Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Non-local Data Reuse in Data Parallel Compiler*

Hyun-Gyoo Yookt

T Department of Computer Science

Korea University
Seoul, Korea

sung-Soon Park}

Mi-Soon Koot Myong-Soon Parkf

1 Department of Computer Science

Anyang University
Anyang, Korea

{hyun, pss, kms, myongsp }@cslabl.korea.ac.kr

Abstract

Data parallel language is treated as a promising
paradigm to describe a parallel program. In most
of data parallel languge, non-local data is disposable.
Every time there needs non-local data, communica-
tion should be done. However some non-local data are
used more than twice before they are redefined. To
eliminate redundant communication for them, they
must be reused. CHAOS and some communication
optimization try to reuse that but their efforts are
limited because of the difficulty of coherence between
orignal data and copied one.

We propose a new non-local data reuse method.
Our method uses data flow dependence to know the
redefinition time of non-local data. Our method is
composed of two stages. In the first stage, it detects
redefinition time and reusable time of non-local data,
and in the second stage, it transforms original code to
reuse non-local data. We solve the coherence problem
and reuse more non-local data. We make an experi-
ment to know the effect of our method in networked
workstation environment.

1 Introduction

Nowadays, when increasing the speed of proces-
sors become more and more difficult, more and more
computer experts admit that the future of high per-
formance computing belongs to parallel computer,
such as distributed memory computer. Distributed
memory computer offers very high levels of flexibility,
scalability and performance. However, in distributed
memory environment, programmers are forced to con-
sider the details of computations in each processor and
communications between them.

A data parallel language is introduced to make up
for the deficiencies of distributed memory computer.
In the data parallel language, a programmer doesn’t
need to counsider the details of parallel computation
and communication. The only one thing he should
do is to specify a distribution pattern of data. It
makes parallel program more robust and sometimes
nore powerful[lﬁ 6].

*This research was supported by SERI under contact No.
96-12-D00450

§7

A compiler for data parallel language performs
computation partitioning and communication inser-
tion. According to owner computes rule, which is gen-
erally used in computation partitioning, the assign-
ment statement is executed by the owner of LHS(Left-
Hand Side). So communications are essential for non-
local data in RHS(Right-Hand Side)[5]. Because we
know that data reuse is common in scientific pro-
grams, non-local data must be reused in distributed
memory computer.

For example, the data distribution and access pat-
tern of following HPF ! program, is Figure 1.

PROGRAM F_PREFIX
REAL A(100), B(100)

CHPF$ PROCESSOR P(4)
CHPF$ ALIGN B WITH A
CHPF$ DISTRIBUTE A(BLOCK) ONTO P
DO 100 i=1,N
DO 100 j=1,i-1

A(L) = £¢B(i-j))
CONTINUE
END

100

According to this pattern, each processor needs not
only its own data but neighborhood’s data. For A(26),
processor 1 needs the data B(25) to B(1) from pro-
cessor 0 and for A(27), B(26) to B(1) are necessary.
B(26) is saved in processor 1, but B(25) to B(1) is
not in processor 1 because they were discarded after
the using for A(26). As a result, processor 1 com-
municates for 25 times in each non-local data. To
reduce this burden, processor 1 should have saved the
non-local data when it received them. If processor 1
saved the non-local data for future reuse, the number
of communication is reduced to 1 for each of them.
However, most data parallel compiler has not con-
sidered the reuse of non-local data. Only message
coalescing and CHAOS try to reuse them, but they
can’t solve coherence problem between original data
and copied data. So their capability is weak. We pro-
pose a new non-local data reuse method. Our method
consider the flow data dependence to solve the coher-
ence problem. Our method detects the time that non-
local data is used for the first and the time that the
non-local data is reused. When non-local data is used

LHPF is a data parallel version of Fortran90[6]

Proceedings of International Conference
on-Computer Architeciure

rocessor () rocessor 1 rocessor 2 rocessor 3
P g

Aray A | 1 50 5]76 -~ 100]

26]27]

——+% Local Use/Definition
.......... 4 Non-loca Use

{Communication)
ArmyB[l |24|25 501 51 75|76 . 100]
processor) processor 1 processor 2 processor 3
Figure 1: Data distribution and access pattern of
F_PREFIX

for the first time, it must be fetched from remote pro-
cessor and saved in local memory. After that, it can
he reused.

The rest of this paper is organized as follows. Sec-
tion 2 describes the non-local reuse method in mes-
sage coalescing and CHAOS. Section 3 describes our
non-local data reuse method. This section is com-
posed of two subsections. One analyzes given loop
and detects iteration spaces for reuse and the other
generates target loop. Section 4 shows experimental
results in networked workstation environment. And
section 5 concludes this paper.

2 Related Works

In this chapter, we explain the reusing way of mes-
sage coalescing and CHAOS Message coalescing, one
of communication optimizations, try to reuse non-
local data by deleting redundant communication in
a loop. CHAOS propose more systematic method to
reuse non-local data in irregular problem.

2.1 Message Coalescing

Message coalescing is one of communication opti-
mizations in data parallel language. Message coales¢-
ing eliminate redundant message in a loop and as a
result reuse non-local data[5]. To apply message co-
alescing, all messages in a loop is placed before the
loop by message vectorization. For example, in the
following loop, :

DO 100 i = 1, 90
t1 = RECEIVE(B(i))
+2 = RECEIVE(B(i+10))
A(i) = £(t1, £2,...)
100 CONTINUE

message vectorization extracts all communications be-
fore loop, like this.

DO 50 i = 1, 90

t1(i) = RECEIVE(B(i))
t2(i) = RECEIVE(B(i+10))
50 CONTINUE
DO 100 i = 1, 90

ACL) = £(£1(1), t2¢i),.)
100 CONTINUE

58

In this loops, the data from B(11) to B(90) are re-
ceived for two times. Message coalescing eliminate
these redundant communiactions by colapsing the two
RECEIVE statements in one. The loops after apply-
ing message coalescing is this.

DO 50 i =1, 100
t(1) = RECEIVE(B(i))
50 CONTINUE

DD 100 i = 1, 90
ALY = £((D), £(i+10),...)
100 CONTINUE

But message coalescing cannot reuse the data
which is defined in a loop because it performs all com-
munication before the loop.

2.2 CHAOS

CHAOS is runtime support system for irregular
problem. In irregular problems, the communication
pattern depends on the input data. So it is not pos-
sible to predict at compile time what data must be
prefetched. The lack of information is dealt with by
transforming the original parallel loop into two con-
structs called an inspector and an executor [4].

During program execution, the inspector examines
the data references made by a processor, and calcu-
lates what non-local data needs to be fetched. The
executor then use the information from the inspector
to implement the actual computation. For the redun-
dant non-local data, the inspector makes a schedule
not to fetch it again and the executor get it from lo-
cal memory instead of fetching from other processor.
CHAOS uses a hash table to store non-local data.

However, there are several limitations in CHAOS.
First, CHAOS also cannot handle the data which is
defined and used in a loop, because as message coa-
lescing the executor must fetch all the non-local data
hefore the loop. Second, CHAOS uses hash table to
temporarily store non-local data, which may be irreg-
ular patterned. But it is inefficient in regular prob-
lems, because it takes more time to access and needs
more memory space than sequential memory.

3 Non-local Data Reuse based on Flow
Data Dependence
We found that the redundant use information in

the program is extracted from flow data dependences.
For example, in the following program,

1 A = ...
2 R (¢ S
3 ..o=glh,00)
4 n =
5 . =h,..)
there are three flow data dependences as Figure 2.

6; jmeans the flow dependence from statement i to
statement j. Because the uses of A in statement 2 and
statement 3 depend on the definition of statement 1
by 01,2 and 67 3, they use same data. But the use in

statement 5 is different. It depend on the statement
4. If the statement 1, 4 are executed in processor 1
and the others are executed in processor 2, only use
in statement 3 is reusable. From this example, we
can find that the first use in data dependences which
have same definition use new data and the other uses
use same data with first use. In loop, the statement
corresponds to iteration space.

Owner processor User processor

=22

T

U W

Figure 2: Example for Non-local Data Reuse

In loop, Our method find @ non-local first use 3t-
eration space (F'UIS), in which non-local data must
be fetched from remote processor and e non-local
reuse iteration space (RUIS) in which non-local data
is reused, with the information of flow data depen-
dence, data distribution, and execution order. In the
first part of this section introduce the algorithm which
detects these iteration spaces. In the second part,
these iteration spaces are used in code generation.
Unlike message coalescing or CHAOS, we don’t move
communications before loop. We reshape the given
loop to isolate these iteration spaces. In this process,
we try to minimize the overhead of guard.

3.1 Tteration Space Detection Algorithm

This chapter explains an algorithm which detects
three iteration spaces. First one is FUIS in which non-
local data is fetched from remote processor, another
one is RUIS in which non-local data is reused, and the
last one is RIS, which include FUIS and RUIS and
can he expressed in lower bound, upper bound and
stride. The algorithm is based on data dependence
information.

Distance vector and direction vector are gener-
ally used to represent data dependence in loop but
they are insufficient. Distance vector cannot represent
many cases and the direction vector is too ambiguous.
For example, there are loop-carried data dependences
in the following loop. The data which are defined in
iterations 2, 4, 6, 8,and 10 are used in iterations 6, 7,
8, 9, and 10, respectively.

DO i =1, 10
sS1 A(L) = A(2%1 - 10)
ENDDO

The distances from def to use are not constant, so
distance vector cannot represents these dependences.
On the other hand there is no information about dis-
tance in direction vector, (<)’. Kelly proposed de-
pendence mapping, which represents dependence as
mapping hetween iteration spaces like this[3].

) 1
& — [5*i+35)12 <1< 10,imod2 = 0}

59O

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

61{’? means flow data dependence from statement p

to statement ¢. [¢] is the iteration space of def and
[2 %4 — 4] is the iteration space of use. Dependence
mapping is difficult to handle but it can represent
more dependences and contains more information.

The algorithm in Figure 3 detectes FUIS, RUIS,
and FIS. The algorithm is based on followinginfor-
mation

Definition 1. IS(d, u) is an iteration space of
use ¢ which uses the data defined in def d. This
information is obtained from flow data dependence
from d to w.

Definition 2. LIS(u, np) is a local iteration
space that the statement contain ¢ was executed in
processor np.

Definition 3. NLUIS(u, np) is an iteration
space in which » use non-local data.

For example, in the following loop,

DO i =1, 100

1 B(i) = B(i-5)

2 A(1) = B(2%i -32)
ENDDO

there are 1 def and 2 uses. The data dependences
between them are like these :

8, {[] — [= 3}]1 < i < 100}
5a {[il—*lé Xi+16][1 <i<32,imod2 = 0}

These two dependeces have same def, so the uses
of the dependences can use same data. The iteration
spaces of each use, I5(u,d), are these :

{76 < <105}
{il17 < i < 32}

I8(1,1)
I8(1,2)

IS(u,d) corresponds to the iteration space.of the
range in dependence mapping.
To get the LIS(u,np) and NLUIS(u,np), data
distribution information 1s necessary. Figure 4 is the
distribution information of array A and B. According

Processor 0 Processor 1 | Processor 2 : Processor 3
1

100 |

|
t
251 26

50 {51
]

501 51
1

Array A ’1

75176
I

Aray B I 1 100'

|
25! 26 751 76
1 I

Figure 4: Data Distribution

to this information, process 1 has A(26) to A(50)
and B(26) to B(50). If computation is partitioned
by owner-computes rule, the iteration spaces which
process 1 executes are these :

{i[26 < i < 50}

{7]26 <7 < 50}

LIS(1,1)
LIS(2,1)

The iteration spaces in which each use exceeds the
data boundary allocated in process 1, NLUIS(u,1),

Proceedings of International Conference
on Computer Architecture

Algorithm: FindISs
1. Detect data dependences
2. Detect data distribution pattern

3. For all d which define a data a, DO

(a) For all w which use the data a, DO

i. NLIS(d,u,np)=I5(d,u)NLIS(u,np) N NLIS(u,np)

ii.

iii.

NLD(d,u,np) = Is2Ds(NLIS(d, u,np),index of u)
For all u'(# u) which use the data a, DO

A. FIS(u) = FIS(u)Niteration space in which u executes before o

B. FIS(u') = FIS(u')Niteration space in which u' exvecutes before u

(b) For all u which use the data a, DO

i. For all u' (# w) which use the data a, DO

A. FUIS(d,u,np)= FUIS(d,u,np)VU (Ds2Is(NLD(d,u,np)
N NLD(d,u',np), index of u)N FIS(u))
B. FUIS(d,u',np)= FUIS(d,«',np)U (Ds2Is(NLD(d,«',np)

N NLD(d,u,np),index of u')N FIS(u'))

C. RUIS(d,u,np)= RUIS(d,u,np)U(Ds2Is(NLD(d,u,np)
N NLD(d, ', np),index of u)— FIS(u))
D. RUIS(d,u' np)= RUIS(d,u' np)U(Ds2Is(NLD(d,u' np)

N NLD(d,u,np),index of u')— FIS(u'))

E. RIS(d,u,np)= RIS(d,u,np)W¥ Ds2Is(NLD(d,u,np)

N NLD(d,u',np),index of u)

F. RIS(d,u',np)= RIS(d,u',np)¥ Ds2Is(NLD(d,u',np)

N NLD(d,u,np),indez of u')

Figure 3: Algorithm for detecting FUIS, RUIS, and RIS

are these :
NLUTS(1,1) {ili—-5<25vi—>53>51}

{ili <30V i > 56}

(12 i-32<25V2xi—32>51}

{ili <28V i > 41}

Based on these information, the algorithm computes

followings.

Definition 4 NLIS(d, u, np) is Non-Local data
use Iteration Space in which the statement of u access
non-local data when it executed in the processor np.

Definition 5 NLD(d, u, np) is a set of Non-
Local Data (generally array section) which is used in
NLIS(u).

Definition 6 FIS(u) is an iteration space in which
u uses non-local data before other uses

NLUTS(2,1)

In NLID(d,u,np), the use u accesses non-local
data which is defined in def d and is executed in pro-
cessor np. In other word, NLIS(d,u,np) is inter-
section of I8(d,u), LIS(u,np), and NLUIS(u,np).
NLIS(d,u,np)s of each use in process 1 are these :

NLIS(1,1,1) {i6 <i<105A26<i<50A
(i <30V i>56)}
{i]26 < i < 30}

60

NLIS(2,1,1) (iIT<i<32A26< i< 50A
(i <28Vi>4l)}

{i]26 < i < 28}

I

NLD(d,u,np) is a non-local data set which is used
in NLIS(u,d). To convert given iteration space to
array section, function Is2Ds() is used. NLD(u,d)s
correspond to NLIS(u,d)s are these :

{i|21 <4 <25}
{20,22,24}

NLD(1,1)
NLD(2,1)

To reuse the non-local data, it should be received and

saved at first use. So we need the execution ordering
information of each use. FIS(u,d) is the iteration
space in which u uses-a non-local data before other
use. FI5(u,d)s of each use are like these :

FIS(1,1) {ili < 27}
FIS(2,1) {ili > 28}

In the last stage of this algorithm, calculate follow-
ing information.

Definition 7. FUIS(d, u, np) is non-local data
First Use Iteration Space, in which the non-local data
is used for the first time, so communication is in-
evitable.

Definition 8. RUIS(d, u, np) is non-local data
ReUse Iteration Space, in which the non-local data
is aleady saved in local memory, so communication is
not necessary.

Definition 9. RIS(d, u, np) is non-local data
Redundant usable Iteration Space. It is minimal it-
eration space which contains FUIS and RUIS and is
represented in (lower bound, upper bound, stride).

Non-local data which is used by u in
FUIS(d,u,np), is first using and is used again af-
ter FUTS(d,u,np). The itersaction of NLD(d,u,np)
and NLD(d,u',np) is data which is used in u and
1’ and easily converted to iteration space in wu.

The intersaction between this iteration space and
FIS(u) is FUIS(d,u,np). We can calculate general

FUIS(d,u,np) by following formula.

FU15(d,u,np) Uut in use(DSZIS(NLD(dv u,np) N

NLD(d,u',np),index of v) N FIS(u))

In this formula, Ds2Is() is a function which converts
data to iteration space in which it is used.

To get RUIS(d,u,np), we compute the data set
which is used more than once, and computes the itera-
tion space of that data set, and then subtract FI15(u)
from that iteration space. The general formula for
RUIS(d,u,np) is this.

RUTTS(d, u,np) Uyt in uselDs2Is(NLD(d,u,np)N

NI.D(d,u',np),indexr of u) — FIS(u))

Loop iteration space is represented with (up-
per bound, lower bound, stride), but unfortunately
FUIS(d,u,np) and RUIS(d,u,np) are not repre-
sented by the triplet. So guard must be inserted
to identify FUIS and RUIS. Evaluating guard in
each iteration is heavy burden. To av0i§ guard,
we introduce another iteration space, RIS(d,u,np),
which is minimal set represented with the triplet
but sufficiently large to contain FUIS(d,u,np) and
RUIS(d.u,np). RIS(d,u,np) can be calculated fol-
lowing formula.

RIS(d, u,np) Wt in use(Ds2Is(NLD(d, u,np)N

NLD(d,«',np),index of w))

In the formular, we use new operator & which is min-
imal set represented with the triplet but sufficiently
large to contain the given two iteration space. The
results of this stage are these :

FUTIS(L 1) = {27},
RUTS(1.1.1) = {20},
RIS(1.1,1) (27,29,2),
FITTS(1.2,1) = {28},
RUTS(1,2,1) = {27},
RIS(1.2.1) = (27,28,1)

Computing these information for all processors at
compile time is hurdensome and is ohstacle to guar-
antee scalahility. So at compile time these informa-
tion is computed with processor number (np) and

61

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

the process number is evaluated at run-time. Actual

RUIS(1,1,np) is
RUIS(1,1,np) = {il

i < npx 25+ 5))

2(np x 25 4+ 1) — 27)

2(np x 254 5) — 27))

3

(7 mod 2 =10)

(i > 28)

({1 <mapx 254+ 5)

(i 2 (np+1) x 25+ 6))

< > > > > > > >

3.2 Code Generation

This section explains code generation method.
Generated code by our method reuses the data which
is defined in the same loop, and determines its itet-
ation spaces at run time to reduce the overhead at
compile time.

In data parallel language, each processor executes
its own part of SPMD code. There are two way to
inform each processor which is his code. One is nus-
ing guard like "if-statement’ and the other is adjusting
iteration space with processor number. Using guard
is easy to use but burdensome because all processor
should evaluate the comparison part of guard through
the entire iteration space. On the other hand, ad-
justing iteration space is more efficient because each
processor executes only his own iteration space.

Our code generation strategy is simple. It dis-
tringuishes FUIS and RUIS from original loop and
then allows communication only in FUIS. The data
received in FUIS is saved in local memory and reused
in RUIS. The only way to distinguish FUIS and RUIS
from original loop is using guard because they are
not represented with a triplet, (lower bound, upper
bound, stride). To reduce the overhead of guard, we
use RIS. RIS contains RUIS and FUIS and is repre-
sented with the triplet. Instead of the guard, we dis-
tinguish RIS with adjusting loop iteration space and
the guard is used only in RIS. The code generation
method is following :

1. If the given iteration space was exceed the RIS,
split the loop at upper and lower boundaries of

RIS.

2. If the stride s of RIS is more than 2, then unroll
the loop for s times.

3. RIS is the first statement among the unrolled
statements. Use guard in RIS to distinguish

FUIS and RUIS.

In the following loop,

DO 100 i=1,100
stmt
100 CONTINUE

Proceedings of International Conference
on Computer Architecture

if FUIS is

was splited at the 26 and 50 by first rule like this.

DO 80 i=1,25
stmt
80 CONTINUE
DO 90 i=26,50
stmt
90 CONTINUE
DO 100 i=51,100
stmt
100 CONTINUE

As second rule, unroll the middle loop, then

DO 80 i=1,25
stmt
80 CONTINUE
D0 90 i=26,50,5
stmt-1
stmt-2
stmt-3
stmt-4
stmt-5
90 CONTINUE
DO 100 i=50,100
stmt
100 CONTINUE

In this code, RIS is only stmt-1. Use guard at stmt-1
to distinguish FUIS and RUIS like this.

DO 80 i=1,25
stmt
80 CONTINUE
DO 90 i=26,50,5
IF (i is in FUIS) THEN
stmt-1-1
ELSEIF (i is in RUIS) THEN
stmt-1-2 °
ELSE
stmt-1-3
END
stmt-2
stmt~3
stmt-4
stmt-5
90 CONTINUE
DD 100 i=50,100
stmt
100 CONTINUE

And then non-local data is received and saved in FUIS
and reused in RUIS.

As we said in section 3.1, iteration space informa-
tion has processor number and the number is evalu-
ated at run time in each processor, so the iteration
space of generated code is determined at run time.
Because compiler doesn’t know the exact iteration
space, it should gernates flexible loop of which itera-
tion spaces are variable. If RIS is (11b, rub, rs) and
given loop is '

{i]26,30,33,42,49}, RUIS is
{730, 34,40, 45,50}, and RIS is (26, 50, 5), then the
iteration space of given loop is exceed RIS. So the loop

DO 100 i=lb,ub,s
A1) = £(BE),...)
100 CONTINUE

then generated code is

DO 80 i=1lb,rub-s,s
T = Receive(B(i))
A(L) = £(T,...)
80 CONTINUE
DO 90 i=rlb, rub, LCM(s,rs)
IF (i is in FUIS) THEN
TEMP(i/rs+1)=Receive(B(i))
A(L) = £(TEMP(i/rs+1),...)
ELSEIF (i is in RUIS) THEN
A(i) = £(TEMP(i/rs+1),...)
ELSE
T = Receive(B(i))
A(L) = £(T,...)
END
DO 90 j=i+s,i+LCM(s,rs)-1,s
T = Receive(B(j))
A(G) = £(T,...)
90 CONTINUE
DO 100 i=rub+s,ub,s
T = Receive(B(i))
ACL) = £(T,...)
100 CONTINUE

In this program, LCM(a, b) is the least common mul-
tiple of a and b.

Until now, we propose improved non-local data
reuse method. Our method reuse non-local data
which is defined in the same loop by solving coher-
ence problem between non-local data and temperarily
saved data, reduce the burden of compiler and secure
the scalability with flexible iteration space, AND min-
imize the use of guard.

4 Experimental Results

We examine Equation of State Fragment, Matrix
Multiplication (MXM), and Image Filtering Program
to evaluate the effect of our method. Experiment is
performed in networked workstation environment by
using MPI as communication primitives. We use 4

-workstations, one is Sun Spark 2 and the others are

Sun Spark 10. The parallel programs which are used
in examination are made hy hand and anyother opti-
mization is not applied.

The HPF code of MXM is

PROGRAM MXM
REAL A(N,N), B(N,N), C(N,N)
CHPF$ PROCESSOR P(4)

CHPF$ ALIGN WITH A :: B,C

CHPF$ DISTRIBUTE A(BLOCK, *) ONTO P
DO 100 i=1,N
DO 100 j=1,N
DO 100 k=1,N

AL, 3)= AGL, P+B(L,K)*C(k, §)
100 CONTINUE
END

This program uses 4 processors and distributes arrays
onto them in (BLOCK, *) type. To calculate A(iyj),
ith raw of B and jth column of C are necessary. Owner
of A(i,j) does not have 3/4 of jth column of C. It re-
ceives them from other processors. As a whole, each
processor receives non-local data for ((M~1)/M)x N3
times (M is number of processors). But jth column of
C is also used for A(i+1,j), so the number of commu-
nication can be reduced to (M —1)/M x N? and each
non-local data is reused for N times. Table 1 is num-
ber of communication and number of reused non-local
data in each processor.

Number of Number of Reused
Communication non-local data
Don't reuse MT7-1-N3 0
- =12 =17 T
Reuse =N ===N x (N -1)

Table 1: Number of communication and reused non-
local data in each processor

Because the array C is defined before the loop,
CHAOS as well as our method reuse the non-local
data. We examined three case, case 1 does not reuse,
case 2 performs reusing with CHAOS’s method and
case 3 uses our method. In Figure 5, our method
shows same execution time with CHAOS method.
They take extremely small execution time compare
to case 1 and the gap increases according to array
size.

1600 T
™ CASE1:Don't Reuse
1400 1
—"" CASE2:CHAOS
1200 Method
1000 —~" CASE 3: Our Method
Time (sec) 800 +
600 +
400 T
200 1
[
0 —
16x16 32x32 64x64 128x128
Array Size

Figure 5: Execution Time Graph of MXM

The HPF code of EQSF is

PROGRAM EOSF:
REAL UCN), X(N), Y(N), Z(W)

CHPF$ PROCESSOR P(4)
CHPF$ ALIGN WITHX :: U, ¥, Z
CHPF$ DISTRIBUTE X(BLOCK) ONTO P
DD 100 k=1,N
X(k) = UC)+R*(Z(K)+R*T(k)) +
& T (U(k+3)+Rx (U(k+2)+R*U (k+1))) +
& T (U(k+68) +Qx (U(k+5) +Q*U (k+4))))
100 CONTINUE
END

63

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Each array is distributed onto 4 processor and distri-
bution type is BLOCK. Each processor performs 15
communication for 6 non-local data. So 9 communi-
cation can be reduced. The requested non-local data
is defined before the loop. So CHAOS method as well
as our method can reuse them. But CHAOS uses hash
table to save non-local data, it takes a little overhead
so, as shown in Figure 6, our method takes less time

than CHAOS.

25 1
. T CASE1:Don't Reuse
2 9~ CASE2:CHAOS
Method
" CASE 3: Our Method
15 1
Time (sec)
1
05 +
0! !
64 256 1024 4096 16384 65536 262144

Array Size
Figure 6: Excution Time Graph of EOSF

Image filtering is used to smooth out an image to
hide jaggies. It replaces each pixel with the average
or some function of itself and its neighbors[2]. The
HPF code of image filtering is

PROGRAM Filter

REAL A(N,N)

PROCESSOR P(4)

ALIGN WITH A :: B,C

DISTRIBUTE A(BLOCK, *) ONTO P

DO 100 i=1,N

DO 100 j=1,N

AGE,) =
0.08%(ACi-1,j-1)+ACi=1,j)+ACi-1,j+1)+

& AGL L3-1)+ AGL L j+1)+
AGi+1,j-1)+ACE+1, jI+A i+l j+1))+
& 0.36% A(i,j)

CONTINUE

END

As MXM, array A is saved for 4 processor and distri-
bution type is (BLOCK,*). To get A(i,j), 9 elements
around A(i,j) include itself are necessary. So at each
boundary, there needs 3 non-local data as Figure 7(a).
But one of them, gray one in Figure 7(b), is aleady
stored in local memory when previouse line was cal-
culated. If it was reused, 1/3 communications are re-
duced. But CHAOS cannot reuse them because they
are defined in the same loop. Figure 8 shows CHAOS
is similar to case 1. Our method reuses them, so the
execution time of our method is less than any other
methods. '

CHPF$
CHPF$
CHPF$

&

100

5 Conclusion

Many data parallel language do not reuse non-local
data. Only CHAOS and message coalescing attempt

Proceedings of International Confereqce
on Computer Architecture

O Non-Local Element 7 > Read from Local Memory

O Non-Local Element
(saved in Local Memory)

—~———2> Receive from Remote Processor

@ Local Element

Q -
CPO OGO

(a) Don't Reuse

(b) Reuse

Figure 7: Non-local data access Patterns of Tmage
Filtering Program

18 “

16 1 —°— CASE1:Don't Reuse

14 —0— CASE2:CHAOS
Method

12 —*— CASE 3: Our Method

10 ¢
Time (sec) 8
6 P
.
2
0 .

16x16 32x32 64x64 128x 256x 512x 1024x
128 256 512 1024

Array Size

Figure 8: Execution Times of-Image Filtering Pro-
gram

to reuse them. However they cannot reuse the data
which is defined and used in the same loop. We pro-
pose the method to reuse such data. Our method
is based on flow data dependence. We found that if
there are more than two flow data dependences which
Lave same definition, the uses except the first use
can reuse the data which is received in first use. And
we made an experiment to show the effectiveness of
our method.

However our method still has several problems es-
pecially in complex loop. First, if there are many
definitions and uses in the loop, the generated code
will be very complex. Second, if there are d defini-
tions and f(d) uses in each d, the complexity of our
method is O(d x f(d)!).

As a future work, we plan to apply this method to
the optimizing process of our under constructing HPF
compiler, PPTran [7].

References

[1] Brian, J. N. Wylie, Michael G. Norman, Lyndon
J. Clarke, "High Performance Fortran: A Perspec-
tive,” University of Edinburgh, May 1992.

[2] J. D. Foley, A. V. Dam, S. K. Feiner, and J. F.
Hughes, Computer Graphics - principles and prac-
tice, Addison Wesley, 1992.

64

[3] Wayne Kelly, William Pugh, A framework for uni-
fying reordering transformations, Technical report
CS-TR-3193, Dept. of Computer Science, Univer-
sity of Maryland, College Park, April 1993.

[4] J. Saltz and et. al. A mannual for the CHAOS run-
time library, Technical report, University of Mary-
land, 1993. ’

[5] Chau-Wen Tseng, An Optimizing Fortran D Com-
piler for MIMD Distributed-Memory Machines,
Ph.D thesis, Dept. of Computer Science, Rice Uni-
versity. January 1993.

[6] High Performance Fortran Forum, High Perfor-
mance Fortran Language Speficication, Version
1.1, Technical Report CRPC-TR92225, Center for
Research on Parallel Computation, Rice Univer-
sity, Houston, Tex. 1994.

[7] Taegeun Kim, Kyeongdeok Moon, Jungkwon Kim,
Yearback Yoo, Myongsoon Park, Sungsoon Park,
”A Parallel Program Translator from HPF to
PVM,” Electronic Proceeding of HPC-ASIA’95,
1995.

