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Abstract

This paper presents an efficient local-segment-based
approach to spotting large vocabulary Chinese
keywords from a spontaneous Mandarin speech
utterance. Instead of searching through the whole
utterance with the aid of filler models, this approach
simply searches through the local segments within the
utterance to find out the most possible keywords. The
monosyllable-based technique for very large vocabulary
Mandarin speech recognition[1][2] was modified and
applied to a three-phase framework with a special
scoring method for keyword spotting. There are three
main advantages in this method. First, the difficulties in
training the filler models can be avoided. Second, it is
unnecessary to retrain the keyword models when the
vocabulary is changed. And third, this approach not
only works for small vocabulary problems, but it works
for large keyword vocabulary problems as well. To
improve the performance of the approach, several
additional techniques are also developed to further
enhance its speed and accuracy.

Two tasks with completely different characteristics
were tested here. The first one has 9 keywords, and each
keyword includes 2 syllables. A spotting rate as high as
93.73% is obtained for the test based on this task. The
second task has 2611 keywords, and each keyword
includes 2 to 20 syllables. A 84.52% spotting rate for the
top 10 candidates is attained with a speed requiring only
1.6 times of utterance length when the test was
performed on a Sparc 20 workstation.

1. Introduction

Many different algorithms have been adopted for
detecting a predefined set of keywords form continuous
speech. Most of them are based on Viterbi decoding and
require word/sub-word and filler models to decode an
input speech into a sequence of keywords and non-
keywords. Many different ways have also been
developed to adjust the scores of the keywords appearing
in the Viterbi alignment. However, it is always difficult
to train filler models for the non-keywords speech, and it
is even more difficult to model the lower level events
such as non-speech noise[3]. In addition, most reported
keyword spotting techniques can only deal with small
vocabulary problems. Huang, et al[4] proposed an
algorithm to deal with the large vocabulary problems, it
needs to carefully design the filler models. In this
research, a new strategy is proposed for Chinese
keyword spotting: by applying the modified very-large-
vocabulary continuous Mandarin speech recognition
techniques[2] to detect the keywords directly from the
local segments of the speech utterance. The purpose is to
deal with the large vocabulary problems without training
the filler models.

In Chinese language all the characters are
monosyllabic, a word is composed of several characters,
and the total number of syllables is relatively small.
Taking advantage of this monosyllabic structure, we
have achieved a great success in continuous speech
Mandarin dictation technique. But when a keyword
spotting problem is considered, the ability to deal with
spontaneous speech is required. In spontaneous speech,
it is always full of lower level events such as pauses,
filled pauses (e.g. "uh"), hesitation, laughter and other
non-speech noises (inhalation, cough), so it is difficult to
recognize such an utterance. After carefully considering
the monosyllabic nature of Mandarin speech and the
different phenomena between spontaneous speech and
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read speech, a three-phase framework with a special
scoring method is developed. The first phase is for
estimating the possible syllable boundaries, and some
obvious phrase boundaries will also be picked out. The
second phase is for syllable recognition, so that most
possible syllable candidates and tone scores for each
local segment can be found. The third phase is for
keyword matching, in which the syllable candidates are
concatenated to form larger segments which may include
keywords.

In the following, in Section 2,.we first introduce the
three-phase approach in detail. In Section 3, several
speedup techniques are presented. In Section 4, the
likelihood scoring techniques are adopted to improve the
accuracy. Moreover, some experiments are designed and
the results are shown in Section 5. Finally, in Section 6,
some conclusions are drawn.

2. Three-phase framework

In this section, we will introduce the main algorithm
used in this paper. It is a three-phase framework. The
first phase is designed for possible syllable boundaries
estimation, the second phase for acoustic recognition,
including obtaining base syllable candidates and tone
scores, and the third one for keyword-matching.

2.1 Phase 1 — Syllable boundaries estimation

For a given input speech utterance, all possible
syllable beginning frames can be first obtained by
picking up all the dips in the energy contour, such as x,
y, z in Figure 1. Corresponding to a beginning frame
such as x in Figure 1, the possible ending frames for the
syllable such as y—~1, z—1 can then be found by using
the estimated minimum and maximum duration of a
syllable, e.g. D, and D, . Besides dips in the energy
contour, several other useful features are also used for
better estimating the syllable boundary, for example,
zero crossing rate, and pause duration. Given all these
possible beginning frames and their corresponding
ending frames, we can perform acoustic recognition for
each segment which may include a syllable.

The syllable boundaries estimated in this phrase can
be further distinguished to three kinds of boundaries. For
those with higher probability to be syllable boundaries,
we will assign them to be hard syllable boundaries. For
those with lower probability, we just assign them to be

soft syllable boundaries. And the third kind of
boundaries are phrase boundaries, which are of course
also hard syllable boundaries. Pause duration is very
helpful to estimate this kind of boundaries here, and in
the later phase, phrase-final lengthening[5] can help to
estimate phrase boundaries better. Distinguishing these
three kinds of boundaries will be very helpful in
improving the speed. This will be sown latter.

2.2 Phase 2 — Acoustic recognition

With all possible syllable beginning frames and their
corresponding ending frames, in this phase, the Viterbi
search is then performed for each utterance segment
which may include a syllable to produce N most
possible syllable candidates. Context dependent
initial/final models are adopted here, where “initial” is
the initial consonant of a syllable, and “final” is-
everything in the syllable after the “initial”, including
the vowel or diphthong part plus optional medial or
nasal ending[2]. During the syllable recognition process,
a gyllable is not allowed to cross any hard syllable
boundaries mentioned in the previous phase. This
constraint will not only help to save much search time,
but also improve the recognition accuracy. In addition,
tone recognition is handled similarly but separately. By
this way, less storage memory is needed to store the
acoustic recognition result, also in the later process, it is
capable of getting more tonal syllables by combining
these two kinds of acoustic scores. With the N most
possible syllable candidates and acoustic recognition
scores reserved for every segment which may include a
syllable, an asynchronous syllable lattice is then
constructed which caries all information needed for
further process in the later phase. Moreover, since we
can first- get the mean and standard deviation of every
syllable length form the speech database, now more
phrase boundaries can be estimated by comparing the
recognized syllable length to the statistical syllable

length.
2.3 Phase 3 — Keyword matching

The third phase is a keyword-matching process.
Given the asynchronous syllable lattice together with
their acoustic scores, here we will find out the most
possible keywords directly from the local segments of
the speech utterance by searching through the syllable
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lattice. To tolerate the information loss caused by
recognition error, here we adopt a fuzzy matching,
instead of exact matching, to pick out the keyword from
adequate location.

Since a possible ending frame of a syllable is also a
possible ending frame of a keyword, starting from each
ending frame, a backward search can be performed to
construct a possible keyword by using its component
syllables. As shown in Figure 2, the root node x, is a
possible ending frame, and x', x} are the possible
ending frames for the preceding syllable. Each of these
two branches (x, —x!) (x, — x}) may include a
syllable, and we have stored the N most possible
syllable candidates with their scores and 5 tone scores
for each branch at x, . In the same way, we can find all
possible ending frames for the next preceding syllable
starting from x', x’ and so on, until the length of this
tree equals the syllable number of the desired keyword.
Now every path, from the root node to a leaf node can be
matched to the keyword, i.e. the i -tk level branch is
matched to the last i — ¢4 syllable of the keyword. For
every path within the tree, if the last j—¢h syllable of
the keyword is found among the N candidates of the
i—th level branch, the acoustic scores, including base
syllable score and tone score, of the syllable will be
accumulated to the keyword. If the syllable is not one of
the N syllables candidates, a relatively lower score,
which is dynamically decided according to the N
candidates' scores, will also be accumulated to the
keyword to keep the path for further observation. While
reaching a leaf node, the accumulated score is to be
adjusted, normalized by the duration and compared with
those already stored in a stack. If this normalized score is
high enough, the keyword with this score will be stored
in the stack too. This keyword-matching process will be
repeated for every keyword starting at every possible
ending frame. After all ending frames and all keywords
have been searched through, the keywords with the
highest scores will be picked out.

2.4 Score measurement

After separately describing each phase of the three-
phase framework, here we will further formulaie the
problem in this sub-section. Taking the logarithm of the
conditional probability as the measurement for the
likelihood, we can formulate our problem as below. The
log-likelihood score L, (b,,b,) of the observation

169

Joint Conference of 1996 Intefnational Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

sequence O(b,,b,)={o,,b, <t<b,} located between
the interval (b,,b,), given keyword 7, , can be denoted
as:

L,(b,,b,) = ZL,(0(b, b,)s,) )
where
L(Ob,bs) = 2 log plols),
t=t;_y+l (2)

t, = bl -1 tl,, = bz

I, represents the syllable number of the k —zk keyword,

and s, is the i —th syllable, ¢, denotes the ending frame
of s in a speech segment. In order to fairly compare
candidates with different lengths of duration, we define
the normalized likelihood score as:

D, (b,,0,)=L.(b,b,)/ (b, —b +1) 3)
Now, the problem can be defined as:
. .b;,b,)=argmax®, (b,,b,) 4)

Wy by hy)

That is, given an input speech, for all keywords at all
possible segments of speech, we will try to find their
normalized likelihood scores. The keyword W, with the
highest score will be picked out to be the final result, and
its location (b, b,) will also be identified.

3. Speed improvement

From the description of the three-phase framework in
last section, we can see that the computation time needed
for the second phase is approximately proportional to the
total number of possible boundaries B in the input
utterance. Because the more syllable boundaries are
found, there will be more segments that may include a
syllable each, and more computation will be needed for
the syllable and tone recognition. Another observation is
that the searching space for the third phase is
approximately proportional to B~in’* , where pn is the

k=1
average number of possible ending frames for the
preceding syllable corresponding to a given ending
frame, and K is the total number of keywords. WNote that
for those keywords with large /,, we have to search
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through a very large tree expanding from every possible
boundary frame. Several techniques are therefore
developed to improve the efficiency of our framework,
and they are thus summarized below.

First, we should try to prune the unlikely paths
expanding in the tree as early as possible. To reduce the
searching space, three criteria are used to decide whether
to prune a path or not. One is the score ratio and the
others are appearing ratios of syllable and sub-syllable
units of the keyword in a path. For example, when the
accumulated score obtained in the middle of a path is too
small compared to that of the Top 1 keyword which is
already in the stack, or when there are already too many
syllables or sub-syllable units in the keyword which are
not within the top N candidates of the corresponding
segments along the path, we will prune the path as early
as possible. By properly adjusting the thresholds for
these pruning strategy, the searching space can be
reduced accordingly.

Secondly, another more efficient technique is using
additional information to reduce the number of possible
syllable boundaries B . This not only helps to speed up
both the second and the third phases, but can also further
improve the accuracy. Instead of obtaining possible
syllable boundaries simply by energy dips, here a multi-
pass method is used to obtain the syllable boundaries
through better use of energy contour, zero crossing rate,
pause duration, and phrase-final lengthening. All
boundaries will be classified into three types of
boundaries, including soft syllable boundaries, hard
syllable boundaries, and phrase boundaries. Boundaries
with higher probability, ¢.g. some phrase boundaries and
hard syllable boundaries, will be picked out first and
they will divide the utterance to some shorter segments.
The soft syllable boundaries in those shorter segments
are then picked out. When the acoustic recognition
process is performed, a syllable is not allowed to cross
any hard syllable boundaries and more phrase
boundaries can be estimated by comparing the
recognized syllable length to the statistical syllable
length. And when the keyword-matching process is
performed, it is not allowed for a short keyword to cross
any phrase boundary. After better estimating syllable
boundaries and some reasonable constrains, the
searching space will be reduced significantly.

The third method makes use of the special structure
of Chinese keywords to improve the efficiency. Instead
of searching through all the keglwords one by one, we try
to reject whole groups of impossible keywords in the
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early stage. For example, in the second task, the 2611
keywords are actually the titles of banking/financing
organizations in Taipei. It can be found quite often that
the last two syllables are some common ending sub-
words representing a "bank (In-Hang, 4& 47 )", a
"corporation (Gung-Sr, 2- &))", ... etc., so we can in fact
classify these 2611 keywords into about 100 groups
based on the common ending sub-words. In this way the
search algorithm can be modified to have two stages.
The first stage simply quickly reject whole groups of
keywords by searching for the short common ending
sub-words, and reserve only the possible candidates. In
the second stage, we only have to search keywords with
the same ending sub-words reserved after the first stage,
which are often very small part of the total keywords.

4, Likelihood score modification

To further improve the system performance, we
develop some techniques to modify the likelihood scores.
We have known that the likelihood score over the best
path often varies with time, this makes it difficult to
compare words at different time. To deal with this
problem, we try to find an adequate scoring method to
reduce the variation of the likelihood. The concept of
background models has been introduced[6], we will
apply it to our approach. In equation (2), we only count
the conditional probability of keyword models, which
are constructed by vocabulary independent sub-syllable
models. Here we modify it to be

LW b)) =, 2 llog plofs)-logp(o |2l
1, =b -1, b

)

t

7

2

where g is background model. After modifying
equation (2) to equation (5), the equations (1), (3), and
(4) are still adequate for problem definition.

Two different types of background models are
designed in this paper. The first approach simply uses
only one background model which is trained by all of
training data. After considering the structure of the
acoustic models, i.e. initial/final models, used in this
paper, the second approach adopts three background
models, one for background noise g , and the other two,
g and g, for initials and finals. When the acoustic
recognition process is performed for a syllable, the
scoring method is shown in Figure 3. The score for the



initial part of a syllable will be normalized by the score
for g or g,, whichever is larger, and the score for final
part will be normalized by the score for g or g,
whichever is larger. This easy modification process will
normalize the likelihood score to an adequate level.

S. Experimental results
5.1 Baseline experiments

Two tasks with completely different characteristics
were tested in this research. The first one is a task with
vocabulary size of 9 keywords, and each keyword
includes 2 syllables. A spotting rate of 92.52% is
obtained while the conventional Viterbi decoding
algorithm: with filler models gives only 88.46%. The
second task has 2611 keywords, and each keyword
includes 2 to 20 syllables. A 82.57% spotting rate for the
top 10 candidates is attained but the speed requires more
than 10 times of real-time when the test was performed
on a Sparc 20 workstation.

5.2 Experiments on speedup techniques

Table 1 shows the spotting rates (S.R.) for the correct
keywords to appear within the top 10 candidates for the
second task mentioned previously with 2611 keywords:
when the pruning criteria are getting more strict, the
searching space is reduced step by step. In this table,
"Node no.' is the average number of nodes to be searched
through for an input utterance whose average length is
2.5 seconds. It can be found from the table that the
spotting rate is degraded only slightly when the search
space is reduced from 7.0 x 10" to 4.5x10°, but further
reducing the search space will cause large performance
degradation. We will choose the parameters at the point
that search space equals to 45x10° for further
experiments.

As can be found in the middle column of Table 2, for
the same task with better syllable boundaries and some
reasonable searching consirains, the average searching
space is further reduced to 7.5x10°, but the spotting
rate can be significantly improved to 83.33%
simultaneously. It is because the beiter syliable
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boundaries are estimated, the less confusing phenomena
caused by recognition error will occur. Therefore, the
spotting rate can be improved even though the searching
space is further reduced.

In the last column of Table 2, it can be found that if
we taking advantage of common ending sub-words, the
same spotting rate can be maintained while the searching
space can be further reduced significantly. In the
preliminary tests on a Sparc 20 workstation, for this case,
it takes in average only 3.5 seconds to spot a keyword
out of 2611 candidates from an utterance with average
length of 2.5 seconds. It needs about 1.4 times of
utterance length to process an utterance.
likelihood

on

5.3 Experiments score

meodification

Table 3 shows the results of using background
models to modify the likelihood scores. After carefully
choosing numbers of state and mixture of background

‘models, the spotting rates for the first task will further

rise to 93.07% and 93.73% for the cases of one
background model and three background models. For
the second task, the spotting rate can be risen to 83.85%
when only one background model is used. And 84.52%
of spotting rate will be achieved when three background
models are used, but the processing speed will be a little
reduced to 1.6 times of utterance length.

6. Conclusion

In this paper, we present an local-segment-based
approach for spotting large vocabulary Chinese
keywords from a spontaneous Mandarin speech
utterance. Taking advantage of the mono-syllabic
structure of Chinese language and carefully considering
the phenomena of spontaneous speech, a three-phase
framework is designed to spot keywords directly from
the local segments within a speech utterance. A special
scoring method and some techniques are also developed
to further improve the efficiency and accuracy of the
approach. Very atiractive performance was demonstrated
in the experiments.
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Figure 1. A section of an example utterance. X, y, <= B
and z are possible beginning frames, while y-1 .
and z-1 are ending frames corresponding to x. Duration

Figure 2. An example of a searching tree for a
two-syllable keywords ending with Xp

initial s, final s 2

log(Ols) log(Ols)
a possible syllable + +
speech segment | AN + &~ likelihood score
il b'Y 'Y )

max(logp(Olg,).logp(Olg)) ~ max(logp(O|g,).logp(Olg,)

Figure 3. Block diagram for performing the likelihood score modification

Node no. | 7.0x107| 1.8x10 7| 4.5x10 6] 1.0x10 ¢

S.R.(%)| 82.57 8220 | 81.82 | 75.73 no one three
background|background background
Table 1. Spotting rates under different search spaces model model model
by pruning the tree paths. Task1 | 92.52 | 93.07 | 93.73
Task 2 83.33 83.85 84.52
path better -| common
pruning | boundaries sub-words
Nodeno. | 4.5x106 | 7.5x105 | 1.5x10% Table 3. Spotting rates improovement by modifying
- - likelihood score using background models.
SR.(%) | 81.82 | 83.33 83.33

Table 2. Spotting rates and search spaces after the
three steps of improvements.
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