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Abstract

Assume that N and s are posilive iniegers with
25 < N < 2%, It is claimed by Auletta, Rescigno,
and Scarano that the fault diameter of the supercube
with N nodes, is exactly s + 1 if N ¢ {2°%1 — 1,
25+t — 2, 25 4+ 2571 4 1}, and s + 2 otherwise. In
this paper, we will argue that the above assertion is
not correct. Instead, we will show that the fault di-
ameter of the supercube with N nodes is s + 1 of
Ng {2t 2230 {2t —2041(0<i<s—-1},
and s+2 otherwise. To get this goal, the shortest path
routing algorithm for supercubes is also presented in
this paper.

1 Introduction and notations

Hypercube topology has been studied extensively
as an interconnection network for parallel machines
because of advantages like high bandwidth and low
message latency [6]. One major constraint of the hy-
percube topology is that the number of nodes in the
network must be 2° for some positive integer s and as
such cannot be defined for any number of nodes. In-
complete hypercube topology proposed in [3] removed
this restriction. However, the incomplete hypercube
has serious limitations from the fault-tolerance per-
spective. A single node failure may disconnect the
network. In [7], Sen proposed a family of networks,
called supercubes and denoted by Sy. Each Sy con-
tains exactly N nodes. If N satisfies the relation
2° < N < 2°t1 then Sy is a supergraph of the hy-
percube with 2° nodes. Later, much literature has
investigated the topological properties of supercubes
extending results known for the hypercube to the su-
percube [1,8,9]. This indicates that the performance
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of the supercube is almost the same as the hyper-
cube which is about the same size. The fault diam-
eter [4] is an important measure for interconnection
networks. Assume that 2° < N < 2°+1, Tt is claimed
in [1] that the fault diameter of Sy is exactly s+ 1if
N ¢ {20t —1, 2041 -2, 2° 4 2°"1 4 1} and s+ 2
otherwise. In this paper, we will argue that the above
assertion is not correct. Instead, we will show that
the fault diameter of the supercube with N node is
s+1if N ¢ {2oH —2Ju{2°*+1-20+1 |0 <i<s—1},
and s + 2 otherwise.

Now, we will formally introduce the definition of
supercubes and some graph terminologies used in this
paper. Most of the graph and interconnection network
definitions used in this paper are standard (see e.g.,

- [8]). Let G = (V,E) be a finite, undirected graph.

Throughout this paper, node and vertex are used in-
terchangeably to represent the element of V. Edge
and link are used interchangeably to represent the el-
ement of E. For a vertex u, N(u) denotes the neigh-
borhood of u which is the set {v | (v,v) € E}. Let
u, v be two nodes of G. The distance between v and v,
denoted by dg(u, v), is the length of the shortest path
between them. The diameter of G, denoted by D(G),
is the maximum distance between any two nodes in G.
The connectivity of G, denoted by x(G), is the min-
imum number of nodes whose removal leaves the re-
maining graph disconnected or trivial. Let G = (V, E)
be a graph with &(G) = «. It follows from Menger’s
theorem that there are k internal node-disjoint (ab-
breviated as disjoint) paths joining any two vertices u
and v when k < k. Let F be a subset of V' which is
referred as a faulty set. G — F denotes the subgraph
induced by V—F. We use di(G) to denote the largest
diameter of G — F for any faulty set F with |F| < k.
Obviously, dJ(G) = co if k > &. The fault diameter of
a graph G is defined as di_l(G). Obviously, we have
D(G) < d]_1(G).

Throughout this paper, we assume that N and
s are positive integers with 2° < N < 2°*1. Lei
U = UsUs—i...Uitg and v = VeV;_1 ... V10 be two
(s + 1)-bit strings. The Hammang distance between



u and v, denoted by h(u,v), is the number of i,
0 <7 < s, such that u; # v;. The (s + 1)-dimensional
hypercube consists of all the (s 4 1)-bit strings as its
vertices and two vertices u and v are adjacent if and
only if h(u,v) = 1. Hence each vertex of the (s + 1)-
dimensional hypercube is labelled with a unique in-
teger k with 0 < k < 2°*! — 1. Then the N-node
supercube graph can be constructed from an (s + 1)-
dimensional hypercube as follows: For each node u
with N < u < 2°%! — 1, merging nodes u and u — 2°
in the (s+1)-dimensional hypercube into a single node
labeled as u—2* and leaving other nodes in the (s+1)-
dimensional hypercube unchanged, an N-node super-
cube is obtained.

More precisely, let Sy = (V, E) be a supercube.
The vertex set V consists of N vertices which are la-
beled from 0 to N — 1. Then, each vertex u (0 <
u < N —1) can be expressed as an (s + 1)-bit string
Usts~1...urup such that u = Y i_, u;2t. In other
words, an (s + 1)-bit string usu,—1 ... uo is a node of
Sy ifandonlyifu < N — 1. Let u= uyus_q...u1up
be an (s 4+ 1)-bit siring. We use % to denote the
string @,i,_1 .. .4 g and use u* to denote the string
UsUs—1 ... Up41TpUk—1 ... ug. For 0 < k < s, we may
also use u(k) to denote the bit uz. The vertex set V
is partitioned into three subsets Vi, V5, and V3, where
Va={u|eeV, uyy=1}, Vo ={u|ueV,u =0,
and v* ¢ V},and V), = {u | u € V, u; = 0, and
u® € V}. The edge set E is the union of Fy, E,
E3, and E4, where E, {(u,v) | v,v € U
and A(u,v) = 1}, E, {(u,v) | v,v € V3 and
h(u,v) = 1}, E3 = {(v,v) | v € V3, v € V, and
h(u,v) = 2}, and Ey = {(u,v) | u € V3, v € V4, and
h{u,v) = 1}. As an example, a supercube with 12
nodes is shown in Figure 1. In this figure, edges in
Ej, E,, and F, are indicated by solid lines and edges
in P are indicated by dashed lines. Let Z° = VUV,
and Z! = Va. Obviously, Z° induces an s-dimensional
hypercube.

It is proved in [7] that #(Sy) is s if 2° < N <
224271 and s+ 1if 22+ 2" < N < 2°F In [1),
it is claimed that the fault diameter d{c_l(SN) of Sy
iss+1if N g {22+ 1,291 -2/ 2° 4+ 2°-1 £ 1} and
s + 2 otherwise. However, this result is not true in
general. For example, consider the case Sy9 shown in
Figure 2. The connectivity of So9 is 5. Let v = 01100
and v = 00011 be two nodes of So9. Assume that
the faulty set of Se9 is F = {00100, 01000, 01110,
01101} which is indicated by darkened nodes. Then
use breadth first search rooted at u, dg,—p(u,v) = 6.

Thus &/_,(Sy) > 6 and the result obtained in [1] is
incorrect. In this paper, we will show that d{_l(SN)
iss+ 1N @ {2+ —2Ju{2H -2 L1|1<i<
s — 1}, and s + 2 otherwise. To get this goal, we will
first present the shortest path routing algorithm for
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supercubes in the following section.
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Fig.1 The supercube with 12 nodes
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2 Shortest path routing

Let u and v be two vertices of Sy and {a;};~;
be the decreasing sequence of the indices of bmary
representation such that u,, # va,. Let V denote
the string or operator. For example, 11001V 01011 =
11011." The following lemma follows from the defini-
tion of a supercube.

h(u,v)—1

Lemma 1 Assume that u > . Let P
T0,%1,%2,. .-, Th(u,w) D& @ sequence of (s + 1)-bit
strings with o = v and &; = z;°7" for 1 < i <

h(u,v). Then P forms o path joining u to v with all
its internal nodes of P less then u, i.e., z; < u for
1<i< h(u,v)—1.

in 29,

Lemma 2 If both u and v are then

ds, (u,v) = h(u,v).

Proof. It is observed that any edge (z,y) in £, U
Ey U F, satisfies h(z,y) = 1, and any edge (z,y) in
E3 satisfies h(z,y) = 2 and z(s) # y(s), i.e, the s-
th bit of z is different from that of y. Since both
u and v are in Z°, z(s) = y(s). It is observed that
there are h(u,v) bits, not including the s-th bit, that
are different from u to v. The length of any path
joining u and v is at least h(u,v). Without loss of
generality, we assume that v > v. Applying Lemma
1, there is a path of length h(w,v) joining u to v.

Hence dg,, (u,v) = h(u,v). m]
Lemma 3 If both u and v are in Z', then
ds, (u,v) = h(u,v).

Proof. As in Lemma 2, the length of any path

joining u and v is at least h(u,v). Without loss of
generality, we assume that u > v. Applying Lemma
1, there is a path of length h(u,v) joining u to v.
Hence dg,, (u,v) = h(u,v). 0

Lemma 4 Ifuisin Z* and v isin Z°, then ds,, (u, v)
is h(u,v) if u Vv < N; and h(u,v) — 1 otherwise.

Proof. It is observed that any edge (z,y) in
E1U E5 U Ey satisfies h(z, y) = 1, and any edge (z,y)
in Ej3 satisfies (1) h(x,y) = 2, (2) z(s) # y(s), and
(3) vy > N. The only available choice to de-
crease the routing distance is by taking an edge in
E3. Moreover, it is easy to see at most one F3 edge,
together with some of the other edges, is sufficient
to construct the shortest path. In order to use any
E3 edge, we first have to route toward some node
that is not in Sy, i.e., # > N. Then an edge in Ej
which is adjacent to z° can be chosen. Hence the
lower bound for dg,, (u,v) is h(u,v) if u Vv < N, and
h(u,v) — 1 otherwise. Suppose that u Vv < N. It
follows from Lemma 1 that we can construct a path
P of length h(u, v) joining u to v. Hence, dg,, (¢,v) =
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h(u,v). Assume that w = ¥ Vv > N. Since both
v’ and v are in Z° with h(u®,v) = h(u,v) — 1,
ds,(u*,v) = h(u,v) — 1 follows from Lemma 2. Let

PU' = 2o, @, ., Tk = WY.L, Bh(u0)-1 = ¥ be
any shortest path joining u® to v in Sy . Note that
all nodes of Q are in Z°. Since w > N, there exists
some j with 1 < j < k such that 2] ¢ Sy..Let j be
the smallest index with #} ¢ Sny. Then (23_,,;) is
an edge in B3 with 23_; € Z' and z; € Z° Set P

as U = Ty, Ty, .., %51, %5y Th(up)-1 = V. Obvi-
ously, P is a path of length h(u,v)~ 1 joining v and
v in Sy. Hence dg, (u,v) = h(u,v) - 1. 0

We propose the shortest path routing algorithm in
Sy formally as follows:

Routing algorithm:

Let u = usus_1...u1ug and v = vyv;_1 ...v10p be
any two nodes in Sy with © > v. Construct a shortest
path P from u to v as follows:

Case 1 u,v € Z°%° or u,v € Z1. Let {az}h(u’v) !
be the decreasing sequence of indices such that u,, #
Va;. A shortest path P from u te v is constructed as:
Lo = U, T1,23,...,Th(u,v) = U, Where z; = z;°7* for
1 <i< h(u,v).

Case2u€Zlandv 7% Set w =uVwv =
lws_qws_s. . Let {cx,}h(u w)-1 be the sequence
of indices such that Uq; F Wy, and {G; }h(w W)=2 b
the sequence of indices, not including s, such that
wp; # vp,. Now we will construct the shortest path
P joining u to v as:

Subcase 1 v Vv < N.
u,21,T

SetA P Xy =
S &puw) =V A8 By = :L'?"*" for0<i<

ﬂ'— u,w
h(u, w) 1 Thiu,w)+l = mh(u w)? and ; = ;" 1l‘:( )2

for h(u,w)+ 2 < i < h(y,v).

Subcase 2 u V v 2 N. Set P :
U, T1,T2, ..., Th(uw)-1 = v as follows: For 0 < i
h(u w)—l let ¢;41 = 2 if & € Sy, and ;41
(z{*)" otherwise; and for h(u w)+1 <i< h(u,v)-1,

l
let z; = :nf‘ e

Hin

3 Fault diameter of supercubes

To discuss the fault diameter of supercubes, we first
consider the simpler case that 2° <« N < 2% 4+ 2°-1,
In this case, #(Sy) = s. Let F be any faulty set
with |F] <'s — 1 and u, v be any two nodes of
Sy — F. Yuan [9] has shown that there are s dis-
joint paths Py, Py, ..., P,_; in Sy joining u to v such
that the length of each path is at most s + 1. Ob-
viously at least one of P; is fault-free; i.e., F; is in

Sy — F. Thus d/_,(Sy) < s+ 1. On the other hand,



$ s

e, = .
let ¥ =100...0 and v = 011...1 be two nodes in
Sn. Let the faulty set F' = N(u) — {u*}. Hence
|[Fl=s—1. Let Q : u = zg, 21, Z9,...2x = v be any
path joining u to v in Sy — F. Obviously, z; = u°.
Thus, dg,—p(u,v) = 1 + ds,-p(u®,v). Since both
u* and v are in Z°, ds,_p(u,v) > 1+ ds,(u’,v)
= 1+ h(u*,v) = s + 1 follows from Lemma 2. Thus,
df_(Sn) > s+1. We get the following theorem:

Theorem 1 d/_,(Sy) = s+1if2° < N < 294251,

Now we will consider the case that 2°4+2°~1 < N <
2°*1. In this case, £(Sy) = s+ 1. In the remainder of
this section, we assume that 2° + 2°-1 < N < 2541,

Lemma 5 d/_,(Sn) > s+1 if2°42°1 < N < 2541
Moreover, dl_,(Sn) > s+2 if N € {2°+! — 2} u
{2 -2 41(0<i<s—1}.

Proof. Let u be the node which is labelled by N —1
and v = @. Hence h(u,v) = s+ 1 and h(u’,v) =
5. Assume that F = N(u®) N Z° Hence |F| = s
and v',v € Z°% Let P : w® = zo,21,...,25 = v
be any path in Sy — F joining u® to ». Obviously,
r1 = u. By Lemma 4, ds,,_p(u,v) > h(u,v) — 1 = 5.
Therefore, the length of P is at least s + 1. Hence
df_,(Sn) > s+ 1. Suppose that N € {2541 ~ 2} U
s—1

{2°11-224110< i< s—1}. Thenu=11...101 and

s—1 s—m-+1 m

v=00.010if N =27+ 2 and u="11...100 .0
s—m+1 m
and v =00...011...1with0 < m<s—2if N €
{2241 -2 4+ 1|0 < i <s—1}. Obviously, z» = u' for
some2<i<s—1ifN=2"_2:andm<i<s—1
ifN e {2°t1-2041]0 < i< s—1}. Since z3Vo < N
and h(z2,v) = s, dg,,_p(z2,v) = s. The length of P
is at least s+ 2. Therefore d/_,(Sn) > s+ 2. O

The following theorem is proved in [6].

Theorem 2 For any two nodes u and v in the n-
dimensional hypercube, there exist ezactly n disjoint
paths joining u to v; h(u,v) of these paths are of length
h(u,v), and the remaining n — h(u,v) paths are of
length h(u,v) + 2.

Lemma 6 Let F be any faulty set with |F| < s. Then
dsy_r(u,v) < s+ 1 for any u,v € Sy ~ F with
h(u,v) =s+1.

Proof. Let u = u,u,_1...up and v = v,v,, ... 0.

We are going to construct s+ 1 disjoint paths, Py, Py,
..+ Fs, joining u to v such that the length of each
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path is at most s+ 1. Then the proof of this lemma
follows the construction. Since h(u,v) = s+ 1, u = .
Without loss of generality, we may assume that us 1s
0. Then both u and v* are in Z°. Since Z° induces
an s-dimensional hypercube, it follows from Theorem
2 that there are s internal node disjoint paths, @,
Q1,...,Qs-1, in Z° joining u to v° such that the
length of each Q; is s. Note that |[N(v°)NZ°| = 5. We
may write N (v*)NZ% = {¢y,1;, ... it} witht; = (v°).
Without loss of generality, we may assume that ¢; is
in ;. Let Q! be the subpath of ; joining u to ¢;.
Now we will construct Py, P, ..., P, as follows:

Case 1 u;_; = 0: Let P;_y be u Qe v, v, le.,
appending the edge (v°,v) to the path Q,_,. For
0<i< s—2 let P; be u % t,t],v if 1] € Sy,

and u % t;,v otherwise. Then we set P, as u, 1z =
u’, Ty, ..., Tsq1 = v, where z; = z]7} for 2 < i < s
and z,41 = 3~ ". It is observed that z;(s—1) = 0 for
1<k<s Thuszp <2°+2°"1 < Nfor1<k<s.
All nodes in P; are in Sy. Note that z, = t¢_, and
zs & Pifor 0 < i< s—1. It is easy to see that
Po, Py, ..., P; are disjoint paths joining u to v such
that the length of each path is'at most s + 1.

Case 2 u;_1 = 1: Let Pybeu i v¥,v. For1 <i<

i 1
s—1, let P; be ug‘»ti,tf,v if tf € Sy, and u-Q—H;,v
otherwise. Then #§ is not in any P; with 0 < i < s—1.
Let 3 = (u*)*~!. Set the path Q, from.u to z, as
u, uv®, z1 if v* € Sy and u, 2, otherwise. Then set
the sequence @ as z;, x5, ..., z,, where z; = 7]
for 2 < i < s. Obviously, z,_; = ¢J and Q' forms

a path from z; to v. Let P be u < T4 % v. It is

observed that zx(s —1) = 0for 1 <k < s — 1. Thus
T < 224271 < Nfor 1 <k <s. Therefore, all
nodes in P; are in Sy. Thus P, forms a path in Sn.
It is easy to see that Py, Py, ..., P; are disjoint paths
Joining u to v such that the length of each path is at
most s + 1.

Hence, the lemma is proved. (]

Lemma 7 Let v = ugus_y...up be a node of Sy.
u; =0 ifu' ¢ Sy for some 0 <i<s—1. In particu-
-1 :
—~— ,
lar,u=110..0=N—-1land N =2°4+2°1 41 4f
u ¢ Sy forall0<i<s—2.

Proof. The proof follows from the definition of
supercubes. (]

The following Lemmas are rather complicate. We
omit the details of proof.

Lemma 8 Let F' be any faully set of Sy with |F| <
s. Let u and v be any two nodes in Sy — F with



Proceedings of International Conference

on Computer Architecture

h(u,v) < s—1. Then ds,—r(u,v) <s+2if N €
{2 U -2 4+1]0< i< s—1}, and
dgy-rlu,v) <s+1 otherwise.

Proof. Proof omitted. 0

Lemma 9 Let F be any faully set of Sy with |F| <
s and N ¢ {22V =2 U {28t 20+ 1|0 <4 <
s—1}. Let u = usts_y... % and v = VsV, ... 00
be any two nodes in Sy — F with h(u,v) = s. Then
dsy-F(u,v) < s+ 1.

Proof. Proof omitted. 0

Lemma 10 Let F be any faulty set of Sy with |F| <
sand N € {2V —2)u {2t —20+1 |0 < <
s— 1}, Let v = usus_y...Ug and v = s, ... Vo
be any two nodes in Sy — F with h(u,v) = s. Then
dSN—F(uv v) < s+ 2.

Proof. Proof omitted. 0
It follows from Theorem 1 and Lemmas 5, 6, 8, 9,
and 10, we get the following theorem.

Theorem 3 d{;_l(SN) =s+1if N ¢ {28! -2} U
(M 204 1]0<i<s—1} and df_,(Sy) =s+2
otheruise.

4 Concluding remarks

The performance of the supercube topologies 1s
almost the same as the hypercube about the same
size. In this paper, we show that the fault diame-
ter of the supercube with N nodes is s + 1 if N ¢
f2stt 93 u{2stt — 2041 |0 < i <s—1}, and
s 4+ 2 otherwise. Moreover, the shortest path rout-
ing algorithm for supercubes is also presented in this

paper.
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