PERE T TS en

Eonganagbinse s
Incorporating Flow Analysis into a Flow-Based Editor

1P &
Chung-Hua Hu

R 3
Feng-Jian Wang

By ZXBREETNIRFTFH

Institute of Computer Science and Info. Eng.

National Chiao-Tung University
e-mail: (chhu, fjwang) @csie.nctu.edu.tw

HE

— AT 5B RGBS T BIEII S
RS ESBEAGET MG HE P EE LER
(G 4L A AR GE R IRIFAE 269 T K L E B o A
BB R LE TR - RE IR T —
1R EFAG H B B HH 69 52 R EDFE DG
F BTG BHEE P - H 1T E 5T EARLE R M 5 7 78
&G H B F 2 Visual C++ F1E L 43 BB 8519
RERHEA-FHABEBEXIE F - 9+ 4
BERGREARREHEUB B 5 A2 86
R F R -
MStF R RN AELEANBER #
HE G M Crr

Abstract

For a flow-based editor, it can’t be practical
enough to meet users’ demands unless it includes a
number of flow analyzers for computing various flow
information interactively or incrementally. In this
paper, a feasible approach based on object-oriented
techniques is presented to smoothly incorporate flow
analyzers into a flow-based editor. So far, an editor
associated with two flow-analyzer prototypes, a data-
flow analyzer and a program slicer, have been
implemented using Visual C++ on the Windows
environment. The flow-based editor provides an editing
environment that enables users to visualize and
construct programs by depicting the associated control-
flow graphs.
Keywords: visual programming, flow-based editor,
object-oriented technique, C++

1. Intreduction

* This research was supported by the National Science

Council, under contract number N§C 86-2213-E009-019.

RIEE
William C. Chu

BEFRETMIEFALH
Institute of Information Engineering
Feng-Chia University
e-mail: chu@fcu.edu.tw

A software system can be described in various
representations during different development phases.
For example, during the design phase, a variety of flow-
based diagrams, such as control-flow, data-flow, state-
transition, and entity-relationship diagrams are available
to present multi-faceted information about the software.
One major benefit introduced by these diagrams is that
such visual representations facilitate comprehension and
maintenance of existing software systems. This benefit
will be increasingly significant as visual programming
technologies [2] progress.

Two main requirements need be considered in
order to design practical flow-based editors. First, a
flow-based diagram is usually associated with semantic
meaning. To support the depiction of valid (i.e.,
syntactically- or even semantically-correct) diagrams, a
flow-based editor has to embody diagram semantics as
its internal knowledge, and uses that knowledge to offer.
editing guidance to users. Second, a flow-based editor
had better include a number of flow analyzers to
compute and present various flow information

+ according to users’ demands. Incorporating flow

analyzers into a flow-based editor is not an easy task.
The construction and integration cost may be high if no
effective methodology is employed.)

In this paper, a series of methods are presented to
meet the design requirements mentioned above. First, an
adapted object-oriented architecture, called the model-
view-shape (MVS) architecture [7],. is used to
decompose general flow-based editors into three main
modules with a layered structure. These three modules,
composed of model, view, and shape objects
correspondingly, are responsible for specifying/handling
diagram semantics, managing diagram presentations,
and drawing graphical primitives and handling input

D-53

TERENAFZEHEREE

events. On the basis of the MVS architecture, we used
Visual C++ and the Microsoft foundation class library
to develop a flow-based editor as well as an MVS class
hierarchy (for a target language) on the Windows
environment. Our flow-based editor provides an editing
environment that enables users to visualize and
construct programs by depicting the associated control-
flow graphs.

To provide a flow-based editor with flow-analysis .

capabilities, this paper presents a feasible yet effective
approach on the basis of the class hierarchy developed.
In our approach, the functions that a flow analyzer
performs are specified via a collection of semantic
attributes and evaluation methods defined in the model
class hierarchy. The whole tlow analysis is performed
via message-passing between model objects in the
program tree, and each model object has the best local
knowledge to do whatever next action it deems
appropriate. That is, when a model object receives a
message it may evaluate the values of related semantic
attributes, send messages to the parent- and/or child-
node model objects, or just return a specific value. So
far two simple flow-analyzer prototypes, a data-flow
analyzer and a program slicer, have been successfully
incorporated into our flow-based editor. These
analyzers can be activated interactively on user’s
demand to work. on incomplete programs during the
programming process.

-

2. A Class Hierarchy for a Flow-Based
Editor

Fig. 2.1 shows a class hierarchy, which is based
on the MVS architecture, for the construction of our
flow-based editor. The Model, View, and Shape class
hierarchies correspond to model, view, and shape
classes, respectively. The following only briefly
discusses the functionality of the class hierarchy, and
the associated implementation details can be found in
[Hu96b].

In our approach, a model and a view classes are
constructed for each kind of language construct defined
in the target language. These model and view classes
are classified into hierarchies based on the
functionalities of language constructs. For example, if-
then and if-then-else statements are selection statements,
which are also kinds of structured statements. The
model, a representation of the application domain,
contains attributes and operations for maintaining the
diagram’s state and behavior. Attributes of model
classes can be generally classified into two sets: one for
the maintenance of internal program representations,
and the other for the storage of language-dependent
information, such as source code, comments, and static
semantics. Methods of model classes are used to
perform program analysis as well as language-
dependent functions, such as setting source code and
comments.

The view, which is used to handle the user
interface, contains attributes and operations for
managing the diagram’s display and input-event
interactions. Attributes of view classes are used to store
high-level presentation information, such as view
dimensions, while methods (of view classes) can be
classified into two sets: view-management and view-
presentation methods. A view object usually consists of
a single or a set of shape objects for graphical
presentations. These shape objects are application-
independent, i.e., they are thought to be reusable

graphical elements.

1
E

X

Rectangte | StraightLink |

ShadowedRect | H BoltomToSideLink |

RoundedRect | hSidaToTomek i

Diamond | SideToSideLink |

pRERIL H{StmatListView | :[: Concrete class
[SHpastanvicy) (77 @ Abstract class
W Fsan) Exp Tow]
H FuncCallStmnt | H AssignmentStmntView |

H CompoundStmnt

H FunctionView
,
\iThenElseStmat | HThenStmntView |

SwitchStmnt #ThenElse StmntView
Y SwitehStmntview

W

+ HWhileStmntView
DoSimntView

ForStmntView

- Fig. 2.1: An MVS class hierarchy.

As the user edits (or modifies) a program, a
program tree, an internal representation of the program,
is constructed and maintained incrementally by the
flow-based editor. The structure of a program tree is
similar to that of an abstract syntax tree; that is, each
node in the program tree represents a specific kind of
language construct, such as a statement or an expression.
Fig. 2.2 shows a sample program tree representing an if-
then-else statement, and illustrates association
relationships among model, view, and shape objects.

Our current flow-based editor [7] provides flow-
based and syntax-directed [9]{12] editing facilities that
enable users to construct programs by depicting control-
flow graphs. For a placeholder of structured statements,
the editors guide the user to replace it with an instance
of some structured statement. The replacement
operation is performed when the user selects a template
from a template-transformation menu. The locations of
graphical templates, including coordinates and
dimensions, are calculaied automatically by the editors.

D-54

FERENTAFZEHERGSE

For a placeholder of simple statements, such as
expressions or assignment statements, the editors
provide the in-place editing (i.e., visual editing) facility
that helps -the user input program text into the
placeholder directly. A parser built into the editors
‘parses and ensures the syntactic correctness of user-
input program text.

ONE SOSTMAT
Madel
TRonETeSTmnt) T
3 Visw k

(Fesi
A\ Meds .

Legend
MY

< Obpect

~=1 :Display dimansion
of 3 view odjet

+ Obyect refetonce

Fig. 2.2: Relationships among model, view, and
shape objects.

3. Constructing a Data-Flow Analyzer
3.1 Design Rationales :
There are many studies of program flow analysis,
such as data-flow analysis [10], ripple-effect analysis
{4], and program slicing [13]. These flow analyses are
context-sensitive because they are closely concerned
with underlying language semantics as well as syntax.
To provide a flow-based editor with flow-analysis
capabilities, the following summarizes three main
design issues: 1) How can the language semantics be
represented and stored internally in the working
memory? 2) What methodology should be employed to
evaluate the (internal) semantics for flow analysis? 3)

How can the code implemented for current flow

analyzers be reused or extended to support the
construction of new flow analyzers?

As described in Section 2, a program being
constructed is internally represented (by the flow-based
editor) as a program tree. In the past decade, a number
of flow-analysis techniques based on tree manipulation
have been continuously explored. Attribute grammars
[8]1 and action routines [9] are two well-known
examples. The common features of these two techniques
are that the program semantics are represented as
semantic attributes attached to tree nodes, and the flow
analysis is performed by traversing the program tree and
evaluating the associated attributes’ values.
Constructing such a flow-analysis technique based on
the MVS class hierarchy is straightforward. With
object-oriented techniques, the functionality of a flow
analyzer is implemented by augmenting a number of
semantic attributes and evaluation methods to the model
class hierarchy, as shown in Fig. 2.1. Reuse of existing
aitributes and methods reduces the construction cost for

D-55

new flow analyzers.

Our flow-analysis model, like action routines, acts
as the node-marking process [11] operating on the
program tree. The whole analysis is performed via
message-passing between model objects in the program
tree. When a model object receives a message or gets a
return value of the message it sends, it has the best local
knowledge to do whatever next action it deems
appropriate. That is, a model object may evaluate the
attributes’ values, send another message to the parent-
and/or child-node model object, or just return a specitic
value. During the flow analysis, those language
constructs evaluated to be included in the analysis
results are indicated by marking the corresponding
model objects. Moreover, the user interfaces of new
flow analyzers are of no need to be constructed from
scratch because existing view and shape objects,
supported in the MVS class hierarchy, can be used to
display the analysis results. This entails that our flow-
based editor, incorporating a wide range of flow-
analysis tasks, provides a uniform and consistent user
interface to interact with users.

Most studies employ flow analysis to facilitate
program understanding during the maintenance phase.
In their approaches, well-structured (i.e., syntactically
and semantically correct) programs are parsed and
translated into the corresponding flow .graphs [5], and
flow analyzers then traverse these flow graphs to report
analysis results to the user. Compared with them, the
flow analysis presented in this paper is based on the
underlying program tree. The main benefit of our tree-
based analysis is that the user can request flow analysis
at will during programming. That is, the flow analysis
can deal with incomplete program fragments as well as
well-structured programs. This is very helpful for
program understanding during programming.

3.2 Intraprocedural Data-Flow Analysis

The data-flow analysis is a process of collecting
information about the order that variables are wsed
and/or defined in a program. Definition of a variable x is
a statement that assigns a value to x, whereas use of a
variable x is a statement that references x’'s value. One
of the major tasks performed by (incremental) data-flow
analyzers is the computation of data-flow dependencies,
such as definition-use (DU for short) and iese-definition
(UD for short) chains [1], with respect to specific
variables. The DU chaining problem is to compute for a
definition (i.e., D) of a variable x the set of all the uses
(i.e., U) of x, such that there is a control-flow path from
D to U which does not redefine x. The UD chaining
problem can be informally defined as the computation
of a set of the definitions that reach the use of a variable
X, i.¢., all the statements that directly affect the x's value.
The following describes the construction of an
interactive data-flow analyzer computing
intraprocedural DU and UD chains.

To simplify the discussions of flow analysis based

FERENTAFZERERES

on the message-passing model, the programs that flow
analysis works on are based on structured languages
(e.g., C or Pascal) without unconditional jump
statements, such as goto statements. Moreover, a
number of model classes representing four kinds of
typical program statements: simple, sequential, selection,
and iteration statements, are considered in this paper.
Simple statements, appearing in terminal (i.e., leaf)
nodes in the program tree, contain static semantics of
variables; for example, the semantic information of
variables whose values are used or defined.
AssignmentStmnt and Expression model objects, two
typical examples of simple statements, act as message
initiators and terminators. Sequential, selection, and
iteration statements, appearing in nonterminal (ie.,
internal) nodes in the program tree, can be mapped to
StmntList, IfThenElseStmnt, and WhileStmnt model objects,
respectively. These three models objects act as message
intermediators. This means that when receiving a
message, they may forward it to its parent- and/or child-
node model objects according to the their local states.

Table 3.1 lists a number of semantic attributes and
evaluation methods for computing intraprocedural DU
and UD chains. The semantic attributes which are held
by a model class come from two sources: the attributes
originally defined in the class and the attributes
inherited from base class(es) of the class. Attributes
UsedVariables and DefinedVariables are used to store the
names of variables that are “used” and “defined”,
respectively. For example, if an assignment statement
contains the program text, “a=b+c”, “b” and “c” will be
stored in Usedvariables and “a” in DefinedVariables.
Attribute Marked, a boolean-valued attribute, will be set
to “TRUE” when the model object is included in the
analysis results. - '

In our approach, the functionality of the data-flow
analyzer is systematically handled by the following

evaluation methods: GetUsedVariablesForwardUp(),
GetUsedVariablesForwardDown(),
GetDefinedVariablesBackwardUp(), and

GetDefinedVariablesBackwardDown(). The first two
methods are responsible for computing DU chains with
respect to a variable defined and the rest for computing
UD chains with respect to a variable used. The term
“forward” (or “backward”) shown in methods’ names
denotes that the computation sequence would basically
follow (or reverse) the control flow of a program. In
addition to the above methods, two activation methods,
ComputeDUChain() and ComputeUDChain(), serve as the
“triggers” initiating the DU and UD analyses,
respectively.

Fig. 3.1 shows a complete set of all possible cases

(i.e., from Case (1) to Case (12)) in which the model”

objects, listed in Table 3.1, handle messages received in
order to compute DU chains. The following interprets’
our DU analysis algorithm case by case based on the
pure message-passing model. Note that the UD analysis
algorithm is not discussed here because it can be

deduced using the same object-oriented interpretations.
Table 3.1: Model class interfaces for computing
intraprocedural DU and UD chains (partial).

class Expression : public SimpleStmnt {
public:
StringList UsedVariables;
void ComputeUDChain(String variableName, StatementModel *pFrom,
ModeiList *pMarkediModels);
int GetUsedVariablesForwardDown(...);
i1 +...” means that arguments are the same as ComputeUDChain()
3
class AssignmentStmnt : public SimpleStmnt {
public:
StringList DefinedVariables, UsedVariables:
void ComputaUDChain(...);
void ComputeDUChain(...);
int GetUsedVariablesForwardDown(...);
int GetDefinedVariablesBackwardDown(...);
3
class Simp : public tModet {
public:
800L Marked;

class Function, StmntList, IfiThenElseStmnt, WhileStmnt ... {
public:

void GetUsedVariablesForwardUp(...);

int GetUsedVariablesForwardDown(...);

void GetDefinedVariablesBackwardUp(...);

int GetDefinedVariablesBackwardDowny...);

/* All internal nodes in the program tree must define their respective evaluation

imethods for computing DU and UD chains. */

passing model.

® AssignmentStmnt model object
Case (1). When receiving a message
ComputeDUChain(), intended to compute a DU
chain with respect to a variable (say x) defined in
this assighment statement, the AssignmentStmnt

object sends a message
GetUsedVariablesForwardUp() to its parent-node
model object. :
@ AssignmentStmnt (or Expression) model object

Case (2). When receiving a message
GetUsedVariablesForwardDown(), the
AssignmentStmnt (or Expression) object do the
following operations if it is the U of x. First, it
“marks"” itself, and then adds its object reference,
e.g., this in C++, to the tail of parameter

D-56

PERENATA EEERERen

pMarkedModels of GetUsedVariablesForwardDown(). passing scenario for a sample program fragment
In case that the message receiver is an to help understand this case.
AssignmentStmnt object, it returns a value 1 if it is - |while (x<2) --Uofx
the D of x. In other cases, the model object
turns a value 0 a=x -Uoix
returns a va - x = a+1; -- Compute a DU chain w.r.t. x
@ StmniList model object

}
Cases (8) & (9). When receiving c=x - Uofx
GetUsedVariablesForwardUp() from its left child-
node model object, the StmniList object sends

Case 4). When receiving
GetUsedVariablesForwardDown() from its parent-
node model object, WhileStmnt forwards the same
message to both its child-node model objects,
and then returns a value 0.

Figs. 32 and 3.3 show two examples of
computing DU chains with respect to variable a after the
user issued a “show DU chain” command on the
assignment statements “a=c” and “a=b”, respectively.
This command invokes method ComputeDUChain()
(defined in class AssignmentStmnt) to start the DU
analysis. The message-passing flow for
GetUsedVariablesForwardUp() and
GetUsedVariablesForwardDown() between model objects in
the program tree is shown in Fig. 3.4.

i s W) o Riie mﬂl:l

[void Functionifint a. int b)

GetUsedVariablesForwardDown() to its right child-
node model object (say SL), and waits the return
value, If the return value reports 0, i.e., Case (8),
this means that there exists a control-flow path,
originated at SL, which does not redefine x. In
this case, StmintList forwards
GetUsedVariablesForwardUp() to its parent-node
model object to find remaining U’s of x. On the
other; hand, if the return value reports 1, i.e., Case
(9), this means that all possible control-flow
paths originated at SL redefine x.

Case (10). When receiving
GetUsedVariablesForwardUp() from its right child-
node model object, StmniList forwards the same

. message to its parent-node model object.

Cases (11) & (12). When receiving
GetUsedVariablesForwardDown() from its parent-
node model object, StmntList forwards the same
message to its left child-node model object, and
wants the return value. If the return value reports
1. i.e.. Case (11), StmntList also returns a value 1.
Otherwise, i.e., Case (12), Stmntlist forwards
GetUsedVariablesForwardDown() to its right child-
node model object, waits and returns the return

MOLow oy EaarTincinng

value.
® IfThenElseStmnt model object
Case - (5. When receiving

GetUsedVariablesForwardUp() from its left or right
child-node model object (i.e., then or false
statement), the ifThenElseStmnt object forwards
the same message to its parent-node model
. object.
Cases (6 & (7). When receiving
GetUsedVariablesForwardDown() from its parent-
node model object, iThenElseStmnt forwards the
same message to its child-node Expression object
and its rest child-node model objects (say $1 and
$2). If the return values replied by S1 and S2
report both 1’s, i.e., Case (6), IfThenElseStmnt
returns a value 1. Otherwise, ie., Case (7),
IfThenElseStmnt returns a value 0.
@ WhileStmnt model object

Case (3). When receiving
GetUsedVariablesForwardUp() from its right child-
node model object, the WhileStmnt object sends
GetUsedVariablesForwardDown() to both its child-
node model objects, and then sends
GetUsedVariablesForwardUp() to its parent-node
model object. The following shows a message-

e e e

e 42 2
Fig.3.3: ADU cham w.r.L. vanable ain a_b” (case 2).

D-57

hERFANAEZEHERES

StmntList

Zaptesnion
1ach}
. /‘*%\

Assigamen H
St aee) ~‘\5‘"’"“‘“{ i
Z&/ T '._-_: 2 ; 7
\ - Stent [V L AN
ideaedr >

] '

=, H

TN, i S
ey g : !
SReonsmen N oo 0 . ¢ Assignment’
s S M)

=8,
e

Rssignmen
Simt beay

Ty .
U) e} A OU chai
L Simutteast N U chain {case 2}
— s o
A t
ey s (B
T A e N Legend 1.
_tmnt ‘..m> \ dtmn : s *§
— \\a-:y : /7™ - Message GatUsedVariablesForwardUp()].3,'
i]
AD 1 N ,”\, : Messags GatUsedVanablesForwardBown() g

/‘ : Message SomputeDUCHan{)

<—» : The L.th message passing *

it Return value 1

O A yse ot vanable *3°

&

Fig. 3.4: Computing DU chains for Figs. 3.2 and 3.3,

3.3 Interprocedural Data-Flow Analysis

In addition to data-flow analysis within a given
function (i.e., intraprocedural analysis), a number of
studies concerning interprocedural data-flow analysis
can be found in the literature [1]{3]. Interprocedural
data-flow analysis focuses on computing data-flow
information from multiple interacting procedures (or
functions). That is, the analysis proceeds across various
contexts of caller and callee procedures. For example,
as shown in Fig. 3.5, function Function1 invokes function
Function2 by passing variables a and b as parameters. In
this case the interprocedural DU analysis algorithm
need to conclude that those statements in Function2 as
well as Function1 are the U’s of a (or b) if they directly or
indirectly reference a's (or b's) value. The following
briefly describes our object-oriented . methodology of
extending the DU analysis algorithm mentioned above
in order to compute interprocedural DU chains. Here we
assumed that all parameters in function call are passed
by value,

Table 3.2 lists some model class interfaces for
computing interprocedural DU chains. Attribute
pProgramTree defined in class FuncCallStmnt is used to
reference the root-node model object of the callee’s
program tree, so that the FuncCaliStmnt object is able to

send message ComputelnterFuncDUChain() to the callee to

" continue computing the callee’s DU chains. Figs. 3.5
and 3.6 show an example of computing an
interprocedural DU chain across two distinct functions.
One of the issues in designing an interprocedural
DU analysis algorithm is to support recursive function
calls and, at the same time, prevent the analysis from
being executed infinitely. To tackle this problem,
attribute Marked (see Table 3.1) is reused to serve as a
checkpoint. When the FuncCallSimnt object sends
message ComputelnterFuncDUChain() at the first time, it

creates a mark by setting Marked to “TRUE". Afterwards,
the FuncCallStmnt object will ignore sending
ComputelnterFuncDUChain() if the mark still exists.
Table 3.2: Model class interfaces for computing
interprocedural DU chains (partial).

class FuncCallStmnt : public SimpleStmnt {
pubtic:

Function *PprogramTree;

StringList DefinedVariables, UsedVariables;

int GetUsedVariablesForwardDown(String variableiName,
StatementModel “pFrom, ModeilList *pMarkedModels);

¥
class FuncHeader : public SimpleStmnt {
public:

StringList DefinedVariables;

void ComputeDUChain(String variableName, StatementModel *pFrom,

ModelList *pMarkedModels

s
class Function : public StructuredStmnt {
public:

void ComputelnterFuncDUChain(int variablelndex, Modellist *pMarkedModels);

SN 5O VIS TAT PO ATITING | ORENZFGEON HEW2:
i i

i - Yingoud

ARG S 3T B
Fig. 3.5: An interprocedural DU chain w.r.t. variable a
in “a=b” (Function1).

Legend
{ Mes3age CampulelntarFuncOUChaini)

/¢ oreags CamputeOUCHani)

O rwedvansbia ot

R e o e e,

Fig. 3.6 Compuﬁn an inter roéédui‘al DU chain for

Fig. 3.5. }

4. Constructing a.Program Slicer, another

Flow Analyzer
4.1 Design Rationales
Program slicing, an automatic technique

-determining the statements which may potentially affect

(or be affected by) a specific variable at a given

D-58

PERBNTAES

statement. aids program understanding by reducing the
amount of code a programmer must examine, and
presenting only a relevant program subset of interest.
Program slices are generally classified into two
categories: forward slice and backward slice. A forward
slice with respect to variable x identifies those
statements directly or indirectly affected by x (i.e.,
referencing x's value), while a backward slice with
respect to x identities those statements that affect x (i.e.,
assigning a value to x). Program slicing has been
applied in many applications, including debugging,
_ testing. maintenance, and reverse engineering.

Computation of program slices involves
examining both data-flow and control-flow
dependencies of a program. The data-flow analysis has
been described in Section 3. On the other hand,
statement s is control dependent on statement r if r is a
predicate (e.g., an expression) that can decide to
execute s or not. One typical approach to computing
program slices is to summarize and symbolize each
control-flow and data-flow dependence as an edge of a
directed graph, called the program dependence graph
{51, in which the vertices are the statements of a
program. In this approach, a forward or backward slice
is computed by identifying the set of statements in the
slice through the forward or backward transitive closure
in this graph. However, construction and maintenance
of a program dependence graph during programming is
not easy due to two major factors. First, the tool
designer has to additionally program some, perhaps
complicated, data structures (e.g., reference links) to
record the dependence relationships among tree nodes.
Second, program modification, such as inserting or
deleting a statement, would take the editor (much) time
to re-calculate the program dependencies in an
incremental or a batch way.

The most intuitive yet effective way to construct a
program slicer is to reuse data-flow analysis facilities
(i.e., the attributes and methods for computing DU and
UD chains) and incorporate _control-flow analysis
facilities into the slicer. The construction cost,
compared with the effort based on the building-from-
scratch approach, is reasonably low because the tool
designer only needs to concern how to reuse the existing
code and augment some new functionalities to the MVS
class hierarchy. Another advantage is that our program
slicer can work directly on the program tree without the
need to create and maintain redundant data structures,
such as program dependence graphs.

4.2 Intraprocedural Program Slicing

Table 4.1 lists a number of evaluation methods,
specified in the respective model classes, for computing
intraprocedural program slices. Method
ComputeForwardSlice() is used to compute a forward slice
with respect to a variable defined, while methods
ComputeBackwardSlice(), -
GetBranchExpressionsBackwardUp(), and

S ESeR

GetBranchExpressionsBackwardDown() compute a
backward slice with respect to a variable used.
GetBranchExpressionsBackwardUp() and
GetBranchExpressionsBackwardDown() were designed to
track and mark those expressions that potentially affect
the execution of a given statement being sliced.

Table 4.1: Model classes interfaces for computing

intraprocedural program slices (partial).
class Expression : public SimpleStmnt {
public:

void ComputeBackwardSlice(String variableName, ModelList ‘pMarkedModels);
void GetBranchExpressionsBackwardUp(StatementModel ‘pFrom,
ModelList “pMarkedModels);
%
class AssignmentStmnt : public SimpleStmnt {
public:
void ComputeBackwardSlice(String variableName, ModelList 'pMérkedModels);
void ComputerForwardSlice(String variableName, Modellist “pMarkedModels);
void GetBranchExpressionsBackwardUp(StatementModel *pFrom,
ModeiList *pMarkedModels);
i3
class StmintList, IfThenElseStmnt, WhileStmnt {
(
public:
void GetBranchExpressionsBackwardUp(...);
void GetBranchExpressionsBackwardDown(...);
%

Table 4.2 shows intraprocedural forward and
backward slicing algorithms. The forward slicing
algorithm, in brief, invokes ComputeDUChain() (i.e.,
reusing the functionality of the DU analysis algorithm)
as a transitive closure way to facilitate the forward
slicing process. Likewise, the backward slicing
algorithm is highly associated with the functionality of
the UD analysis algorithm. .

Table 4.2: Intraprocedural forward and backward
slicing algorithms.

Function AssignmentStmnt::ComputeForwardSlice(variableName, pMarkedModels)
declare :
" variableName (IN variable) : the name of a variable that is to be sliced
pMarkedModels (OUT variable) : a list of model ebjects constituting
a forward slice
pModel : a pointer to a SimpleStmnt object
varName : a variable’s name
begin
ComputeDUChain(variableName, this, pMarkedModels)
/* Initiate a DU analysis w.r.t. variable ‘variableName'. After
ComputeDUChain() completes execution, pMarkedModels will collect
alist of model objects constituting a DU chain, */
for each pModel ¢ pMarkedModels do
if pModel->ObjectType = “AssignmentStmnt” or “FuncCaliStmnt” then
for each varName e pModel->m_DefinedVariables do
pModel->ComputeDUChain(varName, this, pMarkedModels)
od -
fi o
od
end
Function Expression::ComputeBackwardSlice(variableName, pMarkedModels)
deciare - - .
variableName (IN variable) : the name of a variable that is to be sliced
pMarkedModels (OUT variable) : a list of model abjects constituting
. a backward slice
pModel : a pointer to a SimpleStmnt object
varName : a variable's name
begin
ComputeUDChain(variableName, this, pMarkedModels)
for each pModel e pMarkedModels do
{or each varName ¢ pModel->m_UsedVariables do
pModel->ComputeUDChain(varName, this, pMarkedModals)
od
pModel->GetBranchExpressionsBackwardUp(NULL, pMarkedModels)
od
end

Fig. 4.1 shows an example of computing a

D-59

hEREN\TAEREHERER

forward slice with respect to variable a after the user
issued a “show forward slice” command on the
assignment statement “a=b”. Fig. 4.2 shows such a

message-passing flow based on the computation of DU -

chains. .
1o s O B0 U wor Dl Gram Viow T MoK ua 2 IS |
[vold Function) pnt 2 int b =
e 'i;:(:;.—-c—m;e . E
LT
5 :
fTrue=lay) O>-Fais .
-3 B|
|
|
]
e
w3
it
E K .
Fig. 4.1: A forward slice w.r.t. variable a in “a=b”.
e m)
M

StmniLat)

;,,«—/"’,—“\
e .

r Legend
|

Stmn fwa)

l / : Message ComputeForwardStice() g\\
|

! —» : A DU chain 3

Fig. 4.2: Computing a forward slice for Fig. 4.1.

5. Conclusion and Future Work

Object-oriented techniques, such as inheritance
and polymorphism, - are getting much popular and
significant because they improve the software
productivity and quality by promoting software reuse. In
this paper, object-oriented techniques are applied ‘to
construct a class hierarchy (i.e., the MVS class
hierarchy) for the flow-based editor in a systematic
manner. Our flow-based editor enables users to
construct programs by depicting the associated control-
flow graphs. To show good extensibility and reusability
the 'class hierarchy, Sections 3 and 4 give a number of
construction examples to illustrate how a flow analyzer
is created and integrated with our flow-based editor
through the reuse and addition of a collection of
semantic attributes and/or evaluation methods.

For the computation and presentation of program
flow information, a data-flow analyzer and a program
slicer incorporated into the editor provide such an
assistance. The functions that these flow analyzers
perform can be easily verified through a number of
typical structured programs listed in Sections 3 and 4.
For a ool designer who wants o construct such a flow
analyzer, the design issues discussed in the paper
provide useful design guidelines.

Our current program slicer works on the statement
level within a function (or procedure). One of our future
projects is to extend the functionality of the program
slicer by incorporating existing interprocedural slicing

 algorithms [6], so that the slicer can work on the

procedure level (i.e., across multiple functions). On the
other hand, object-oriented languages are increasingly
popular and important. We plan to extend the data-flow
analyzer and the program slicer in order to help
understand the static structures of object-oriented
programs. The incremental version of these tools will be
studied further.

References

{1] Aho, A.V,, Sethi, R., and Ullman, J. D., Compilers:
Principles, Techniques, and Tools, Addison-
Wesley, 1986.

. [2] Ambler, A. and Burnett, M., “Influence of visual

technology on the evolution of language
environments,” JEEE Computer, Oct. 1989, pp. 9-
22.

3] Barth, J. M., “A practical interprocedural data flow
analysis algorithm,” CACM, Sep. 1978, pp. 724-
736. :

[4] Chen, Y. C., An Efficient Approach to Logical
Ripple Effect, Ph.D. Dissertation, Northwestern
University, 1987.

[51 Ferrante, J., Ottenstein, K., and Warren, J., “The
program dependence graph and its. use in
optimization,” ACM Trans. on Prog. Lang. and
Sys., July 1987, pp. 319-349.

[6] Horwitz, S., Reps, T., and Binkley, D,
“Interprocedural slicing using dependence graphs,”
ACM Trans. on Prog. Lang. and Sys., Vol. 12, No.
1, 1990, pp. 26-60.

[71 Hu, C. H. and Wang, F. J., “Constructing flow-
based editors with a model-view-shape .
architecture,” Proceedings of ICS'96, Taiwan,
1996, pp. 391-397.

[8] Knuth, D. E. “Semantics of context-free
languages,” Mathematical Systems Theory, 1968,
pp. 127-145.

{91 Medina-Mora, R. and Feiler, P. H.,, “An
incremental programming environment,” [EEE
Trans. on Soft. Eng., Sep. 1981, pp. 472-481.

[10}Pollock, L. L. and Soffa, M. L., “An incremental
version of iterative data flow analysis,” IEEE Trans.
on Soft. Eng., Dec. 1989, pp. 1537-1549.

[11]Sloane, A. M. and Holdsworth, J., “Beyond
traditional program slicing,” Proc. of the 1996 Intl.
Symp. on Sofiware Testing and Analysis, 1996, pp.
180-186. B

{12] Teitelbaum, T. and Reps, T., “The Cornell program
synthesizer: a symtax-directed programming
environment,” CACM, Sep. 1981, pp. 563-573.

[13]Weiser, M., “Program slicing,” IEEE Trans. on
Sofi. Eng., July 1984, pp. 352-357.

