process

Fig. 4 presents a general viewpoint to the sub-
application components, compound window components
and the application assembling process that actually
includes two steps. First, use GOWL semantics analyzer
to collect all assembly-related information from input
GOWL specification and store them in default data
structure. After that, read the contents of templates token
by token and output the source codes of the sub-
application components, compound window components
and application either by copying the non-assembly
directive code directly or by generating the assembly-
directive-induced codé according to the information
stored in default data structure. Repeat this step until the
main program template has been processed.

assembly component assembly information }
and template libraries (store in dala structure
assembly sym_tab)

component
(tmeplate-1)

assembly [
component [
{template-2)

Daiabase Application’s [
Generator

assembly

component Assembly System

Fig. 4. The Assembly Process for Database Application

Let us use an example to explain the assembling
process. The file main.temp listed below denotes a main
program template. At first, the GOWL specification is
analyzed. The GOWL semantics analyzer will take the
information of assembling obiained in the process of
syntax and semantics analyses, store the information into
the default data structure (e.g. sym_tab), and remark a
specific relationship between the information and
assembly directives. For example, suppose the assembly



hERENTAEREFHEREE

directive SOWL_INCLUDE is for generating included
OWL files, such as #include <edith>, #include
<button.h>, etc. and if in the GOWL specification there
appear the statements that depict some VO editing
objects and button control objects, the strings, ‘edit.h’
and ‘button.h’ must be added into sym_tab and such a
relationship  between  these two  strings and
SOWL_INCLUDE must be marked. Similarly, let
SRESOURCE_ID be for generating the declaration
statement of resource . identifier. If in GOWL
specification there is a control component, the semantics
analyzer must generate a new identification number for
this component,

File: main.temp
#include <owl\framewin.h>
#include <owl\applicat.h>
SOWL_INCLUDE
#include “dbase.hpp”
#include “bigint.hpp”
$RESOURCE_ID
SLOCAL_INC
SDEF_RESPONSE_TABLE
SDEF_SUBWIN

..........

add the ID into sym_tab, and remark its relationship with
~ $RESOURCE_ID. The same processing mechanism

will be applied to handle other directives. After the
specification has been analyzed completely, all the
information required for assembling is ready. Next, the
template main.temp is read. When a token is read, it is
needed to check if it is an assembly directive. If it is, then
read the relational information of assembly from sym_tab,
assemble those information into C++ statements.
Otherwise, copy the original whole statement o the
target file. If the meaning of an assembly directive is to
process the lower-level template program, like
$SDEF_SUBWIN, then we must search related template
{o process it, insert the code at the same position of the
target file. Repeat this processing until the last code in
main.temp has been processed. Then, all source codes
including  sub-application ~components, ~compound
window components and the application will be
generated. The source codes obtained will be compiled to
get the database’s application.

Attributes (color, size, location, etc.) setting for
compound window components often brings the
programmer difficulty in windows programming. In this
environment automatic attributes setting for compound
window components is offered. For example; when the
system parses the GOWL specification, it will count the
number of basic window components and set the layout
of compound window components automatically. This
will reduce programmer’s load significantly, '

4. Conclusion and future work

Because of the fashion of object-oriented technique, the
advantage of use-case based software engineering has
been found recently. This paper described a rapid
software development environment, providing UCSL and
other input specification languages for generating
application promptly. To reduce the complexity of
assembling process, an intermediate language GOWL is
also designed. The approach of using GOWL and
template programs to assemble application is also
explained. '
In the future, we plan to do the following work:
1. Improve the UCSL and GOWL languages
2. Improve the performance of database class
3. Extend the proposed method to Internet or Web
distributed environments

Reference

[1] Booch, G., Objeci-Oriented Analysis and Design with
Applications, The Benjamin/Cummings Publishing
Co,Inc.,1994.

{2] Borland C++ Programmer's Guide, Borland
Press,1996.

[3] Borland ObjeciWindows Reference,
Press,1996.

{4] - Borland ObjectWindows Programmer's Guide,
Borland Press,1996.

[5] Elmasri, R. and Navathe, S.B., Fundamentals of
Database Systems, The Benjamin/Cummings Publishing
Co,Inc.,1994.

[6] Harmon, Paul, “Use-Case and OO Analysis,” Object-
Oriented Strategies, Vol. V, No. 7, pp. 1-6.

[7] Jacobson, I ,“Formalizing use-case modeling,”
Journal of Object-Oriented Programming, June 1995.

{8] Jacobson, 1. , Christerson, M., Jonsson P. and -
Overgaard, G., Object-Oriented Software Engineering, A
Use Case Driven Approach, Addison-Wesley, MA,
1992.

[9] Jacobson, 1., Christerson, M. ,“A growing consensus
on use cases,” Journal of Object Oriented Programming,
March-April 1995.

Borland

* [10] Ji, Yaun-Bor, “A Composite Approach . for

Database-based Applications with Use-Case Based
Specifications,” Thesis of Master of Science in
Information Engineering, National Cheng Kung
University, June 1997.

[11] John R. L., Tony M.& Doug B., Lex & Yacc ,
O’Reilly & Associates, Inc.,1992. i

[12] Rogerson, Dale, Inside COM, Microsoft Press,
1997. :

[13] Rumbaugh, J., “Getting Started - Using use cases to
capture requirements,” Journal of Objeci-Oriented

 Programming, September 1994.
"[14] Sodhi, J. and Sodhi, P., Object-Oriented Methods

Jor Software Development, McGraw-Hill 1996.

D92



