Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

Shortest Path Routing and Fault-Tolerant Routing on de Bruijn

Networks *

Jyh-Wen Mao and Chang-Biau Yang
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung, Taiwan 80424, Republic of China
{maojw,cbyang}@math.nsysu.edu.tw

Abstract

We first propose a shortest path routing algorithm
on a binary de Bruyn network while researchers have
not got a shortest one before. The time required for
finding the shortest path in a 2™-node binary de Bruijn
network 1s O(m?). Then, based on our shortest path
routing algorithm, we propose a fauli-tolerant routing
scheme. It is assumed that at most one node fails in
the network. In our scheme, two node-disjoint paths
are found. One is the shortest path, and the other path
is of length at most m+logam—+4. If the shortest path
is not required in the fauli-tolerant routing, we can find
two node-disjoint paths with lengths m and m + 4.

Key words: interconnection network, de Bruijn
graph, routing, fault-tolerant.

1 Introduction

In computer networks and distributed systems, per-
formance and fault tolerance are important issues [1-9].
The time delay of a message deeply depends on the
number of hops connecting two computers. The com-
munication time between two computers becomes less
if the distance between them is reduced. For tolerat-
ing one fault on network devices, two disjoint paths are
needed in a network. Viewing a network as a graph,
desirable features include low degree, small diameter,
high connectivity, and minimal increase in diameter in
the presence of faults. From technology considerations,
the number of links(degree) of a processor has to be
limited, or even better, to keep constant.

The de Bruijn graph has got a good deal of at-
tention by researchers as a graph model for networks
[1-6,8-10]. The node set of binary de Bruijn graph

*This research work was partially supported by the National
Center for High-Performance Computing of the Republic of
China under contract NCHC-86-08-010.

19

Figure 1: The 8-node binary de Bruijn graph G(2,3).

G(2,m) consists of all m-bit binary numbers, which
has 2™ nodes. Node v, v,,—1 - -v; is connected with
nodes Um—i - Vi¥m, Um—1-* V10m, V1Vm - -0y and
U1V, - - - 2, Where U1 and T, are the complements of vy
and vy, respectively. The graph G(2,m), also called
the shift-and-replace graph [9], has maximum degree
4, minimum degree 2, diameter m, and admits a sim-
ple routing algorithm. For example, Figure 1 shows
the 8-node binary de Bruijn graph. A major goal in
topology design is to be able to tolerate failures with
relatively small performance degradation. de Bruijn
graphs are attractive due to simplicity of routing mes-
sages between two nodes and the capability of fault
tolerance. The degree of a de Bruijn graph is bounded.
Note that a small diameter implies low cost for data
routing and bounded degree causes easy to construct
routing algorithms.

The shortest path from a node V to a node W in di-
rected G(2,m) is obtained by determining the longest
substring, common to the right/left of V' and to the
left/right of W. Then L-operations/R-operations are
performed to finish this routing process [2,7]. How-
ever, this method can not always find the shortest path
in an undirected G(2,m). In previous results of fault-
tolerant routing on de Bruijn graphs, most researchers
focused on the reduction of the increase of fault diam-
eter. Esfahanian and Hakimi [5] have shown that the
diameter of G(k, m) increases by at most logrm + 4 in

Proceedings of International Conference
on Computer Architecture

the presence of up to 2k — 2 faults. Sridhar [9] tight-
ened the bounds of Esfahanian and Hakimi’s result [5]
significantly. They showed the increase of fault diam-
eter of G(k, m) grows at most logrlogam + 6 + logi5
when m > 70, where k > 2 and « is the golden ratio,
ie. a=(14+5)/2. In G(k, m), their methods provide
2k — 2 node-disjoint paths with equal length, at most
m+ logrlogam +6 + logr5. In these previous results,
the node-disjoint paths are all of same length and are
not the shortest.

Because of the progress of VLSI technology, the com-
puter components seldom misbehave. It is not a good
idea to transmit data between two nodes via two or
more node-disjoint paths with same length more than
m in G(k,m). In this paper, we shall study the rout-
ing problem on undirected binary de Bruijn network,
G(2,m). We shall first propose a shortest path rout-
ing algorithm, which requires O(m?) time. Such an
algorithm has never been proposed in the previous re-
sult. Then, we also design a fault-tolerant routing al-
gorithm which provides a shortest path and another
node-disjoint path of length at most m+ logam + 4.
Our algorithm can tolerate one node failure in binary
de Bruijn networks and still uses the shortest path to
transmit data between two nodes if no node fails on the
path. If the shortest path is not required in the fault-
tolerant routing, we can find two node-disjoint paths
with length m and m + 4.

The rest of this paper is organized as follows. Sec-
tion 2 gives some notations. The shortest path rout-
ing algorithm and fault-tolerant routing algorithm are
given in Sections 3 and 4, respectively. And finally,
some conclusions are given in Section 5.

2 Notations

For each node V in G(2,m), let V be identified as
an m-bit binary string vy, vm—1---vi. In this paper,
we will not distinguish between a node and its iden-
tifier string unless stated otherwise. The leftmost bit
and the rightmost bit of a string X is denoted as Xjes;
and X,ignt, respectively. We will use L-operation and
R-operation to denote a shift operation on V, whose
results are v;,—q---v1u and uvy, ---vg, Iespectively,
where u = Q or 1.

The notation |X| refers to the length of string X.
Let SP(V,W) be the shortest path from V to W. It
is clear that |SP(V,W)| is at most m since the diame-
ter of G(2,m) is m. An L-peth and an R-path denote
the path from V to W by performing only L-operations
and only R-operations on V, respectively. From V =
VyUm—1V1 t0 W = WnWpm_y---w1, the L-paih
starting to shift w; in is denoted as L-path(i), which

4

20

I8 UpUm_1 " V1 = U1 - VYW — U2 - - VLW Wi
— Ui VWi S -wq. Similarly, R-peth(i)
= UnUm—1-°"01 —F Wil -+ -V — Wi WiVy - V3 —

ch = Wyt WiV o Um—ig2. We will use X/ and ‘X
to denote the rightmost and leftmost substring, with
arbitrary length, of X, respectively. Note that, in this
paper, a string or a substring may be empty.

—3 e

3 The Shortest Path Routing Algo-
rithm

The diameter of binary de Bruijn graph G(m, 2§
has been proved to be m by Parhan and Reddy
(7. A simple routing method is as follows.
Let V UmUm—1---v1 be the source node and
WmWm—1---w1 be the destination node.
The routing path i8 vpVm—1 - V1 — Vmo1 - N1Wy
—

— Vp-2 - V1WnWm-1 — VW, - W2 —
W Wym—1 -+ + Wy. For example, let V = 11100 and W =
10011, the routing path is 11100 — 11001 — 10010 —
00100 — 01001 — 10011. This path is L-path(m) since
it begins at w,, and takes m L-operations. We can
also establish R-path(1) from 11100 to 10011 by per-
forming m R-operations. By the behavior of routing
operations in the above example, there exists another
path, 11100 — 11001 — 10011, which requires only
two L-operations. This is due to the substring 100 be-
ing both the rightmost substring of V and the leftmost
substring of W. We say that substring 100 is the L-
string on the L-path. The length of the routing path,
i.e. L-path(2), is reduced by the length of the L-string,
which is 5 — 3 = 2. Similarly, there exists an R-string
11 on the R-path which saves two R-operations.

Pradhan and Reddy [7] proposed a routing method
based on the comparison of the lengths of L-string and
R-string. If the length of L-string is greater than that
of R-string, then L-operations are performed to finish
this routing process; otherwise, R-operations are per-
formed. For example, in the above example, on the
L-path, only two L-operations are needed.

It is not difficult to give a counter example to show
that Pradhan and Reddy’s routing method could not
always find the shortest path from V to W for any V
and W under undirected de Bruijn graphs. Suppose the
source node is V = 1011011 and the destination node
is W = 1011010. Thus, L-string and R-string are 1011
and 10, respectively. It takes three L-operations for
the routing path by Pradhan and Reddy’s algorithm.
However, it is easy to show that 1011011 — 00101101
— 1011010 is the shortest path from V to W, and it
takes only two steps. With this example, we conclude
that it is-impossible to find the shortest path for each
pair of nodes only by the consideration of L-string and

R-string.

Let V and W be the source and destination nodes,
respectively. Suppose X is a common substring in V'
and W, where X may be empty. V and W can be
represented as Vi - X - Vg and Wi - X . Wg, respectively,
where a dot means a string concatenation operation.
Note that each of Vi, Vg, Wi and Wg may be empty.
Thus, the routing process from V to W can be viewed
as to transform the binary representation of V into
that of W by using minimal number of L-operations
and R-operations. One possible method to achieve the
transformation is to start with |Vg| R-operations, then
performs |Wg| L-operations to correct |Wg| bits on the
right side of X in W, then performs |{Wi| L-operations
and finally, performs |Wy| R-operations to finish this
routing process. Let A, B, C and D are some arbitrary
strings of proper lengths and the path of above process
BV XVpg— = AV X = = (AVL) X -Wa
- .. > X -Wg-B— -« — Wr-X Wg. The
total number of steps is |Vg| + |Wgr| + |Wr| + |[Wi| =
m— |X|+ |Vr|+ |WL|. By the behavior of this routing
process, the routing path is called an RLR-path.

Similarly, another pathis V- X- Vg — --- — X -Vg-
C— o =W X! (Vg-C)— - = DWL-X = —
Wi - X - Wg. The path is called an LRL-path and with
length (m—|X|)+|Vz|+|Wg|. Thus, based on a certain
substring X, the length of the shortest path from V to
W is (m — | X|) + min(|Ve| + |WRg], Vel + |WL]). It is
clear that each of all possible shortest paths from V to
W corresponds to some X. If we examine all possible
. X's, then we can find a shortest routing path from V
to W with length (m — |X|) + min(|VL|+ |Wr]|, |Ve] +
|Wi|). Since the diameter of G(2,m) is m, (m — |X])
+ min(|VL| + |Wr|, |[Vr| + [WL|) < m always holds.

There is a simple method to decide which X causes
a minimal value of m — | X| + min(|VL| + |Wg|, |Va| +
|WL]). For a starting position in V' and a starting po-
sition in W, a common string X can be found by com-
paring every bit of V and the corresponding bit of W.
The desired X can be obtained by examining every
possible starting position in V. This method requires
O(m?) time. We summarize the above shortest routing
algorithm as follow.

Algorithm 1 Shortest-Rouling
Input : Source node V and destination node W in
G(2,m).
Output : A shortest routing path from V to W.

Step 1. Pind the common substring X of V and W
such that m—| X |+min(|VL |[+|Wr|, |Ve|+|WL])
is minimal.

Step 2. If |Vi| + |Wgr| < |Vg| + |W¢| then return
LRL-path
else return RLR-path

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

end

In the algorithm, we have to examine each of all pos-
sible X’s and the corresponding values of |Vi|, |V&|,
|WL|, |Wg|. Thus, the time complexity is' O(m?),
where m is the number of bits to represent a node in
G(2,m).

Theorem 1 Algorithm 1 finds a shortest path from
a source node V to another destination node W in

G(2,m).

Proof : The routing method can be achieved by shift-
ing the node’s binary representation left or right. It is
clear that for routing data from V to W, we have to
perform some L-operations or R-operationsfrom V, via
some intermediate nodes, to W.

Suppose at least two nonempty substrings, sepa-
rated by at least one bit, in V are not shifted out.
Let X3, X be two such substrings. Clearly, the bits
between X; and X5 can not be shifted out. Then, they
can not be corrected to the bits in- W, and we can not
route data from V to W. Thus, at most one nonempty
substring X in V is not shifted out.

It is clear that V' and W can be represented as
Vo - X - Vg and W - Y - Wg, respectively. And, the
minimal number of steps of the substitution of Wy, for
VL is to move out Vg, straightly by performing |Vi| L-
operations and then to shift Wi to the left side of X
by performing |Wr| R-operations immediately. And, it
takes only 2|Wg| steps to perform the substitution of
Wk for Vr. Thus, the total steps is [V |+ |WL |+2|WEg|
= m~— |X|+ |VL| + |Wg|. In another situation, if we
replace Vg by Wg first, the total number of steps will
be m—|X|+|Vr|+ |Wg|. For a certain X, the shortest
path is determined by min(|Vz |+ |Wg|, | Ve| + |WL]).

Let Num(X) be the number of steps that for routing
data from V to W while substring X in V" is not shifted
out. Thus, the length of the shortest path from V to W
is the minimal value of Num(X) for all possible X's.
This completes the proof. B

4 Fault-tolerant Routing

In this section, we focus on the fault-tolerant rout-
ing method whose goal is to find a shortest path and
another node-disjoint path. Due to the topology of de
Bruijn networks, there exists an easy way to construct
two node-disjoint paths for two adjacent nodes. Thus,
we don’t discuss of the node-disjoint paths for two adja-
cent nodes. Because of the structures of source node V
and destination node W, the existence of Vi, Vg, Wi,
and Wg will affect the path node-disjoint to SP(V, W).

Proceedings of International Conference
on Computer Architecture

Without losing generality, we assume the shortest path
SP(V,W) is an LRL-path, ie. Vi, # WL, igner
VRise 7 Whipor m — |X| + V2| + [Wr| < m and
VL] + |Wr| < |[VR| + |WL|. Besides, we have |V| +
Vel = |Wg| + [Wr|. Thus, |Vi| < [WL], |Wg| < |V&]|
and |X| > |Vz| + |Wg|. There are seven possible cases
to be considered.

- [XT#0, [Ve] # 0, [Vk| # 0, [WL| # 0, [Wr| # 0.
2. |X1#0, |VL| #0, VR #0, [W| # 0, [Wr| = 0.
$. [X[#0,Ve| #0, [VR| = 0, [WL| # 0, |Wr| = 0.
4 |X[#0, VLl =0, |[Va| # 0, |WL| # 0, [Wr| = 0.
5
6
7

[y

. X]=0.
NXT#0, VL =0, |Va| #0, |[WL| £ 0, [Wg| # 0.
X1 #0, |VLI =0, [VR| # 0, [WL| =0, |Wa| #0.

By symmetry, Cases 6 and 7 are similar to Cases 2 and
3, respectively. Thus, we will not discuss them.

4.1 CASE1

In this case, the shortest path SP(V,W)is an LRL-
path. Let SP(V,W) be the following path : V =V -
XVr— =X VgCo oo Wy XV oo —
D-Wp-X—..-.—Wp-X -Wg =W, where C and D
are arbitrary strings to be shifted in. If C' and D are
chosen properly, then we can find another path from V
to W which is node-disjoint to SP(V, W).

Lemma 1 There exist C, D, E and F such that paths
V=V X Vg— =X Vg'E—--.oF.X
— o= X Wi o= X Wi E — -
WL - X -Wgr =W and SP(V,W) are node-disjoind.

—

Proof : Let every bit of C and D be Xright and
Wi, igne» Tespectively, and every bit of E and F be
Xright and W, ., respectively. .

The two paths are divided into P;, P, and Ps, Py,
respectively, as shown in Figure 2. We will show that
no node appears in both P; and P;, where i = 1 or 2
and j = 3 or 4. By the seiting of C, D, E, and F,
all possible cases that cause these two paths to share
a node are shown in Figure 3, in which the numbers
are possible matching positions between two strings.
In Figure 3, Cases (a) through (d) illustrate the com-
parison of one node in P, and one node in Pj. And,
Case(e), Case(f) and Case(g) illustrate the comparison
paits (P1, Py), (P2, P5) and (P, Py), respectively. In
each of the following cases, we first suppose that the
equality of the comparison of two nodes holds, then a
contradiction would be obtained.

22

3 T T
/

S [R e

e T S 0 s B

) R B e | s i

) —_]
(e [x]

Figure 2: Two node-disjoint paths in Case 1.

Case (a). Tt implies every bit of X is equal to
Wi, i, since F' = (W, .,)*. Then, we have X
= (VL,in)* since Vi .., # Wi _,,... Thus, we
would find a Y whose content is equal to X and
whose position starts at the left position of X in
V such that there exists another path with length
m~ Y|+ Vo] =1+ |[Wg| =m—|X]| + Vil +
[Wr| — 1, which is shorter than SP(V,W). Tt is a
contradiction.

Case (b). The equality does not hold in position 1 by
the setting of F. In position 2, we would find a YV
=Wy - X ' Vg such that m— |Y| + |Vi| + |[Wg| <
m— |X| + [Vi| + |Wg|. It is a contradiction.

Case (c). In position 1, it is similar to position 2 of
Case(b). In position 2, the equality does not hold
by the setting of F.

Case (d). In position 1, it is similar to Case (a). The
equality does not hold in position 2 since Wry. ;0 #
VRi.;.- In position 3, we would find a Y = X'/ W,
whose content is equal to X, such that m — Y|+
Vil + [Wg| < m — |X| + |Vi| + [Wg|. Ttis a
contradiction.

Case (e). In position 1, it is similar to position 2 of
Case (b). The analysis of position 2 is similar to
position 3 of Case (d). Position 3 is similar to
position 2 of Case (c).

Case (f). Position 1 is similar to position 2 of Case
(c). The analysis of position 2-1 is the same as
position 2 of Case (b). In position 2-2, Wy - X is
a substring of X - Vz. Thus, we would find a Y =
Wi - X such that m—[Y| 4 |V4| < m~|X| + |Vz]
+ |Wg|. It is a contradiction.

Case (g). Positions 1 and 2 are similar to position 2 of
Case (c) and position 3 of Case (d), respectively.

This completes the proof. B

The length of the path node-disjoint to SP(V, W)
in Lemma 1 is 2(m — |[X|)+|Vp|+|Wz|. If |X] is

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

v T P s A T «— v
1 1 2 ‘: 2 2 S v v
[T = 1Twm] [= Tw] 2 - = .
. : @ T suxiliary bit
I % | x x'vR | |°S~‘;i J‘:\\ x ‘ Va] c | o:r:f.i = (Vg C)or R
r\,g 1 \‘3\. !’;" \& ‘\{\ no'g 3\\\
2] = Jw J=] [~ [= [= | — v
() [CH
m - . v] r"l W .) Figure 4: Construction of ¢ based upon 6.
or Mg
| e IR Ve[= | | =] substring of strings Vp - X -Vg-C, D-W - X -Vg-C and
o o D - Wy - X-Wg, we can not set ¢ = 6 simply. A way to
construct ¢ based upon é is to test whether V and W
pr| w x e, have a period or not. A string S is a period of a string
2 .
: TN R if R is a prefix of string 5° (i repetitions of the string
A " .] S) for some integer ¢ > 1. Figure 4 illustrates how to

Figure 3: The comparison of two nodes in two paths.

small enough, and |W¢| is large enough, then 2(m —
| X)+|VL|+|Wi| is very close to 3m since m — | X| +
V| + |Wg| < m. In this situation, it is not a good
solution for fault-tolerant routing. Another way to ob-
tain a path node-disjoint to SP(V,W) is to perform
only R-operations from V to W. Before the bits of W
are shifted in, a string ¢ is first shifted in. We will
construct a string ¢ such that each subsiring, except
V and W, of string W - ¢ - V with length m is not equal
to each node in SP(V,W). In other words, W -¢ -V
has not a common substring of length m, except V and
W, with strings Vp, - X - Vg -C, D-Wr - X - Vg -C and
D - Wi X -Wg.

There are at most m + V| — k + 1 distinct sub-
strings of length k in string V- X - Vg - C, where |C| =
|VL|. Because strings D-Wr-X-Vg-C and Vi - X - Vg-C
have a common substring X - Vg - C, the number of
substrings of length & in string D - W - X - Vg - C
is |Wg|+ |Wi| more than that of siring X - Vg - C,
where |D| = |Wg|. We conclude that there are at most
(m~+|Ve|—k+1) + (\Wr|+|Wr|) + |Wr| = m+m—|X]|
+ V| + |Wgrl—k + 1 < 2m—Fk + 1 different substrings
of length k in strings Vg, - X - Vg -C, D - Wy - X -Vg-C
and D - Wy - X - Wg. Thus, we can find a string § of
length logo2m such that § is not a substring of strings
V- X -Ve-C,D- Wy -X-Vg-Cand D-Wg-X -Wg.
We will construct ¢ based upon 6. We require that
strings ¢’ /' V and W' -/ ¢ of length m are not sub-
strings of strings Vo - X - Vg -C, D -Wr - X - Vg - C
and D - W - X - Wg. Because we can not make sure
that each of §' -/ V and W' -/ § with length m is not a

23

construct ¢, which is obtained by adding at most one
bit on the left side of 6 and at most one bit on the right
side of 6. Initially, ¢ is set to 6. If V - C has a period
of length &, k < |Vi|+loga2m, then we add 7,541 to
the right side of ¢. If D - W has a period of length £,
k < |Wg|+logs2m, then we add Wy to the left side of
¢. Thus, the length of ¢ is up to |§] + 2 = logs2m + 2
= logam + 3 in the worst case. In other words, the two
node-disjoint paths from V to W are SP(V,W) and
another path of length at most m + logam + 3.

4.2 CASE 2

In this case, there is a little difference from Case 1,
i.e., Wg degrades to an empty string. Thus, SP(V, W)
degrades to an RL-path, whichis V = Vp - X - Vg —
i X VO oo = WX Vg == WX =
W, where C is an arbitrary string to be shifted in. The
path that is node-disjoint to SP(V, W) can be obtained
by slightly modifying the result in Case 1.

Lemma 2 There exist C, E and F such that paths
V=V - X Vg—»---—F-Vp X —--.—X_.F
— o= Wp-X =W and SP(V,W) are node-disjoint.

Proof : Let every bit of C, E and F be Vg, ,,, Xiest
and Vp,,,,, respectively. The two paths are divided into
Py, P, and P, Pj, respectively, as shown in Figure 5.
We will show that no node appears in both F; and F;,
where i = lor 2 and j = 3 or 4.

By the setting of C, F, and F', all possible cases
that cause these two paths to share a node are shown
in Figure 6, in which the numbers are possible matching
positions between two strings. In Figure 6, the com-
parison of one node in P; and one node in Py is omitted
due to the settings of C' and F'. And, Case (c) and Case
(d) illustrate the comparison of one node in P; and one

Proceedings of International Conference
on Computer Architecture

[v] x | w |
/ \ —p,
e o s
l (v | x [}
I 5
s | S
o= -

Figure 5: Two node-disjoint paths in Case 2.

. , ; Ve |
.,,ml x Jufe] [w] R
Y , PR N
5, R 4
" y \‘\ '1', 2%, 4, 3 S
IE'IH x_[w] [efu] x [
(a) ®)
‘ W X VRI | W X VR |
A ~.\3 NS |
SN AN S A
1 2‘,' 3 ‘é‘ Z:' \.‘} \“4 }, 24 \\ 2"" »\3
L=] [wl x [

© @

Figure 6: The comparison of two nodes in two paths.

node in Py, Case (a) and Case (b) illustrate the com-
parison pairs (P, P3) and (P, Ps), respectively. The
proof of each case is similar to that of Lemma 1. 8

The lengths of these two paths are m—|X|+|Vz| and
m—|X|+|VL|+2|Vr|, respectively. m—|X|+(VL|+2|Vr|
is close to 3m while |X| is small and |Vg| is large
enough. Another way to achieve fault-tolerant rout-
ing is similar to the method of Case 1. We construct
a string ¢ such that path V — --- = ¢/ 'V — ... —
W ¢!V —-.aW'¢g—-..— Wand SP(V,W)
have no common intermediate node. The method to
construct ¢ is similar to that of Case 1. Since [Wg| = 0,
¢1c5¢ should be set to Vg,,,,. Thus, the length of the
above path is that of the path in Case 1 plus one, which
is at most m-+logym-+4 in the worst case. However, in
this case, there exists two exceptions : (1) X =#{.- ¢
and (2) W = wu---u or uu---u. For the first case, it
implies Vz,,... =%, Wi, =t and Vg,,,, = t. Thus,
¢ can be set to ttVg,,,,_,t. For the second case, a slight
modification on SP(V, W) and a magic direct routing
from V to W can solve the routing problem while W is
cuoruu---u. SP(V,W)wouldbe V=V -X Vg
—>~~—>X~VR‘ﬂ~~H—*~~—rW}J’X~VR-—>~~
Wy -X = W and another path wouldbe V = V- X Vg

uu - -
—

24

s X Veguu—- = Ve u'u— - —
W, which is an L-path and whose length is less than or
equal to m. Since Vg, =% and X = uu---u in this
case, it is easy to show that the above two paths are
node-disjoint while |Vg| < %. And, it is not hard to
show that the argument also holds while |Vr| > %

In this case, we present two node-disjoint paths from
V to W which are SP(V, W) and another path of length

at most m + logam + 4.
4.3 CASE 3

In this case, two node-disjoint shortest paths from
V to W can be constructed easily. They are V =V - X
X C—= =W X=Wand V=V -X
—+X-C—---— Wy -X =W, where C is an
arbitrary string. We conclude that two node-disjoint
paths can be found in this case and both of their lengths
are equal to 2(m —|X|), which are less than m and the
shortest.

T

— e e

4.4 CASE 4

-In this case, there exists a nonempty string X that
is both a leftmost substring of V and a rightmost sub-
string of W. Thus, V' and W can be represented as
X - Vg and Wi - X, respectively. And, the shortest path
from V to W can be represented as X - Vg — - —
W; -X'Vg— -+ — Wg - X, ie. SP(V,W) de-
grades to R-path(IX | +1). We claim that L-path(m)
or R-path(1) is not always node-disjoint to SP(V,W)
for any V, W. It is easy to take an example to show
that above claim is correct. Let V' = 101101001 and
W = 111110110. Thus, X = 10110, Vg = 1001 and
Wi = 1111. Let $ = W} - X / Vg, an intermediate
node on path SP(V,W) with |W}| = 2 and |'Vg| = 2.
Therefore, S = 111011010 is also an intermediate node
on R-path(1). We can conclude that if ' X =’ Vg, then
there exists a node shared by both of paths SP(V, W)
and R-paih(1). Another example is V = 100101 and
W = 001001. Thus, X = 1001, Vg = 01 and W = 00.
There exists a node S = 010010 shared by paths
SP(V,W) and L-path(m). We will eliminate the ef-
fect of Vg and W, and then give a routing path from
V to W that is node-disjoint to SP(V,W).

Lemma 3 There exist strings E and F such thet V =

XAVR._y..._).E.X__).,.—)X.F._)..._;
Wi - X =W and SP(V,W) are node-disjoint.
Proof: Let every bit of £ and F' be Wg,,,,, 2nd Vg,,,,

respectively. The proof is similar to that of Lemma 1.
B

The length of the path described in Lemma 3 is
3(m—|X|), which is triple of the length of SP(V, W). If

| X| is small enough, then 3(m —|X|) is close to 3m. In
this situation, it is not a good solution for fault-tolerant
routing from V to W. Another solution is similar to
Sridhar’s method [9], but the increase in the diameter
of our solution in this case is at most 4. Our solution
is similar to Case 1. Only R-operations from V to W
are performed and a string ¢ is shifted in before W is
done, where V # 1---luor 0---Ouand W # ¢1---1
ort0---0, u, t = 0 or 1. In other words, we will con-
struct a string ¢, |¢] < 4, such that Wy - X - Vg and
Wi - X -é-X - Vg have no common substring of length
m except V and W themselves. It is clear that each
substring of length m in W - X - ¢ - X - Vg is of form
W;-X'¢, W -¢-'Vor ¢'-X-'Vg. And, each substring
of length m in Wy, - X - Vg is only of form W} - X -/ Vg.
A way to construct ¢ is to compare each substring of
length m in Wg - X - ¢ - X - Vg with each substring of
length m in Wi - X - Vg. The following algorithm shows
how to construct ¢. ‘

Algorithm 2 Construction of ¢
Input : Wy - X - Vg, where W = bsb,_1---b; and
VR = cgcq—1---C1-

Output : ¢.
E=|X]|,i= [%J
d=0orl.
¢ =7cgdby.

if k is even then f = 0 else f = 1.
if X = u* (k repetitions of u), u = 0 or 1, then
if (by = u) and (¢; = @) then ¢ = u.
if (¢, = u) and (b; = @) then ¢ = T bouby.
if (by = u) and (¢, = @) then ¢ = G uC,—1 b1.
else
if X has a period of length ¢ —j, -1 < j <i1-1,
then
ifz;_j =cq then ¢ = Cu T 200
else if Tigjqfil = b1 then ¢ = F;z,—_]_'fbl
end

Lemma 4 Let ¢ be the siring construcied by Algo-
rithm 2. Strings Wr-X - Vg and W - X -¢-X - Vg have
no common substring of length m except V and W.

Proof : The proof is omitted here due to the space
limitation. B

By the above lemma, we provide two node-digjoint
paths whose lengths are |SP(V, W)| and m + 4. Now,
we will discuss the node-disjoint paths for the excep-
tion nodes, that is V = 11---lu or 00-- -Qu, or W =
t1-..1or t0---0, where u, t = 0 or 1. If both V and
W are exception nodes, then there exists a simple rout-
ing method to achieve the node-disjeint requirement.

Otherwise, without losing generality, let V = u-.-u%

25

Joint Conference of 1996 International Computer Symposium
December 19~21, Kaohsiung, Taiwan, R.0.C.

or V = u---uu if only one of them is an exception
node. For V = u-- 4T, we can solve this problem by
using a simple trick on V. Let P=u .- -u¥d and ¢ =
wwr, du. Then the routing path-from P to W is follow-
ing the string W -¢-P (= W -u---u- ¢-u---unu).
Clearly, V is the next node of P on the path. The
lengths of the two node-disjoint paths from V to W
are |SP(P,W)|+1=m—|X|+1=|SP(V,W)|+1
and m+|¢|-1=m+3. For V= wu --uy Vis
also the neighbor of u---u% and Tu---u. Thus, the
total lengths of these two node-disjoint paths becomes
|SP(P,W)|+2=m—|X|+2=|SP(V,W)|+ 2 and
m+ |¢| -2+ 1= m-+ 3, respectively.

4.5 CASES

In this case, |X| = 0 implies |Vz| = 0 and |Wg| =
0. Thus, V # u---uz and W # @t---¢, u,t = 0 or
1, and SP(V, W) degrades from an LRL-path to an R-
path or an L-path. ¥V = uu---v and W = wu-- -,
where v = 0 or 1, then the node-disjoint paths can be
constructed easily. And, if only one of them is uu - - -u,
then this is a special case in Case 2. A simple way
to construct SP(V,W) is to construct an R-path(1).
Another path is obtained by shifting in .a siring ¢
before W. Then, the two node-disjoint paths can
be viewed as two strings wpwm—1 - W1VmVm-1-" 01
and WnWm—1 ' W1 PVmVm-1 -+ +v3 without any com-
mon substring of length m except V and W themselves.

Lemma 5 Sirings wmWm—1 - WilnUm-1 -V end
Wy Wp—1 - W1V Vm—1 -+ -v1 have no common sub-
string of length m excepl WypWm—1-- w1 and
VmUm—1 -+ V1 while ¢ = Tmwavmoiwy and V, W #
00---0 or11.--1.

Proof : It is clear that only five cases are worth dis-
cussing as shown in Figure 7. And, the discussions of
these five cases are easy. B8

In this case, the two node-disjoint paihs have lengths
m and m + 4, respectively.

4.6 Summary

Table 1 gives 2 summary for our solutions of fault-
tolerant routing. And, it implies Theorem 2 holds.

Theorem 2 There exists two node-disjoint paths from
a source node V to another destination node W in
G@2,m), V, W ¢ {vu---u, u---ull, Gu---u }, u =
0 or 1, such that one is the shortest path and the other
path is of length at most m + logam + 4.

Proceedings of International Conference
on Computer Architecture

cWs Wy W3 Wy Wi Um Up—1 Um—2 Um-3 VUpmeq---
Casel --cws wy w3 ws wi ¢s @3 b2 ¢ Vg
Case2 --cwy wa wy wry da @3 P é1 Vm Ume1 o
Cased ---wz wy w1 s ¢3 ¢2 Um. Um—1 Um_3---
Case 4 ‘wy w1 s $3 P2 P11 Um Umel Um—2 Ume—3 -
Case5 -~w1 ¢a ¢3 P2 b1 Un Vpoi Um—2 Um—3 Umoa---

Figure 7: Five cases in the proof of Lemma 5.

Table 1: A summary of lengths of node-disjoint paths in Cases 1 through 5.

not insert ¢ insert ¢
Case 1 | m — | X[+ |V |+ |Wgl, 2(m —|X]) + Vi]+ [Wi| [m — X[+ VL] + [Wa], m + logam + 3
Case 2 m — | X| 4+ |Vi|, m — | X| + |V | + 2]V&]| m — | X|+ |Vi|, m + logam + 4
Case 3 2(m — |X]), 2(m — | X])
Case 4 m— | X|, 3(m — | X]) m—|X|, m+4
Case 5 m, m+4

5 Concluding Remarks

In this paper, we study the routing problem on the
de Bruijn network. Short diameter, bounded degree
and the capability of fault-tolerance compose our mo-
tivation to study the de Bruijn graph. The de Bruijn
networks are a good family for performing routing. As
we have seen, our fault-tolerant routing algorithm finds
two vertex-disjoint paths. One is shortest path and the
other has length at most m + logam + 4 in the worst
case. In our analysis, there are some exceptional cases
when the node is of the formu - -4, Wu---uor u - - - ud.
By cases 4 and 5 in Section 4, we also conclude that
the increase of fault diameter is at most 4 if we do not
require that one of them must be the shortest path.

References

[1] M. Beale and S. M. 5. Lau, “Complexity and
auto-correlation properties of a class of de bruijn
sequence,” FElecironic Letters, Vol. 22, No. 20,
pp. 1046-1047, May 1986. '

J. C. Bermond and P. Fraigniaud, “Broadcasting
and gossiping in de bruijn networks,” STAM Jour-
nal on Computing, Vol. 23, No. 1, pp. 212-225,
Feb. 1994.

J. Bruck, R. Cypher, and C. T. Ho, “Fault-fault
de bruijn and shuffle-exchange networks,” IEEE
Transactions on Parallel and Distributed Systems,
Vol. 5, No. 5, pp. 548-553, May 1994.

D. Du and F. K. Hwang, “Generalized de bruijn
digraphs,” Networks, Vol. 18, No. 1, pp. 27-38,
1988.

(10]

26

[5] A. H. Esfahanian and S. L. Hakimi, “Fault-
tolerant routing in debruijn communication net-

works,” IEEE Transactions on Computers, Vol. C-
34, No. 9, pp. 777-788, Sep. 1985.

G. Mayhew-and S. W. Golomb, “Linear spans of
modified de bruijn sequences,” IEEE Transactions
on Information Theory, Vol. 36, No. 5, pp. 1166-
1167, 1990.

D. K. Pradhan and S. M. Reddy, “A fault-tolerant
communication architecture for distributed sys-
tems,” IEEE Transaction on Computers, Vol. 31,
No. 9, pp. 863-870, Sep. 1982.

[7]

[8] M. R. Samatham and D. K. Pradhan, “The de
bruijn multiprocessor network: A versatile par-
allel processing and sorting network for vlsi,”
IEEE Transactions on Computers, Vol. 38, No. 4,

pp. 567-581, 1989.

[9] M. A. Sridhar, “The undirected de bruijn graph:
Fault tolerance and routing algorithms,” IEEE
Transactions on Circuits and Systems-I: Funda-
mental Theory and Applications, Vol. 39, No. 1,

pp. 45-48, 1992.

M. A. Sridhar and C. S. Raghavendra, “Fault-
tolerant networks based on the de bruijn graph,”
IEEE Transactions on Compuiers, Vol. 40, No. 10,
pp. 1167-1174, Oct. 1991.

