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Abstract

This paper presents a module-sharing scheme
for  constructing global  fault-tolerant
multiprocessors which, not limited to special
topologies, can apply to any general
multiprocessor systems. The system is
constructed from modules in which one spare
node in any module can serve to replace any
faulty node in the same module or in any
other remote module. Therefore, the proposed
scheme possesses global sharing capability
and achieves maximum utilization of spares.
To meet such requirements, a reconfiguration
strategy is developed to replace faulty nodes
by allocating available spares. The findings
demonstrate that in most cases the strategy
successfully reconfigures the architecture and
requires one additional replacement step in a
few cases. Compared to certain other global
schemes, the proposed scheme achieves the
same measure of reliability at less hardware
cost. Employing hardware of the same cost,
the proposed scheme achieves higher
reliability than certain other modular schemes.
Our findings conform that the proposed
scheme is superior to other analogous
systems.
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Multiprocessor architectures for high-
performance computing may require a large
number of  processors linked  into
interconnection networks. Interconnection
topologies such as Boolean n-cubes [2, 9],
tree [7], or cube-connected cycles [10] are .
widely preferred techniques. When the
number of nodes  (processors) in
multiprocessors  increases  rapidly,  the
probability of node failures is quite
considerable. Systems may be unreliable if no
fault-tolerant features are embedded.

Fault-tolerant schemes generally
encompass three approaches: global, modular,
and hybrid. In global schemes [1, 3, 6], spares
can replace any faulty nodes in the whole
system, in modular schemes, such as
proposed in [7, 11], spares can only replace
faulty nodes in a local module. In hybrid
schemes [4, 12], spares can replace faulty
nodes in the same module and also be
partially shared by a number of other modules.
The following reviews various schemes
mentioned in the literature.

Rennels [11] proposed two fault-tolerant
architectures based on Boolean n-cubes, the
first of which, failing to achieve high

reliability, divides an n-cube of 2" nodes into

2™ subcubes of 2™ nodes each where n>m.
A spare node is added to each subcube. A

subcube of 2™ nodes with a spare node as
well as the interconnection elements among
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the nodes, makes a fault-tolerant module. In
any module, a spare node can replace any
faulty node. Therefore, the spare node
requires a connection to every node in the
subcube and to each of their neighboring
nodes in the other subcubes. Thus, the
modular scheme achieves only low reliability
because the presence of two faulty nodes in
any module renders the system unreliable. For

long-life unmaintained systems; where the.

highest reliability is required, Rennels’
second of the above mentioned is the level
redundancy approach. In this scheme, one
spare node is attached to each subcube of four
nodes via a high speed bus. The four nodes
with a spare node constitute a level-one group.
This approach is applied recursively, i.e., four
level-one groups with a spare group defines a
level-two group. The hybrid scheme may
provide high reliability, but the high hardware
overhead and low spare utilization may limit
its applications.

Chau & Liestman [3] presented a global
fault-tolerant Boolean n-cube architecture,
employing k levels of decoupling networks to
hook up k spare nodes into a system where
the status of a level of decoupling networks is
changed for joining a spare node into the
system. Once a failed node is identified, a
spare node is employed by setting the
direction of the lowest unused level of
decoupling networks to right. Note that the
spare node does not replace the faulty node
directly. The authors have verified that the
scheme is far more reliable than either of
Rennels’ scmeme, while involving less
hardware overhead. Note that although the
proposed  scheme can be generalized to
other architectures, i.e., it is not limited to n-
cube, it requires about N/2 task reassignments
per reconfiguration where N is the number of
the original nodes.

In 1991, Alam & Melhem [1] proposed
an efficient modular spare allocation scheme,
applied to fault-tolerant Boolean n-cubes.
They demonstrated that for a given hardware
overhead, by setting bigger fault-tolerant
modules without 100% spare utilization more
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reliable systems can be designed than by
smaller fault-tolerant modules with 100%
spare utilization. The findings clearly reveal
that global fault-tolerant. designs achieve
higher reliability than modular designs, but
entail complicated reconfiguration. They
straightforward employ multiplexers and
demultiplexers to attach the spare nodes into
the system. Thus, the scheme [1], involves
less hardware overhead and no task
reassignment, achievesw higher reliability
than the schemes proposed in [3].

Dutt & Hayes [6] presented another
general approach to fault-tolerant
multiprocessor design termed the node-
covering method, which is an extension of the
covering methodology proposed in [5] for
designing near-optimal fault-tolerant tree
architectures. Their work describes some
important practical design features of fault-
tolerant multiprocessors, including the ability
both to perform rapid reconfiguration without
a centralized controller, and to reconfigure
around new faults without undoing any
reconfiguration around earlier faults.

In [4], Chen and Upadhyaya presented a
multi-level redundancy fault-tolerant tree
which -belongs to a hybrid approach. The
scheme defines a module by three original
nodes with a spare node. In such a module,
the spare node can replace any faulty node. In
addition, several spare modules are allocated
at every level for replacing faulty modules. A
module becomes faulty if the number of
faulty nodes in that module is more than one.
By switch implementation, this scheme is
modeled by decoupling networks [4]. To
improve spares utilization, the optimized
allocation of spare modules is also presented.
That is, how should a given number of spare
modules be allocated to every level to ensure

-the maximum reliability.

In this paper, a module-sharing approach
is proposed. The spares can not only replace
any faulty nodes in the same module, but also
those in remote modules. Therefore, full
utilization of spares can be achieved, ensuring
that and the system is as reliable as the global



scheme. However, the proposed scheme
entails less extra hardware cost. Compared to
modular schemes, the proposed scheme
achieves higher reliability for the same level
of hardware cost. The organization of this
paper is as follows. Section 2 presents the
system architecture and the reconfiguration
strategy. Section 3 analyzes the reliability and
hardware cost. Concluding remarks are made
in section 4.

2. A Module-Sharing Fault-Tolerant
Architecture

This section exmines a global fault-
tolerant architecture. By sharing spares with
other remote modules, the scheme achieves
full utilization of spares. It achieves global
sharing. Furthermore, it may be applied to any
interconnection topology.

2.1 The System Architecture

Figure 1 displats the generic global fault-
tolerant architecture. It consists of N original
nodes, K spare nodes, a topology block and a
switching block. The topology block is the
interconnection network of the desired
multiprocessor system. This may be a
hypercube [2, 9], a cube-connected cycle [10]
or a tree [7], etc. The switching block
connects the N available nodes of the N
original and K spare nodes to the topology
block to form the multiprocessor system. If
the system identifies one or more faulty nodes,
the switching block selects the suitable spare
nodes to replace the faulty ones and maintains
the solid topology. Each spare node can be
employed to replace any of the faulty original
N nodes. With the global approach, the
switching block must realize all pairs between
N and (N+K) entries, rendering cost of such
implementation too high to be practical.

To reduce the cost, we propose a
module-sharing scheme as follows. Let N, K
and p be the number of original nodes, spare
nodes and modules in a system, respectively.
A module M,,1<i<p,contains N, original
nodes, K, spare nodes, a selector, and a
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connector, where N = Zi N, K= z; K.

- The selector and connector (constructed in the

next subsection 2.2) are utilized to select
active nodes (see Fig. 2). Each module may
be of equal or different size. If every node has
the same failure probability, we recommend
constructing every module of equal size, thus
rendering the system more reliable.

I
Topology ® Switching -
Block ® Block
L] @

Fig. 1- The generic global fault-tolerant architecture.

The selector in module i connects the
N, available nodes of the N, original and K,

sium

S,
S

local spare nodes in the same module and the -

(K-K;) remote spare nodes in the remote
modules to the topology block. The selector
first selects the required number of available
spare nodes among what such nodes are
available in the same module, or from among
any remote spare nodes in any remote
modules. The connector in module i connects
itself to all other connectors in different
modules. Thus, either an available local spare
node can be located to replace the faulty node
in the same or in a remote module, or an
available remote spare node can be found to
replace the faulty node in the local module. In
our design, an available spare node in the
same module has higher a priority than one in
a remote module as a replacement candidates.

2.2 The Selector and Connector
In this subsection the module’s selector

and connector are constructed. Figure 3

depicts the configuration of a module,
containing N; original nodes with K; spare
nodes, a selector and a connector. The T-
switch and B-switch of Figure 3 are
separately illustrated in Figure 4. The selector
has N; T-switches. Each T-switch j has
(2K, +2) entries one of which is connected to
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the topology block, one is connected from the
Jth original node, K, are connected from K,
spare nodes, and the remaining K, are
connected to  K; B-switches where K, is the
number of spare nodes in module M, . Thus,
the selector has N; ports connecting to the
topology block. In Figures 3 and 4, we simply
depict the configuration if K,=1. The

connector consists of K, (N, -to-1) switches
and K; B-switches where N, is the number
of original nodes in module M,;. In the event
of a node failing, some available local spare is
directly requistioned, but where no local spare

is available, a spare in a remote module will
be accessed.

........... M,
.
o ; selector connector ; N,
o : 1
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SK1
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Topology g
Block : 1
. - L O
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® : selector connector _.__.__N
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@
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o
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Fig. 2- The system architecture
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Selector

T-switch

C o

Ny The system is constructed by taking p

Connect

modules. Figure 5 depicts the case of N=9,

L > K=3 and p=3.
-, N

2.2 Reconfiguration Strategy
This subsection examines a
reconfiguration strategy for dealing with node

failures by allocating spares. Assuming a
o ) /_— Sk, node fails, it loses both its computational and
—T . communication capabilities. Any original
node may be either in the Busy state or down
state. Any spare node during operation must
B- be in one of the following states:

e Ready: The spare is idle and ready to
replace a faulty node.

eLocal-replaced. The spare is employed to
replace a faulty node in the same module.
eRemote-replaced: The spare is employed to
replace a faulty node in the remote module.

B- eDown: The spare has failed.
LUNARY l I : T
Connected to other T i S
Fig. 3- The configuration of 2 module M,. : ' P
................. ’ | 5.
o D— =
- | 5 S
Y ......... Y Topolo |_.
gy .
(a) T-switch :
<_ .
:j' ! 3
(b) B-switeh L L
Fig. 4- The configuration of a T-switch and B- Fig. 5- The system configuration where N=9,
switch. K=3 and p=3.
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Initially, any spare node is in the Ready
state. When the system detects a failed node,
an available spare is selected to replace it,
designing the spare node’s state as Local-
replaced if both nodes are in the same
module, or as Remote-replaced if they are
both in distinct modules. A spare 3, in
Remote-replaced state may be redesignated a
Local-replaced state if no spares in the
module are in Ready state and there exists an
available spare Sy in the remote module in
Ready state. The Sy may serve to replace the
tasks of Sy, and designates its state as Remote-
replaced state. Then, S, serves to replace the
faulty node in the same module and
designates its state as Local-replaced.

Any T-switch may be in any of the
following states:

o Faulty-free state: If no faulty node exists in
a module and all the spare
in that module nodes are
available (Figure 6(a)).

eBasic state: If some node has failed while

the local spare is in Ready (Figure 6(b)).

olnvoked state: Tf some node has failed while-

the local spare is in Busy (Figure 6(c)).
eInvoking state: The local spare is supporting
some remote module (Figure 6(d)).

module to replace node i and designate
its state as Remote-replaced.

Reconfiguration Algorithm:

This algorithm is employed to select an
available spare node from a module to replace
a faulty node. Let the faulty node i be in
module M and the number of faulty nodes be
not greater than K, then perform the
following steps in order:

1. An available spare node in module M,
exists, select it to replace i and designates
its state as Local-replaced.

2. If a spare node Sp, in M is in the Remote-
replaced state, locate an available spare
Sq from a remote module to inherit the
tasks of S,. Then, S, replaces node i.
Both S, and S; are designated as the
Local-replaced and Remote-replaced
states, respectively.

3. Find an available spare S, from a remote
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(b) basic state

(c) invoked state

(d) invoking state

Fig. 6- The possible states of a T-switch.

The above reconfiguration procedure
succeeds as long as the number of node
failures is not greater than K. Some nodes



may be reassigned their tasks during
reconfiguration, but the probability of
requiring task reassignment is low. The
probability depends on the distribution of the
faulty nodes. Normally, if the number of
faulty nodes in any module is not more than
the spare nodes available, task reassignment
is not required. However, even if such is not
the case, reassignment, at most once per
reconfiguration process. Thus, the proposed
reconfiguration strategy is simple and rapid.

Although the implementation details
have not been discussed, it is assumed thar
nonfaulty nodes can recognize node failure.
When such failure is identified, the
reconfiguration can be performed within the
module, i.e., decisions concerning which
spare node to attach and which switches to
change can be made locally.

Consider for of the reconfiguration
process for the configuration in Figure 7. If
node 1 fails to be replaced by S;, Figure 7(a)
clearly indicates that node 1 has been
removed, and that its tasks and address are
inherited by nodes,. Note that only the T-
switch is involved. If node 2 subsequently
fails, any spare node in ready state can
replace it (see Figure 7(b), let node S,
replace node 2). Since the spare node, S,, in
the same module as node 2, is busy, it can
invoke any other spare node in the remote
module to replace the failed node 2 and in
this case both T-switch and B-switch are
involved. If node 4 becomes faulty, however,
some nodes need their tasks reassigning so
that node 4 may be replaced by some ready
spare node. In this case, node 4 cannot be
directly replaced by a spare node since the
related T-switch of node S, has been set in
invoked state. Fortunately, reconfiguration
may be achieved simply by reassigning the
tasks of certain nodes. Figure 7(c) illustrates
node S, has been reassigned to replace node
4, and the original tasks of S, can be
transferred to any other spare node (assuming
that S; inherits the tasks).

a1
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(b) S, and S, replace node 1 and node 2, respectively.
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(c) S,, S, and S, replace node 1, node 2 and node 4,

Fig. 7- The recoRgiRadiilprocess when node 1, 2,
and 4 fail in order.

3. Reliability and Cost

Evaluating the reliability of systems need
provided only on the assumption of node
failure, since the probability of such failure is
usually much higher than that of link and
switch failures [6]. Chau and Liestman’s
formula [3] serves here to evaluate the system
reliability of these types of fault-tolerant
designs. The formula is as follows. Let ¢ be
the coverage factor, M the number of original
nodes in a module, & the number of spare
nodes in a module, r the reliability of a single
node, RM,,, the reliability of a module with

k spare nodes, and RS, . the reliability of a

system with K spare nodes. For global and
module-sharing schemes,

N+K-

1
RSN’K =RSN,K-1 +( % )-r” ~(l—r)KcK

, where RS, ,=r".
For modular schemes,

and
RSN.K = (R-MM,k )p-

If » is evaluated by e, where 1 is the
failure rate over time ¢ we illustrate the
reliability of module-sharing and modular
schemes versus time is illustrated in Fig. 8,
where N=16, M=8, K=4, =2, 2=0.1, p=2 and
c=1. Typically, it is assumed that =1
represents one million hours. The module-
sharing scheme achieves higher reliability
than the modular one at the same level of
hardware cost (described in the following).

As depicted in Figure 8, the system
contains /N original nodes with K spare nodes,
and each original or spare node has J data
links incident to it. Therefore, the number of
nodes and data links for the proposed scheme
herein are (N+K) and d(N+K), respectively.
For a fault-tolerant design that can achieve
fully utilization of spares, the system
reliability depends on the number of spare
nodes, ie., the more there are of embedded
spare nodes, the more reliable the system.
The number of switches also increases
relatively. Thus, switch complexity plays a
key role in the measuring system. For
simplicity, the switch complexity is
calculated by the number of 2-to-1 switches.
Specifically, each d-line, 1-to-Y or Y-to-1
switch may be constructed from d(Y-1) 2-to-
1 switches, where Y is an integer greater one.
Consider the proposed scheme illustrated in
Figure 9. Clearly, the system can be divided
into K modules containing N/K original
nodes with one spare node each. Hence, the
number of switches employed for the system
is dK(N+3N/K-1). Comparing that number to
the dK(2N-1) and dK(2N+K-1) 2-to-1
switches ultilized in the configurations
suggested by Alam and Melhem [1], and by
Chau and Liestman [3], respectively, it is
clear that the proposed scheme requires fewer
switches. Figure 9 depicts the cohiparison in
detail.

M1 .
H%kz%—l _{( ) ),M(l _;)kclc,m%:,ﬁl 4. Concluding Remarks
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While a number of fauli-tolerant designs

for  multiprocessors  employ2) hardware



switches, the switch complexity may not be
practical for many applications. In this paper,
we have presented a module-sharing
approach to design effective fault-tolerant
systems. The main advantages of the
proposed scheme are (1) modular design
requires less hardware and (2) spare-sharing
achieves high reliability. Task reassignment
is performed during reconfiguration, at most
one step, rendering reconfiguration a rapid
and simple it.

—4&—module-sharing ~&—modular

1.00 E~Bi—gecst
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1 234567829
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Fig. 8- The reliability curves of module-
sharing and modular schemes.
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Fig. 9 the number of switches required for module-sharing, Alam &
Melem's{1] and Chau & Liestman's[3] schemes where K=N/4.
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