Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Design and Implementation of a Parallelism Detector for
CONVEX SPP-1000 System

Yi-Hsin Hsiao

Dept. of Comp. and Info. Sci.

Chao-Tung Yang'

Shian-Shyong Tseng?
Nat’l. Chiao Tung Univ.

Hsinchu, Taiwan 300, ROC, Phone: +886-3-5715900, Fax: +886-3-5721490

Abstract

In this paper we implement a robust parallelism detector
for CONVEX SPP-1000 shared-memory multiprocessor sys-
tem. The parallelism detector is improved by combining the
PPD and K-Test that both are our previous research results.
The detector can extract the available parallelism on loop of a
program and translate the original program into parallel form
by using CONVEX compiler directive. Then, the result pro-
gram can be run on CONVEX SPP-1000 system to achieve
high speedup rates.

1 Introduction

In this paper, we implement a robust parallelism detec-
tor to translate a sequential program into a parallel form for
CONVEX SPP-1000 multiprocessor system. This parallelism
detector is proved by combining our.previous research results,
the PPD [9] and K-Test {6]. PPD collects the characteristics
of the loop for K-Test and takes the traditional FORTRAN
77 source program as input to yield the corresponding par-
allel code. Most data dependence test algorithms provided a
particular way to analyze the whole program, but in a pro-
gram not all loops have the same property and suit for the
same algorithm. Based on the experience of K-Test [6], dif-
ferent loops in a program may take different algorithms to
obtain the more correct and efficient results. The framework
of PPD is divided into two phases, analysis phase and code-
gen phase. In analysis phase, the K-Test is used for checking
if the linear equation formed by array subscript has an ap-
propriate integer solution. The effect is the determination of
the execution modes of all loops. In codegen phase, the out-
come of analysis phase is referred to produce the prompted
parallel code and PPD will generate the code with compiler
directives which are provided by CONVEX SPP FORTRAN
compiler. The optimizations for synchronized statements of
DOACROSS loops are also taken. The K-Test will choose an
appropriate test by knowledge-based techniques, and then
will apply the resulting test to detect data dependence on
loops. PPD will generate the code with compiler directives
which are provided by CONVEX SPP FORTRAN compiler.

*This work was supported in part by National Science Council,
Republic of China, under Grant No. NSC85-2213-E009-082.

tHe is a Associate Researcher in the ROCSAT Ground Segment
at Nat'l. Space Program Office (NSPO), Hsinchu, Taiwan 300,
ROC. E-mail: ctyang@aho.cis.nctu.edu.tw.

tCorresporu:ling author. He is a Professor in the Dept. of Comp.
and Info. Sci. at Nat’l, Chiao Tung Univ., Hsinchu, Taiwan 300,
ROC. E-mail: sstseng@cis.nctu.edu.tw.

49

2 Background

Data dependence testing [10, 4, 8] is the method used to
determine whether dependencies exist between two subscript
references to the same array in a nested loop. The index
variables of the nested loops are assumed to be normalized
to increase by 1 in this paper. Suppose that we want to de-
cide whether or not there exists a dependence from statement
51 to S2. As we know, data dependence testing is equivalent
to integer programming, and the most efficient integer pro-
gramming algorithms known either depend on the.-value of
the loop bounds or are order O(n°(™) [5] where n is the num-
ber of the loop variables. In general, there are approximate
methods to solve this problem. So many algorithms are pro-
posed to solve the problem by analyzing the linear equations
formed by a pair of array references. Every existing test has
its own advantage as for some aspect [6].

2.1 K-Test

A new approach by using knowledge-based techmques to
solve the data dependence analysis problem is proposed m
[6]. It can choose an appropriate test by using knowledge-
based techniques, and then applies the resulting test to detect
data dependence on loop. A rule-based systern, called.the K-
Test, is developed by repertory grid analysis to construct the
knowledge base.

A knowledge-based system is composed of two parts: the
development environment and the runtime environment [7).
The former is used to build the knowledge base, while the
latter is used to solve the problem. The runtime environ-
ment of the K-Test contains three components as shown in
Figure 1, which are briefly described as follows.
Knowledge Base: This component contains knowledge re-
quired for solving the problem of determining an appropriate
test to be applied. The knowledge can be organized in many
different schemes, and can be encoded into many different
forms. Therefore, there exist many choices of building the
knowledge base.

Inference Component: This component is essentially a
computer program that provides a method for reasoning
about information in the knowledge base alomg with the in-
put, and for forming conclusion.

Testing Algorithm Library: The library collects several
representative tests either proposed by others or designed by
ourselves, including the GCD test, Banerjee test, I test, and
Power test.

The dependence testing process can be described as fol-
lows. First, the input, a set of equations, is fed into the

Proceedings of International Conference
on Computer Architecture

Input

Inference Testing is the loop
Algorithm
dependence (by CLIPS) Corar = parallefization?
equations y

Rule Base

(Generate
by GRD2CLP}

Figure 1: Components of K-Test.

inference component. Then, the inference component rea-
sons about knowledge and draw a conclusion, a test. Finally,
the resulting test is applied and the answer is generated. It
should be noted that the knowledge base and the testing al-
gorithm library shown in Figure 1 are flexible; that is, they
are not fixed. Users can modify these two components so long
as the efficiency and precision of the system are retained.

2.2 PPD

The practical parallelism detector (PPD) [9], that uses the
lex and yacc auxiliaries is implemented in PFPC (a portable
FORTRAN parallelizing compiler running on OSF/1) at
NCTU for finding the parallelism available in loops. The
PPD can extract the potential DOALL and DOACROSS
loops in a program by invoking a combination of the ZIV test
and the [test for verifying array subscripts. Furthermore, if
DOACROSS loops are available, an optimization of synchro-
nization statement is made. Experimental results show that
PPD is more reliable and accurate than previous approaches.

PPD takes a conventional FORTRAN 77 source program
as input and yields corresponding prompted parallel code.
PPD is divided into two phases, analysis (Figure 2 (a)) and
codegen (Figure 2 (b)). In the analysis phase, a single-
subscript testing algorithm, the combination of the I test
and ZIV test, is used to check whether the linear equations
formed by array subscript have appropriate integer solutions.
Instéad of linearizing the array subscripts, we check them
subscript-by-subscript since there is no certainty that any of
them overrides the other in precision.

It also proposed two ad hoc techniques that look for trivial
contradictions of direction vectors to improve upon the draw-
backs of conventional subscript-by-subscript testing mecha-
nisms [9]. The effect of the analysis phase is to determine
all loop execution modes. A loop’s execution mode may be
made DOALL, DOACROSS, or DOSEQ. The first two can
be executed in a fully or partially parallel manner, while the
last one must be executed in the normal sequential style.
In the codegen phase, the results of the analysis phase are
used to produce prompted parallel codes. Optimizations of
DOACROSS loop synchronized statements are also taken.

3 Parallelization on SPP-1000
3.1 SPP-1000 System

Our target machine is CONVEX SPP-1000 multiprocessor
system, which was designed by Hewleti-Packard Company
with 8 CPUs and crossbar 256 MB shared memory installed.
This machine uses the CONVEX Exemplar SPP-UX 3.1 op-
erating system, and FORTRAN compiler version 3.1. CON-

50

VEX FORTRAN includes standard FORTRAN as defined by
the Americas National Standard FORTRAN 77 (ANSI X3.9-
1978). It also includes selected FORTRAN 90 extensions;
VAX-11 features; certain features of Cray, Sun, and Hewlett-
Packard FORTRAN; and unique CONVEX extensions. The
FORTRAN Language Reference contains a complete descrip-
tion of the CONVEX FORTRAN language [1].

The FORTRAN compiler provided some machine-
independence optimization's levels. The programmers can
specify the following optimization levels for performing
machine-independent optimizations at the specified level as
in Table 1. If this option is not specified, no machine-
independent optimization is performed. The default opti-
mizations is set at the machine instruction level. The FQR-
TRAN language compiler cannot automatically parallelize
loops when containing dependencies, but a rich set of direc-
tives, pragmas and data types are available to help program-
mers manually parallelize such loops by synchronizing (and,
if necessary, ordering) access to the code containing the de-
pendency. These directives can also be used to synchronize
dependencies in parallel tasks. They allow programmers who
can efficiently exploit parallelism in loop and region.

Level Description

-00 Basic block machine-independent scalar
optimization «

-01 Program unit level scalar optimizations and
global register allocation

~-02 Global instruction scheduling, software
pipelining, and data localization optimizations.

-03 Parallel optimizations

Table 1: Optimization levels.

3.2 Compiler Directives

The SPP-1000 FORTRAN compiler has provided some
compiler directives to help programmer and compiler to make
use of parallelism. Some compiler directives provide infor-
mation to the compiler that it cannot determine on its own.
Other directives instruct the compiler to override certain de-
fault conditions that control optimization, parallelization. In
CONVEX FORTRAN, a compiler directive line has the fol-
lowing format:

C$DIR [SPP | CSERIES] directive [, directive --]

A directive line begins in column one with the characters
C$DIR. If one of the optional target machine attributes (SPP
or CONVEX C series) is specified, the directive line is applied
only when compiled for the target machine (either CONVEX
SPP Series or CONVEX C Series). If two or more directives
are specified, they are separated by commas. A directive
must fit on one line; it cannot be continued. A directive
can be surrounded by any number of comment lines. The
CONVEX SPP-1000 has provided the following compiler di-
rectives for SPP Series as shown in Table 2. Those compiler
directions was described as follows:

UNROLL

The UNROLL directive reduces loop overhead by replicating
the body of the loop that follows. Unrolling is performed
only on scalar loop. This directive is effective only in code

Data
> dependence
analysis

(a)

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

<
> Parallel
code

Loop
structure

(b)

Figure 2: An overview of the analysis and codegen phases.

compiled at optimization I vel -O2 or higher. It has the form:
C$DIR UNROLL [(UNROLLFACTOR=n)]

where, if the UNROLL FACTOR argument is included, its value
n specifies the number of times to replicate the body of the
loop. Otherwise, the loop will be totally unrolled.

GATE

The GATE directive declares one or mor~ variables of type
GATE. This directive is useful only in code compiled at opti-
mization level -O3. The format of this directive is shown as
below:

C$DIR GATE (gate-name [, gate-name ...])

where gate-name is the name of the GATE variable to be de-
clared. By using GATE variables and the attendant intrinsic
routines, programmers can specify a block of execution code
to one thread at a time.

LOOP _PARALLEL

The LOOP.PARALLEL directive specifies that the immediately
following loop should be run in parallel. This directive is
effective only in code compiled at optimization level -O3.
The LOOP_PARALLEL compiler directive is available only on
CONVEX SPP Series machines. A loop marked with a
LOOP_PARALLEL directive must have a known number of itera-
tions at loop invocation time. For this reason, LOOP PARALLEL
is not applied to WHILE loops, loop containing RETURN or
STOP statements, or any other loop that exits by abnormal
termination. A LOOP_PARALLEL will not be interchanged with
any other loop in a loop nest.

The LOOP_PARALLEL directive is not applied to the implicit
loop of FORTRAN 90 array section syntax; FORTRAN 90
array assignments are data-independent and are candidates
for automatic parallelization. Any secondary induction vari-
ables in a LOOP_PARALLEL loop must be written as linear ex-
pressions of the primary induction variable and must be de-
clared LOOP_PRIVATE. The format of the LOOP_PARALLEL di-
rective is as follows:

C$DIR LOOPPARALLEL [(aitribute-list)] where the optional
attribute-list can contain any one of the following combina-
tions of attributes as shown in [2].

4 Our Approach
4.1 Integration of K-Test and PPD

To construct the robust parallel loop detector on CON-
VEX SPP-1000 the PPD and K-Test have been combined.
The PPD includes two phase, one is the analysis phase and

51

the other is codegen phase. The analysis phase is used to
analyze the section of loop in source program, collect the
attributes of the loop, and detect the parallelism of a loop.
The part of data dependence analysis is the most impor-
tance in analysis phase. The K-Test is used to replace the
part of data dependence analysis instead of the original one
in analysis phase. The K-Test chooses an appropriate test by
knowledge-based techmiques, and then applies the resulting
test to detect data dependence ou loop. In order to use the
K-Test, some additional information about the loop must be
known. So the PPD’s analysis phase is improved to increase
the power of analysis, and to know the characteristic of the
loop.

The K-Test is based on the characteristic of program and
the knowledge base to decide which test will be used. An
expert system shell called CLIPS, a forward reasoning rule-
based tool, was used for this inference cornponent. The
knowledge base is constructed as a rule base, the translator,
GRD2CLP, is utilized to translate the repertory grid and
attribute ordering table to CLIPS’s production rule. Since
the loop characteristic was known, then the K-Test inference
component can use the information to reason about knowl-
edge and draw a conclusion, a test. The resulting test was
applied to this loop of source program, and it will get the an-
swer whether the loop can be run in parallel, with synchro-
nization or series, and keep the result in data dependence
graph.

The attributes of the loop nest structures for the sake of
using K-Test include Unity_Coef, Bound_Known, Multi_Dim,
Few_Ver, and Couple. These five attributes are described
below:

e Unity_Coef whether the coefficients of variables are 1,
0, -1, or not. if yes, we assign this values as 5, otherwise
1.

e Bound_Known whether the loop bounds are known or
not. If the loop bound was known we assign this value
as 5, otherwise 1.

¢ Multi Dvm whether the array reference is multi-
dimensional or not. We assign this value as the number
of the dimension of the array reference.

@ Few_Ver whether the number of variables in the equa-
tion is small or not. We assign this value as the number
of variables in the loop.

Proceedings of International Conference
on Computer Architecture

e Couple whether the array references are couple or not.
If yes, we assign this value as 5, otherwise 1.

The K-Test is based on the five attributes and his knowl-
edge base to.decide which test will be used. The repertory
grid of the K-Test contains five attributes and four objects
which are four existing data dependence tests as shown in
Table 3.

BARRIERE BEGIB_TASKE
BEXT_TASK EHD.TASKS

BLOCK LOOP BLOCK _SHARED
CRITICAL SECTIOR EED_CRITICAL SECTION
FAR_SHARED POINTER GATE

LOOP_PARALLEL LOOP PRIVATE
BEAR_SHARED BEAR.SHARED POIHTER
B0.BLOCK.LOOP HODE PRIVATE
BODEPRIVATE POINTER HO_LOOP.DEPEEDEECE
BO_PARALLEL HO_PEEL
BO_PROMOTE.TEST BO_SIDE EFFECTS
BOUBROLL_ABD_JAH ORDERED.SECTIOH

FAR _SHARED EED_DRDERED SECTIOH
PEEL PEEL.ALL

PREFER PARALLEL PROMOTE TEST
PROMOTE_TEST.ALL ROW WISE

SAVELAST SCALAR

TASK PRIVATE THREAD PRIVATE
THREAD.PRIVATE POIBTER | URROLL
UHROLL_AED_JAH

Table 2: Compiler directives.

GCD | Banerjee 1 Power
Unity-Coef 1/1 5/2 1/1 1/1
Bound Known | 1/2 5/D 1/1 5/2
Multi Dim 1/1 1/1 1/2 | 5/2
Few_Var 5/1 5/1 1/2 1/2
Couple 1/1 1/1 1/1 5/D

Table 3: The RGA/AOT of the K-Test.

After performing parallelism detector, each loops will be
marked with one of three different types. At the outer loop,
if the loop has loop-carried dependences, it was marked with
DOACROSS, otherwise, it was marked with DOALL. If the
loop was not outer loop, the parallelizing overhead was too
large, it was marked with DOSEQ.

4.2 The Algorithm

We now summarize the above discussion into two phases:
analysis and codegen. An overview of these two phases is
depicted in Figures 3, respectively. Since the analysis pro-
ceeds during parsing, DDG construction must accomplish
after parsing the entire input source. During the codegen
phase, the serial code, DDG, and loop nest structure are ref-
erenced in order to produce the desired prompts.

Analysis phase: The analysis phase is divided into four
stages. These four stages are started after each loop block
grammar rule reduction.

52

Source
program

Program with
e Cogaeg:n T compiler
P directives

Analysis
phase

Figure 3: An overview of our approach.

¢ Stage 1: This stage primarily determines loop execu-
tion modes. Suppose that instance stands for DOALL,
DOACROSS or DOSEQ), while L is a set of loop levels.
conditional mark (¢nstance, L) will mark the do-type
of each loop in L with instance according to the follow-
ing rule:
if instance takes precedence over a loop’s original do-
type, and the loop mask is false, then instance can be
marked on the loop; otherwise the loop retains its orig-
inal do-type.

¢ Stage 2: Break the nested DOACROSS loops in the
loop nest structure. Since it is expensive much to syn-
chronize all nested DOACROSS loops while the pro-
gram is being executed, we preserve the outermost
DOACROSS loop and mark DOSEQ on the other nested
DOACROSS loops.

e Stage 3: Remove the virtual dependences in the DDG.
Given a dependence relationship, say S 55;‘1) 52 (ap) 1
if there exists another dependence relation, say
S'Jﬁd')Sg(ap) in which S’ performs a write access and
ifd < d,ord =dand S is textually after S;, then the
given dependence relationship can be removed.

e Stage 4: Perform optimization on synchronization.

— Step 1: Remove the LID records from the DDG
since they are now necessary.

— Step 2: For each entry in the DDG, remove redun-
dant synchronization records that have the same
dependence distance.

— Step 3: Perform further optimization which can be
applied if there are no conditional branches in the
loop block. The process is mentioned in [10}:
Given a dependence relationship 5 Jﬁd) So, if there
exists another dependence relationship 518 g
where S is textually after or equal to S, §' is
textually before S», and d is a multiple of d’, then
the given dependence relationship can be removed.

Codegen phase: The prompted parallel codes are com-
posed by the original source code, and compiler directives.
The following rules show the way prompted parallel codes
are generated.

e Tor each loop in the loop nest structure, if the do-type
is DOALL, the compiler directive C$DIR LOOP PARALLEL
is inserted in the front of the original loop.

e For each loop in the loop nest structure, if the do-
type is DOACROSS, the compiler directive C$DIR
LOOP PARALLEL (ordered) and C$DIR GATEis inserted in
the front of the original loop.

e For each inmost loop in the loop nest structure, the
compiler directive UNROLL is inserted in the front of the
original loop.

e For each statement enclosed in the loop block, say Si,
the i*" row and the " column of the dependence matrix
are referenced.

— For each non-null entry in the ¢ column
traversed', and if there is a record, say Sjéﬁd) S;
in the entry (7,7), then the directive
C$DIR ORDERED.SECTION(Gc)? is inserted at the
appropriate position as follows:

If there is no loop nested under loop level ¢, the
directive

C$DIR ORDERED.SECTION(Gc) is inserted immedi-
ately before S;; or else it is inserted at the front of
loop level c.

— If there exists any synchronization record in ith.

row, the compiler
directive C$DIR END_ORDERED _SECTION is inserted
at the appropriate position as follows:

If there is no loop nested under loop level ¢, the
directive C$DIR END_ORDERED_SECTION is inserted
immediately after S;; or else it is inserted at the
rear of loop level c.

4.3 Program Transformation

In the code generation phase, the original code genera-
tion unit was to produce the parallel code for a prototype
parallel FORTRAN compiler. Now, we replace it by gener-
ating the code with compiler directives that were provided by
CONVEX SPP-1000 FORTRAN compiler, and the compiler
directive will increase the effects of programs in SPP-1000.
After performing parallelism detector, each loops will be
marked with one of three different types, which are DOALL,
DOACROSS, and DOSEQ. The different types of loop will
be made the different transformation. The transformations
are described detailedly as follows:

o DOALL: If the loop was marked with DOALL, it means
that the following loop can be performed in parallel, so
we add the compiler directive LOOP_PARALLEL in front of
the loop. The LOOP PARALLEL directive specifies that the
immediately following loop should be run in parallel.

o DOACROSS: If the loop was marked with
DOACROSS, it means that the loop can be performed
in parallel with synchronization. If a loop can’t be
done in parallel, it may have a loop carry dependence.
We can make use of this advantage to achieve high

1 There may be multiple records linked in the entry.
2 (Gc) represents the loop index variable that corresponds to
loop level.

53

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

speedup rates. So we also add the compiler directive
LOOP_PARALLEL in front of the loop. To keep the cor-
rectness of the result, some other option and directive
must be added to guarantee the execution order right.
Consider the FORTRAN code in Figure 4, which con-
tains a true dependence on the array A that normally
inhibits parallelization.

poIrT=1, N
PARALLELIZABLE CODE ---

A(I) = A(I-1) + B(D)
MORE PARALLELIZABLE CODE ...

ENDDO

Figure 4: FORTRAN code with true dependence.

Assuming that the dependence shown is the only one in
the loop, and that a significant amount of parallel code
exists elsewhere in the loop, we can isolate the depen-
dence and parallelize the loop as shown in Figure 5.

C$DIR GATE (LCD)
LOCK = ALLOC.GATE(LCD)

LOCK = UNLOCK_GATE (LCD)
C$DIR LOOP_PARALLEL (ORDERED)
DOI=1, N
PARALLELIZABLE CODE -- -

C$DIR ORDERED.SECTION (LCD)
A(I) = A(I-1) + B(I)
C$DIR END_ORDERED_SECTION
MORE PARALLELIZABLE CODE ---
ENDDO
LOCK = FREE_GATE(LCD)

Figure 5: loop_parallel synchronization code.

The loop is now parallelized in the manner described in
Figure 6, and the ordered section containing the A(I)
assignment will be executed in right iteration order, in-
suring that the value of A(I-1) used in the assignment is
always valid. Assuming this loop runs on 4 threads, the
synchronization of statement execution between threads
is illustrated in Figure 7.

e DOSEQ: If the loop was marked with DOSEQ, it means
that the following loop can’t be performed in parallel,
it doesn’t need to make any transformation.

CONVEX SPP-1000 has also provided some other direc-
tives that can improve efficiency, In this paper, we also use
the UNROLL directive, which can unroll the loop and improve
efficiency by eliminating loop. But it can be only used in
the inner loop. If the UNROLL FACTOR argumment is included
(shown in Figure 8), its value n specifies the number of times
to replicate the body of the loop.

Proceedings of International Conference
on Computer Architecture

vot=1.100 8} {oor=2,100.8).fo01=3,100.8] Joo1=4. 100 8
ENDDO ENDDO ENDDO ENDDO
THREAD 0 THREAD THREAD 2 THREAD 3
boOi=5,100,8 DOI=6,100,8 BO1=7,100,8 BOI=8,100,8
ENDDO ENDDO ENDDO ENDDO
THREAD 4 THREAD 5 THREAD 6 THREAD 7

Figure 6: LOOP_PARALLEL (ORDERED)

Therads

Order of statement execution
BB Statements contained within ordered sections
221 Non-ordered section statements

Figure 7: LOOP_PARALLEL (ORDERED) with syn-
chronization.

When the loop can be done in parallel or has a loop-carried
dependence by K-Test, the loop is translated if it is an outer
loop; otherwise, since the overhead is too large, it will not
be deal with. In the inner loop, the UNROLL directive will be
used to eliminate the loop overhead.

5 Experiments
5.1 Efficiency of CONVEX SPP-1000 Com-
piler Directives
The experiments were performed on the CONVEX SPP-
1000 system under the following conditions:

1. We compare the execution time between a program with
compiler directives and without compiler directives.

2. We compare the execution time varying with different
number of threads.

3. We compare the execution time between using UNROLL
directive or not.

4. We compare the execution time on some practical data,
e.g., matrix multiplication, adjoint convolution, and re-
verse adjoint convolution, and transitive closure with
different matrix size.

First, the comparison of the execution time between with
compiler directives and without compiler directives on CON-
VEX SPP-1000 is shown in Table 4. Obviously, the program

54

C$DIR UNROLL (UNROLLFACTOR = 4)
DO I=1, N

A(D)=B(I)+C(1)
ENDDO

(a) Source loop.

DO I=1, N ,4
A(I)=B(I)+C(I)
A(I+1)=B(I+1)+C(I+1)
A(I+2)=B(I+2)+C(I+2)
A(I+3)=B(I+3)+C(I+3)

ENDDO

{b) After translated.

Figure 8: Translation example with partial UNROLL.

with compiler directives will spend less time then the pro-
gram without compiler directive, if the loop is a DOALL
loop.

Examples With Without Speedup
parallel code | parallel code
Loop 1 0.74 4.05 5.47
Loop 2 1.81 0.57 0.32
Loop 3 “0.45 0.62 1.38
Loop 4 0.39 0.42 1.08

Table 4: Execution time with parallel and without par-
allel.

Where the loop examples are described as below:

® Loop 1 is a single loop as shown in Figure 12(a), that
can be executed in parallel without any synchronization
code.

® Loop 2 is a single loop, as shown in Figure 12(b), that
can be executed in parallel but some synchronization
codes are needed to guarantee the execution order.

e Loop 3 is a nested loop, as shown in Figure 12(c), the
outer loop can be executed in parallel without any syn-
chronization code.

e Loop / is a mested loop, Figure 12(d), the outer loop
can be executed in parallel with some synchronization
code.

The Loop 1 and Loop 3 are DOALL loops, it means that
they can be executed in parallel without any synchroniza-
tion overhead, so, the number of iterations is the factor of
speedup. The different number of iterations causes different
speedup are shown in Figure 9 for Loop 1.

The Loop 2 is a single loop, that can be executed in par-
allel with some synchronization code. As shown in Chapter
4.2, the translation with synchronization code must have sig-
nificant amount of parallel code exists elsewhere in the loop,
then the translate can gain the speedup. Loop 2 does not

Speedup

o (384 e (o}
T

$ i ' L

100 1000 10000 100000 1000000

10
Number of iterations

Figure 9: Speedup for different iteration.

have significant amount of parallel code exists, so this trans-
lation can not gain the speedup. In Loop 4, some parallel
code was added in the Loop 2, the speedup was improved.

Because CONVEX SPP-1000 system is a multiusers sys-
tem, the ability of gaining the right to used CPU number
will effect the efficiency. So we compare the execution time
of programs that run with different threads number in Ta-
ble 5, and the speedup is shown in Figure 10.

No. threads
Examples 1 4 8 16 32
Loop 1 399 | 1.24 | 0.75 | 0.74 | 0.75
Loop 2 1.81 | 6.81 | 9.07 | 9.16 | 9.16
Loop 3 0.44 | 0.46 | 0.45 | 0.46 | 0.45
Loop 4 0.45 | 0.24 | 0.38 | 0.38 | 0.38
Table 5: Execution time with different number of

threads.

——Toop 1
—&—Loop 2

Loop 3
—~+#—Toop 4

1 4 8
Minber of threads

16

Figure 10: Speedup for different threads.

Where the loop examples are described as below:

¢ Loop 1, a single loop that can be run in parallel without
any synchronization code, is shown in Figure 12(a).

o Loop 2, a single loop that has a loop carry-dependence,
and must be performed with some synchronization code,
is shown in Figure 12(b).

& Loop 3, anested loop whose outer loop can be performed
in parallel completely,, shown in Figure 12(c).

g5

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

@ Loop 4 is a nested loop whose outer loop can be per-
formed in parallel with synchronization code, is shown
in Figure 12(d).

Since the Loop 1 and Loop 3 are DOALL loops, the number
of threads plays a crucial part on speedup. The speedup
will depend on the number of threads that can be executed
concurrently. The number of threads depend on the ability of
gaining the right to use the number of CPUs. In CONVEX
SPP-1000, because there are eight CPUs in this machine, the
suitable thread number is eight.

The Loop 2 and Loop 4 are DOACROSS loops, the syn-
chronization overhead is the prime factor on speedup, the
different number of threads cause the different speedup. In
the Figure 7, the iteration five's ordered section can be &xe-
cuted only when the iteration four’s ordered section is done,
so, if the part of parallel code is too short, some CPUs are
idle and the CPU’s utilization is low, the speedup will be
drop. If the ratio of parallelizing code segment to ordered
section code segment is fixed, the number of threads is the
factor of speedup. The maximal speedup depends on the ra-
tio of parallelizing code to ordered code, the parallelability
code must more than ordered code to gain the speedup. The
speedup graph for different thread number of Loop 4 is shown
in Figure 11.

Speedup

s
O = A
>
&

1 2 3 4 5 6 7 8
Ninber of threads
Figure 11: Speedup for different threads.

16 32

We use some other efficiency directive like UNROLL to mea-
sure the speedup as shown in Table 6.

Examples | Without unroll | Unroll | Speedup
Loop 1 0.57 0.43 1.33
Loop 2 0.80 0.43 1.86

Table 6: Execution time on SPP-1000.

Where the loop examples are described as below:

¢ Loop 1 is a single loop, is shown in Figure 13(a).

@ Loop 2 is a nested loop, is shown in Figure 13(b).
The directive UNROLL only be used in the inner loop.
6 Conclusions

In this paper, we have provided a parallelisin detector for
CONVEX SPP-1000 system, it can point out the potential

Proceedings of International Conference
on Computer Architecture

do 102 i=1, 1000000
w(i)=tan(tan(2.0+i))+tan(tan(23.0))

102 continue

(a) Loop 1.

do 102 i=1, 1000
do 103 j=1, 1000
w(i,i)=w(i,i-1)+tan(tan(23.0))
w(i,i)=i+tan(tan(15.0))
continue
continue

103
102

(b) Loop 2.

do 102 i=1, 1000000
w(i)=w(i-1)+tan(tan(23.0))
w(i)=i+tan(tan(15.0))

continue

102

{c) Loop 3.

do 102 i=1, 1000
w(i)=w(i-1)+tan(tan(23.0))
do 104 j=1, 100
wi(j)=tan(tan(j+3.0))
continue
continue

104
102

(d) Loop 4.

Figure 12: Example 1.

DOALL and DOACROSS loops of a program and translate
the serial program into parallel form. In our previous re-
searches, PPD can be easily extended to collect the charac-
teristic of the loops and generated the parallel code for some
machines. The K-Test based on the characteristic of pro-
gram and the knowledge base to decide which test will be
used, the testing algorithm library and the knowledge base
can be easily modified to use the new testing algorithm is
an effective approach to detect the loop. We combined the
PPD and K-Test to construct a loop detector for CONVEX
SPP-1000, it can automatically translate the tradition series
programs to parallel programs with compiler directives. The
combination of PPD and K-Test can detect more rich set of
the loops which can be run in parallel. By the experiments
on CONVEX SPP-1000 compiler directives, the compiler di-
rectives can improve the efficiency of execution time. So,
this parallel detector achieves an automatical translation on
CONVEX SPP-1000 and gain the high performance.

This new parallelism detector can be easily constructed
for some other machines, if the machine has provided the
compiler directives or some prompt parallel code, the code-
gen phase can be changed to produce the different prompt
parallel codes for some other machines.

56

do 102 i=1, 1000000
w(i,i)=w(i,i-1)+tan(tan(23.0))
w(i,i)=it+tan(tan(15.0))

102 continue

(a) Loop 1.

do 102 i=1, 1000
do 103 j=1, 1000
w(i,i)=w(i,i-1)+tan(tan(23.0))
w(i,i)=i+tan(tan(15.0))
continue
continue

103
102

(b) Loop 2.
Figure 13: Example 2.

References

[1] CONVEX Revision Information for CONVEX Ezample
Programming Guide, First edition, 1994.

[2] Yi-Hsin Hsiao, Design and Implementation of a Paral-
lelism Detector for CONVEX SPP-1000 System, M.S.
Thesis, Dept. Comp. & Info. Sci., Nat’l. Chiao Tung
Univ., Hsinchu, 1996.

[3] M. C. Hsiao, S. S. Tseng, C. T. Yang, and C. S. Chen,
“Implementation of a portable parallelizing compiler with
loop partition,” in Proc. ICPADS'94 Int. Conf. Parallel
and Distributed Systems, Hsinchu, Taiwan, R.O.C. pp.
333-338, Dec. 1994.

[4] X. Kong, D. Klappholz, and K. Psarris, “The i test: An
improved dependence test for automatic parallelization
and vectorization,” IEEE Trans. Parallel Distrib. Syst.,
2(3):342-349, July 1991.

[5] A. Schrijver, Theory of Linear and Integer Programming,
John Wiley & Sons, 1986.

[6] W. C. Shih, C. T. Yang, and S. S. Tseng, “Knowelwdge-
based data dependence testing on loops,” in Proc. 199/
International Computer Symposium, Hsinchu, Taiwan,
R.O.C., pp. 961-966, Dec. 1994,

[7] E. Turban, Ezpert Systems and Applied Artificial Intells-
gence, Macmillan Publishing Co., New York, 1992.

[8] M. Wolfe, “High-Performance Compiler for Parallel Com-
puting” pp. 137-162, Addison-Wesley Publishing, New
York, 1995.

[9] C. T. Yang, C. T. Wu, and S. S. Tseng, “PED: A prac-
tical parallel loop detector for parallelizing compilers on
multiprocessor systems,” to appear in IEICE Trans. In-
formation and Systems, the previous version in Proc. IC-
PADS96, 274-281, Japan, June 1996.

[10] H.P.Zima and B. Chapman, Supercompilers for Parallel
and Vector Computers, Addison-Wesley Publishing and
ACM Press, New York, 1990.

